Tres Popp 68f58812e3 [mlir] Move casting calls from methods to function calls
The MLIR classes Type/Attribute/Operation/Op/Value support
cast/dyn_cast/isa/dyn_cast_or_null functionality through llvm's doCast
functionality in addition to defining methods with the same name.
This change begins the migration of uses of the method to the
corresponding function call as has been decided as more consistent.

Note that there still exist classes that only define methods directly,
such as AffineExpr, and this does not include work currently to support
a functional cast/isa call.

Context:
- https://mlir.llvm.org/deprecation/ at "Use the free function variants
  for dyn_cast/cast/isa/…"
- Original discussion at https://discourse.llvm.org/t/preferred-casting-style-going-forward/68443

Implementation:
This patch updates all remaining uses of the deprecated functionality in
mlir/. This was done with clang-tidy as described below and further
modifications to GPUBase.td and OpenMPOpsInterfaces.td.

Steps are described per line, as comments are removed by git:
0. Retrieve the change from the following to build clang-tidy with an
   additional check:
   main...tpopp:llvm-project:tidy-cast-check
1. Build clang-tidy
2. Run clang-tidy over your entire codebase while disabling all checks
   and enabling the one relevant one. Run on all header files also.
3. Delete .inc files that were also modified, so the next build rebuilds
   them to a pure state.

```
ninja -C $BUILD_DIR clang-tidy

run-clang-tidy -clang-tidy-binary=$BUILD_DIR/bin/clang-tidy -checks='-*,misc-cast-functions'\
               -header-filter=mlir/ mlir/* -fix

rm -rf $BUILD_DIR/tools/mlir/**/*.inc
```

Differential Revision: https://reviews.llvm.org/D151542
2023-05-26 10:29:55 +02:00

1539 lines
66 KiB
C++

//===- SparseTensorCodegen.cpp - Sparse tensor primitives conversion ------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// A pass that converts sparse tensor types and primitives to actual compiler
// visible buffers and actual compiler IR that implements these primitives on
// the selected sparse tensor storage schemes. This pass provides an alternative
// to the SparseTensorConversion pass, eliminating the dependence on a runtime
// support library, and providing much more opportunities for subsequent
// compiler optimization of the generated code.
//
//===----------------------------------------------------------------------===//
#include "CodegenUtils.h"
#include "SparseTensorDescriptor.h"
#include "llvm/Support/FormatVariadic.h"
#include "mlir/Dialect/Arith/Utils/Utils.h"
#include "mlir/Dialect/Bufferization/IR/Bufferization.h"
#include "mlir/Dialect/Func/IR/FuncOps.h"
#include "mlir/Dialect/Linalg/Utils/Utils.h"
#include "mlir/Dialect/MemRef/IR/MemRef.h"
#include "mlir/Dialect/SparseTensor/IR/Enums.h"
#include "mlir/Dialect/SparseTensor/IR/SparseTensor.h"
#include "mlir/Dialect/SparseTensor/IR/SparseTensorType.h"
#include "mlir/Dialect/SparseTensor/Transforms/Passes.h"
#include "mlir/Dialect/Tensor/IR/Tensor.h"
#include "mlir/Transforms/DialectConversion.h"
#include <optional>
using namespace mlir;
using namespace mlir::sparse_tensor;
namespace {
using FuncGeneratorType =
function_ref<void(OpBuilder &, ModuleOp, func::FuncOp, RankedTensorType)>;
//===----------------------------------------------------------------------===//
// Helper methods.
//===----------------------------------------------------------------------===//
/// Flatten a list of operands that may contain sparse tensors.
static void flattenOperands(ValueRange operands,
SmallVectorImpl<Value> &flattened) {
// In case of
// sparse_tensor, c, sparse_tensor
// ==>
// memref ..., c, memref ...
for (auto operand : operands) {
if (getSparseTensorEncoding(operand.getType())) {
auto tuple = getTuple(operand);
// An unrealized_conversion_cast will be inserted by type converter to
// inter-mix the gap between 1:N conversion between sparse tensors and
// fields. In this case, take the operands in the cast and replace the
// sparse tensor output with the flattened type array.
flattened.append(tuple.getOperands().begin(), tuple.getOperands().end());
} else {
flattened.push_back(operand);
}
}
}
/// Generates a load with proper `index` typing.
static Value genLoad(OpBuilder &builder, Location loc, Value mem, Value idx) {
idx = genCast(builder, loc, idx, builder.getIndexType());
return builder.create<memref::LoadOp>(loc, mem, idx);
}
/// Generates a store with proper `index` typing and proper value.
static void genStore(OpBuilder &builder, Location loc, Value val, Value mem,
Value idx) {
idx = genCast(builder, loc, idx, builder.getIndexType());
val = genCast(builder, loc, val,
cast<ShapedType>(mem.getType()).getElementType());
builder.create<memref::StoreOp>(loc, val, mem, idx);
}
/// Creates a straightforward counting for-loop.
static scf::ForOp createFor(OpBuilder &builder, Location loc, Value upper,
MutableArrayRef<Value> fields,
Value lower = Value()) {
Type indexType = builder.getIndexType();
if (!lower)
lower = constantZero(builder, loc, indexType);
Value one = constantOne(builder, loc, indexType);
scf::ForOp forOp = builder.create<scf::ForOp>(loc, lower, upper, one, fields);
for (unsigned i = 0, e = fields.size(); i < e; i++)
fields[i] = forOp.getRegionIterArg(i);
builder.setInsertionPointToStart(forOp.getBody());
return forOp;
}
/// Gets the dimension size for the given sparse tensor at the given
/// original dimension 'dim'.
static Value sizeFromTensorAtDim(OpBuilder &builder, Location loc,
SparseTensorDescriptor desc, Dimension dim) {
const SparseTensorType stt(desc.getRankedTensorType());
// Access into static dimension can query original type directly.
// Note that this is typically already done by DimOp's folding.
if (auto sz = stt.getStaticDimSize(dim))
return constantIndex(builder, loc, *sz);
// Any other query can consult the dimSizes array at field DimSizesIdx,
// accounting for the reordering applied to the sparse storage.
// FIXME: `toStoredDim` is deprecated.
const Level lvl = toStoredDim(stt, dim);
return desc.getLvlSize(builder, loc, lvl);
}
// Gets the dimension size at the given stored level 'lvl', either as a
// constant for a static size, or otherwise dynamically through memSizes.
static Value sizeFromTensorAtLvl(OpBuilder &builder, Location loc,
SparseTensorDescriptor desc, Level lvl) {
// FIXME: `toOrigDim` is deprecated.
return sizeFromTensorAtDim(builder, loc, desc,
toOrigDim(desc.getRankedTensorType(), lvl));
}
static void createPushback(OpBuilder &builder, Location loc,
MutSparseTensorDescriptor desc,
SparseTensorFieldKind kind, std::optional<Level> lvl,
Value value, Value repeat = Value()) {
Type etp = desc.getMemRefElementType(kind, lvl);
Value field = desc.getMemRefField(kind, lvl);
StorageSpecifierKind specFieldKind = toSpecifierKind(kind);
auto pushBackOp = builder.create<PushBackOp>(
loc, desc.getSpecifierField(builder, loc, specFieldKind, lvl), field,
genCast(builder, loc, value, etp), repeat);
desc.setMemRefField(kind, lvl, pushBackOp.getOutBuffer());
desc.setSpecifierField(builder, loc, specFieldKind, lvl,
pushBackOp.getNewSize());
}
/// Generates code that allocates a sparse storage scheme for given rank.
static void allocSchemeForRank(OpBuilder &builder, Location loc,
MutSparseTensorDescriptor desc, Level startLvl) {
const SparseTensorType stt(desc.getRankedTensorType());
Value linear = constantIndex(builder, loc, 1);
const Level lvlRank = stt.getLvlRank();
for (Level l = startLvl; l < lvlRank; l++) {
const auto dlt = stt.getLvlType(l);
if (isCompressedDLT(dlt)) {
// Append linear x positions, initialized to zero. Since each compressed
// dimension initially already has a single zero entry, this maintains
// the desired "linear + 1" length property at all times.
Value posZero = constantZero(builder, loc, stt.getPosType());
createPushback(builder, loc, desc, SparseTensorFieldKind::PosMemRef, l,
posZero, linear);
return;
}
if (isSingletonDLT(dlt)) {
return; // nothing to do
}
// Keep compounding the size, but nothing needs to be initialized
// at this level. We will eventually reach a compressed level or
// otherwise the values array for the from-here "all-dense" case.
assert(isDenseDLT(dlt));
Value size = sizeFromTensorAtLvl(builder, loc, desc, l);
linear = builder.create<arith::MulIOp>(loc, linear, size);
}
// Reached values array so prepare for an insertion.
Value valZero = constantZero(builder, loc, stt.getElementType());
createPushback(builder, loc, desc, SparseTensorFieldKind::ValMemRef,
std::nullopt, valZero, linear);
}
/// Creates allocation operation.
static Value createAllocation(OpBuilder &builder, Location loc,
MemRefType memRefType, Value sz,
bool enableInit) {
Value buffer = builder.create<memref::AllocOp>(loc, memRefType, sz);
Type elemType = memRefType.getElementType();
if (enableInit) {
Value fillValue = constantZero(builder, loc, elemType);
builder.create<linalg::FillOp>(loc, fillValue, buffer);
}
return buffer;
}
/// Creates allocation for each field in sparse tensor type. Note that
/// for all dynamic memrefs, the memory size is really the capacity of
/// the "vector", while the actual size resides in the sizes array.
///
/// TODO: for efficiency, we will need heuristics to make educated guesses
/// on the required capacities (see heuristic variable).
///
static void createAllocFields(OpBuilder &builder, Location loc,
SparseTensorType stt, ValueRange dynSizes,
bool enableInit, SmallVectorImpl<Value> &fields,
Value sizeHint) {
// Build original sizes.
assert((dynSizes.size() == static_cast<size_t>(stt.getNumDynamicDims())) &&
"Got wrong number of dynamic sizes");
const Dimension dimRank = stt.getDimRank();
SmallVector<Value> dimSizes;
dimSizes.reserve(dimRank);
unsigned i = 0; // cumulative index into `dynSizes`.
for (const DynSize sh : stt.getDimShape())
dimSizes.push_back(ShapedType::isDynamic(sh)
? dynSizes[i++]
: constantIndex(builder, loc, sh));
// Set up some heuristic sizes. We try to set the initial
// size based on available information. Otherwise we just
// initialize a few elements to start the reallocation chain.
// TODO: refine this
Value posHeuristic, crdHeuristic, valHeuristic;
if (stt.isAllDense()) {
valHeuristic = dimSizes[0];
for (const Value sz : ArrayRef<Value>{dimSizes}.drop_front())
valHeuristic = builder.create<arith::MulIOp>(loc, valHeuristic, sz);
} else if (sizeHint) {
if (getCOOStart(stt.getEncoding()) == 0) {
posHeuristic = constantIndex(builder, loc, 2);
crdHeuristic = builder.create<arith::MulIOp>(
loc, constantIndex(builder, loc, dimRank), sizeHint); // AOS
} else if (dimRank == 2 && stt.isDenseLvl(0) && stt.isCompressedLvl(1)) {
posHeuristic = builder.create<arith::AddIOp>(
loc, sizeHint, constantIndex(builder, loc, 1));
crdHeuristic = sizeHint;
} else {
posHeuristic = crdHeuristic = constantIndex(builder, loc, 16);
}
valHeuristic = sizeHint;
} else {
posHeuristic = crdHeuristic = valHeuristic =
constantIndex(builder, loc, 16);
}
foreachFieldAndTypeInSparseTensor(
stt,
[&builder, &fields, stt, loc, posHeuristic, crdHeuristic, valHeuristic,
enableInit](Type fType, FieldIndex fIdx, SparseTensorFieldKind fKind,
Level /*lvl*/, DimLevelType /*dlt*/) -> bool {
assert(fields.size() == fIdx);
Value field;
switch (fKind) {
case SparseTensorFieldKind::StorageSpec:
field = SparseTensorSpecifier::getInitValue(builder, loc, stt);
break;
case SparseTensorFieldKind::PosMemRef:
case SparseTensorFieldKind::CrdMemRef:
case SparseTensorFieldKind::ValMemRef:
field = createAllocation(
builder, loc, cast<MemRefType>(fType),
(fKind == SparseTensorFieldKind::PosMemRef) ? posHeuristic
: (fKind == SparseTensorFieldKind::CrdMemRef) ? crdHeuristic
: valHeuristic,
enableInit);
break;
}
assert(field);
fields.push_back(field);
// Returns true to continue the iteration.
return true;
});
MutSparseTensorDescriptor desc(stt, fields);
// Initialize the storage scheme to an empty tensor. Initialized memSizes
// to all zeros, sets the dimSizes to known values and gives all position
// fields an initial zero entry, so that it is easier to maintain the
// "linear + 1" length property.
Value posZero = constantZero(builder, loc, stt.getPosType());
for (Level lvlRank = stt.getLvlRank(), l = 0; l < lvlRank; l++) {
// Fills dim sizes array.
// FIXME: `toOrigDim` is deprecated.
desc.setLvlSize(builder, loc, l, dimSizes[toOrigDim(stt, l)]);
// Pushes a leading zero to positions memref.
if (stt.isCompressedLvl(l))
createPushback(builder, loc, desc, SparseTensorFieldKind::PosMemRef, l,
posZero);
}
allocSchemeForRank(builder, loc, desc, /*rank=*/0);
}
/// Helper method that generates block specific to compressed case:
///
/// // given: parentPos = posCursor[lvl-1]
/// pstart = desc.positions[lvl][parentPos]
/// pstop = desc.positions[lvl][parentPos+1]
/// plast = pstop - 1
/// msz = desc.coordinates[lvl].size()
/// if (pstart < pstop) {
/// isPresent = (desc.coordinates[lvl][plast] == lvlCoords[lvl])
/// } else { // first insertion
/// isPresent = false
/// desc.positions[lvl][parentPos] = msz
/// }
/// if (isPresent) { // coordinate is already present
/// pnext = plast
/// } else {
/// desc.coordinates[lvl].push_back(lvlCoords[lvl])
/// desc.positions[lvl][parentPos+1] = msz+1
/// pnext = msz
/// <prepare level lvl+1>
/// }
/// posCursor[lvl] = pnext
static Value genCompressed(OpBuilder &builder, Location loc,
MutSparseTensorDescriptor desc, ValueRange lvlCoords,
Value /*unused*/, Value parentPos, Level lvl) {
const SparseTensorType stt(desc.getRankedTensorType());
const Level lvlRank = stt.getLvlRank();
assert(lvl < lvlRank && "Level is out of bounds");
assert(lvlCoords.size() == static_cast<size_t>(lvlRank) &&
"Level-rank mismatch");
SmallVector<Type> types;
Type indexType = builder.getIndexType();
Type boolType = builder.getIntegerType(1);
unsigned crdFidx;
unsigned crdStride;
std::tie(crdFidx, crdStride) = desc.getCrdMemRefIndexAndStride(lvl);
const Value one = constantIndex(builder, loc, 1);
const Value pp1 = builder.create<arith::AddIOp>(loc, parentPos, one);
const Value positionsAtLvl = desc.getPosMemRef(lvl);
const Value pstart = genLoad(builder, loc, positionsAtLvl, parentPos);
const Value pstop = genLoad(builder, loc, positionsAtLvl, pp1);
const Value crdMsz = desc.getCrdMemSize(builder, loc, lvl);
const Value crdStrideC =
crdStride > 1 ? constantIndex(builder, loc, crdStride) : Value();
const Value msz =
crdStrideC ? builder.create<arith::DivUIOp>(loc, crdMsz, crdStrideC)
: crdMsz;
const Value plast = builder.create<arith::SubIOp>(
loc, genCast(builder, loc, pstop, indexType), one);
// Conditional expression.
Value lt = builder.create<arith::CmpIOp>(loc, arith::CmpIPredicate::ult,
pstart, pstop);
types.push_back(boolType);
scf::IfOp ifOp1 = builder.create<scf::IfOp>(loc, types, lt, /*else*/ true);
types.pop_back();
builder.setInsertionPointToStart(&ifOp1.getThenRegion().front());
Value crd =
genLoad(builder, loc, desc.getMemRefField(crdFidx),
crdStrideC ? builder.create<arith::MulIOp>(loc, plast, crdStrideC)
: plast);
Value eq = builder.create<arith::CmpIOp>(
loc, arith::CmpIPredicate::eq, genCast(builder, loc, crd, indexType),
lvlCoords[lvl]);
builder.create<scf::YieldOp>(loc, eq);
builder.setInsertionPointToStart(&ifOp1.getElseRegion().front());
if (lvl > 0)
genStore(builder, loc, msz, positionsAtLvl, parentPos);
builder.create<scf::YieldOp>(loc, constantI1(builder, loc, false));
builder.setInsertionPointAfter(ifOp1);
// If present construct. Note that for a non-unique dimension level, we
// simply set the condition to false and rely on CSE/DCE to clean up the IR.
//
// TODO: generate less temporary IR?
//
for (unsigned i = 0, e = desc.getNumFields(); i < e; i++)
types.push_back(desc.getField(i).getType());
types.push_back(indexType);
const Value p = stt.isUniqueLvl(lvl) ? ifOp1.getResult(0)
: constantI1(builder, loc, false);
scf::IfOp ifOp2 = builder.create<scf::IfOp>(loc, types, p, /*else*/ true);
// If present (fields unaffected, update pnext to plast).
builder.setInsertionPointToStart(&ifOp2.getThenRegion().front());
// FIXME: This does not looks like a clean way, but probably the most
// efficient way.
desc.getFields().push_back(plast);
builder.create<scf::YieldOp>(loc, desc.getFields());
desc.getFields().pop_back();
// If !present (changes fields, update pnext).
builder.setInsertionPointToStart(&ifOp2.getElseRegion().front());
Value mszp1 = builder.create<arith::AddIOp>(loc, msz, one);
genStore(builder, loc, mszp1, positionsAtLvl, pp1);
createPushback(builder, loc, desc, SparseTensorFieldKind::CrdMemRef, lvl,
lvlCoords[lvl]);
// Prepare the next level "as needed".
if ((lvl + 1) < lvlRank)
allocSchemeForRank(builder, loc, desc, lvl + 1);
desc.getFields().push_back(msz);
builder.create<scf::YieldOp>(loc, desc.getFields());
desc.getFields().pop_back();
// Update fields and return next pos.
builder.setInsertionPointAfter(ifOp2);
unsigned o = 0;
for (unsigned i = 0, e = desc.getNumFields(); i < e; i++)
desc.setField(i, ifOp2.getResult(o++));
return ifOp2.getResult(o);
}
/// Helper class to help lowering sparse_tensor.insert operation.
class SparseInsertGenerator
: public FuncCallOrInlineGenerator<SparseInsertGenerator> {
public:
SparseInsertGenerator(TensorType rtp, TypeRange retTypes, ValueRange params,
bool genCall)
: FuncCallOrInlineGenerator(retTypes, params, genCall), rtp(rtp){};
/// Generates code along an insertion path without the need for a "cursor".
/// This current insertion strategy comes at the expense of some testing
/// overhead for each insertion. The strategy will be optimized later for
/// common insertion patterns. The current insertion strategy also assumes
/// insertions occur in "a reasonable order" that enables building the
/// storage scheme in an appending/inserting kind of fashion (i.e. no
/// in-between insertions that need data movement). The implementation
/// relies on CSE/DCE to clean up all bookkeeping that is not needed.
///
/// TODO: better unord/not-unique; also generalize, optimize, specialize!
SmallVector<Value> genImplementation(TypeRange retTypes, ValueRange args,
OpBuilder &builder, Location loc) {
const SparseTensorType stt(llvm::cast<RankedTensorType>(rtp));
const Level lvlRank = stt.getLvlRank();
// Extract fields and coordinates from args.
SmallVector<Value> fields = llvm::to_vector(args.drop_back(lvlRank + 1));
MutSparseTensorDescriptor desc(stt, fields);
const SmallVector<Value> coords =
llvm::to_vector(args.take_back(lvlRank + 1).drop_back());
Value value = args.back();
Value parentPos = constantZero(builder, loc, builder.getIndexType());
// Generate code for every level.
for (Level l = 0; l < lvlRank; l++) {
const auto dlt = stt.getLvlType(l);
if (isCompressedDLT(dlt)) {
// Create:
// if (!present) {
// coordinates[l].push_back(coords[l])
// <update positions and prepare level l + 1>
// }
// positions[l] = coordinates.size() - 1
// <insert @ positions[l] at next level l + 1>
parentPos =
genCompressed(builder, loc, desc, coords, value, parentPos, l);
} else if (isSingletonDLT(dlt)) {
// Create:
// coordinates[l].push_back(coords[l])
// positions[l] = positions[l-1]
// <insert @ positions[l] at next level l + 1>
createPushback(builder, loc, desc, SparseTensorFieldKind::CrdMemRef, l,
coords[l]);
} else {
assert(isDenseDLT(dlt));
// Construct the new position as:
// positions[l] = size * positions[l-1] + coords[l]
// <insert @ positions[l] at next level l + 1>
Value size = sizeFromTensorAtLvl(builder, loc, desc, l);
Value mult = builder.create<arith::MulIOp>(loc, size, parentPos);
parentPos = builder.create<arith::AddIOp>(loc, mult, coords[l]);
}
}
// Reached the actual value append/insert.
if (!stt.isDenseLvl(lvlRank - 1))
createPushback(builder, loc, desc, SparseTensorFieldKind::ValMemRef,
std::nullopt, value);
else
genStore(builder, loc, value, desc.getValMemRef(), parentPos);
return fields;
}
std::string getMangledFuncName() {
// The mangled name of the function has this format:
// <namePrefix>_<DLT>_<shape>_<ordering>_<eltType>_<crdWidth>_<posWidth>
constexpr const char kInsertFuncNamePrefix[] = "_insert_";
const SparseTensorType stt(llvm::cast<RankedTensorType>(rtp));
SmallString<32> nameBuffer;
llvm::raw_svector_ostream nameOstream(nameBuffer);
nameOstream << kInsertFuncNamePrefix;
const Level lvlRank = stt.getLvlRank();
for (Level l = 0; l < lvlRank; l++)
nameOstream << toMLIRString(stt.getLvlType(l)) << "_";
// Static dim sizes are used in the generated code while dynamic sizes are
// loaded from the dimSizes buffer. This is the reason for adding the shape
// to the function name.
for (const auto sh : stt.getDimShape())
nameOstream << sh << "_";
// Permutation information is also used in generating insertion.
if (!stt.isIdentity())
nameOstream << stt.getDimToLvlMap() << "_";
nameOstream << stt.getElementType() << "_";
nameOstream << stt.getCrdWidth() << "_" << stt.getPosWidth();
return nameOstream.str().str();
}
private:
TensorType rtp;
};
/// Generations insertion finalization code.
static void genEndInsert(OpBuilder &builder, Location loc,
SparseTensorDescriptor desc) {
const SparseTensorType stt(desc.getRankedTensorType());
const Level lvlRank = stt.getLvlRank();
for (Level l = 0; l < lvlRank; l++) {
const auto dlt = stt.getLvlType(l);
if (isCompressedWithHiDLT(dlt))
llvm_unreachable("TODO: Not yet implemented");
if (isCompressedDLT(dlt)) {
// Compressed dimensions need a position cleanup for all entries
// that were not visited during the insertion pass.
//
// TODO: avoid cleanup and keep compressed scheme consistent at all
// times?
//
if (l > 0) {
Type posType = stt.getPosType();
Value posMemRef = desc.getPosMemRef(l);
Value hi = desc.getPosMemSize(builder, loc, l);
Value zero = constantIndex(builder, loc, 0);
Value one = constantIndex(builder, loc, 1);
// Vector of only one, but needed by createFor's prototype.
SmallVector<Value, 1> inits{genLoad(builder, loc, posMemRef, zero)};
scf::ForOp loop = createFor(builder, loc, hi, inits, one);
Value i = loop.getInductionVar();
Value oldv = loop.getRegionIterArg(0);
Value newv = genLoad(builder, loc, posMemRef, i);
Value posZero = constantZero(builder, loc, posType);
Value cond = builder.create<arith::CmpIOp>(
loc, arith::CmpIPredicate::eq, newv, posZero);
scf::IfOp ifOp = builder.create<scf::IfOp>(loc, TypeRange(posType),
cond, /*else*/ true);
builder.setInsertionPointToStart(&ifOp.getThenRegion().front());
genStore(builder, loc, oldv, posMemRef, i);
builder.create<scf::YieldOp>(loc, oldv);
builder.setInsertionPointToStart(&ifOp.getElseRegion().front());
builder.create<scf::YieldOp>(loc, newv);
builder.setInsertionPointAfter(ifOp);
builder.create<scf::YieldOp>(loc, ifOp.getResult(0));
builder.setInsertionPointAfter(loop);
}
} else {
assert(isDenseDLT(dlt) || isSingletonDLT(dlt));
}
}
}
static TypedValue<BaseMemRefType> genToMemref(OpBuilder &builder, Location loc,
Value tensor) {
auto tTp = llvm::cast<TensorType>(tensor.getType());
auto mTp = MemRefType::get(tTp.getShape(), tTp.getElementType());
return builder.create<bufferization::ToMemrefOp>(loc, mTp, tensor)
.getResult();
}
Value genSliceToSize(OpBuilder &builder, Location loc, Value mem, Value sz) {
auto elemTp = llvm::cast<MemRefType>(mem.getType()).getElementType();
return builder
.create<memref::SubViewOp>(
loc, MemRefType::get({ShapedType::kDynamic}, elemTp), mem,
ValueRange{}, ValueRange{sz}, ValueRange{},
ArrayRef<int64_t>{0}, // static offset
ArrayRef<int64_t>{ShapedType::kDynamic}, // dynamic size
ArrayRef<int64_t>{1}) // static stride
.getResult();
}
static ReassociationIndices getReassociationForFlattening(ShapedType srcTp) {
ReassociationIndices reassociation;
for (int i = 0, e = srcTp.getRank(); i < e; i++)
reassociation.push_back(i);
return reassociation;
}
//===----------------------------------------------------------------------===//
// Codegen rules.
//===----------------------------------------------------------------------===//
/// Sparse tensor storage conversion rule for returns.
class SparseReturnConverter : public OpConversionPattern<func::ReturnOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(func::ReturnOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
SmallVector<Value> flattened;
flattenOperands(adaptor.getOperands(), flattened);
// Create a return with the flattened value extracted from sparse tensors.
rewriter.replaceOpWithNewOp<func::ReturnOp>(op, flattened);
return success();
}
};
/// Sparse tensor storage conversion rule for calls.
class SparseCallConverter : public OpConversionPattern<func::CallOp> {
public:
// The default CallOp converter can not handle 1:N type conversion.
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(func::CallOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
Location loc = op.getLoc();
// In case of:
// sparse_tensor, f, sparse_tensor = call @foo(...)
// ==>
// memref..., f, memref = call @foo(...) replace with
// cast(memref...)->sparse_tensor, f, cast(memref...)->sparse_tensor
SmallVector<Type> finalRetTy;
if (failed(typeConverter->convertTypes(op.getResultTypes(), finalRetTy)))
return failure();
// (1) Genereates new call with flattened return value.
SmallVector<Value> flattened;
flattenOperands(adaptor.getOperands(), flattened);
auto newCall = rewriter.create<func::CallOp>(loc, op.getCallee(),
finalRetTy, flattened);
// (2) Create cast operation for sparse tensor returns.
SmallVector<Value> castedRet;
// Tracks the offset of current return value (of the orignal call)
// relative to the new call (after sparse tensor flattening);
unsigned retOffset = 0;
// Temporal buffer to hold the flattened list of type for
// a sparse tensor.
SmallVector<Type> sparseFlat;
for (auto ret : op.getResults()) {
assert(retOffset < newCall.getNumResults());
auto retType = ret.getType();
if (failed(typeConverter->convertType(retType, sparseFlat)))
// This should never happen.
llvm_unreachable("Failed to convert type in sparse tensor codegen");
// Converted types can not be empty when the type conversion succeed.
assert(!sparseFlat.empty());
if (sparseFlat.size() > 1) {
auto flatSize = sparseFlat.size();
ValueRange fields(iterator_range<ResultRange::iterator>(
newCall.result_begin() + retOffset,
newCall.result_begin() + retOffset + flatSize));
castedRet.push_back(genTuple(rewriter, loc, retType, fields));
retOffset += flatSize;
} else {
// If this is an 1:1 conversion, no need for casting.
castedRet.push_back(newCall.getResult(retOffset));
retOffset++;
}
sparseFlat.clear();
}
assert(castedRet.size() == op.getNumResults());
rewriter.replaceOp(op, castedRet);
return success();
}
};
/// Sparse codegen rule for dimension accesses.
class SparseDimOpConverter : public OpConversionPattern<tensor::DimOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(tensor::DimOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
std::optional<int64_t> dim = op.getConstantIndex();
if (!dim || !getSparseTensorEncoding(adaptor.getSource().getType()))
return failure();
auto desc = getDescriptorFromTensorTuple(adaptor.getSource());
auto sz = sizeFromTensorAtDim(rewriter, op.getLoc(), desc, *dim);
rewriter.replaceOp(op, sz);
return success();
}
};
template <typename Op, StorageSpecifierKind kind>
class SparseSliceGetterOpConverter : public OpConversionPattern<Op> {
public:
using OpConversionPattern<Op>::OpConversionPattern;
LogicalResult
matchAndRewrite(Op op, typename Op::Adaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
// Simply lowers to specifer.get <field> operation.
auto desc = getDescriptorFromTensorTuple(adaptor.getSlice());
auto v = desc.getSpecifierField(rewriter, op.getLoc(), kind,
op.getDim().getZExtValue());
rewriter.replaceOp(op, v);
return success();
}
};
/// Sparse codegen rule for trivial tensor casts.
class SparseCastConverter : public OpConversionPattern<tensor::CastOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(tensor::CastOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
// Only rewrite identically annotated source/dest.
auto encDst = getSparseTensorEncoding(op.getType());
auto encSrc = getSparseTensorEncoding(op.getSource().getType());
if (!encDst || encDst != encSrc)
return failure();
rewriter.replaceOp(op, adaptor.getOperands());
return success();
}
};
/// Sparse codgen rule for the alloc operator.
class SparseTensorAllocConverter
: public OpConversionPattern<bufferization::AllocTensorOp> {
public:
using OpConversionPattern::OpConversionPattern;
SparseTensorAllocConverter(TypeConverter &typeConverter, MLIRContext *context,
bool enableInit)
: OpConversionPattern(typeConverter, context),
enableBufferInitialization(enableInit) {}
LogicalResult
matchAndRewrite(bufferization::AllocTensorOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
const auto resType = getSparseTensorType(op);
if (!resType.hasEncoding())
return failure();
// Construct allocation for each field.
const Location loc = op.getLoc();
if (op.getCopy()) {
auto desc = getDescriptorFromTensorTuple(adaptor.getCopy());
SmallVector<Value> fields;
fields.reserve(desc.getNumFields());
// Memcpy on memref fields.
for (auto field : desc.getMemRefFields()) {
auto memrefTp = cast<MemRefType>(field.getType());
auto size = rewriter.create<memref::DimOp>(loc, field, 0);
auto copied =
rewriter.create<memref::AllocOp>(loc, memrefTp, ValueRange{size});
rewriter.create<memref::CopyOp>(loc, field, copied);
fields.push_back(copied);
}
// Reuses specifier.
fields.push_back(desc.getSpecifier());
assert(fields.size() == desc.getNumFields());
rewriter.replaceOp(op, genTuple(rewriter, loc, resType, fields));
return success();
}
const Value sizeHint = op.getSizeHint();
const ValueRange dynSizes = adaptor.getDynamicSizes();
const size_t found = dynSizes.size();
const int64_t expected = resType.getNumDynamicDims();
if (found != static_cast<size_t>(expected))
return rewriter.notifyMatchFailure(
op, llvm::formatv(
"Got wrong number of dynamic sizes: Found={0}, Expected={1}",
found, expected));
SmallVector<Value> fields;
createAllocFields(rewriter, loc, resType, dynSizes,
enableBufferInitialization, fields, sizeHint);
// Replace operation with resulting memrefs.
rewriter.replaceOp(op, genTuple(rewriter, loc, resType, fields));
return success();
}
private:
bool enableBufferInitialization;
};
/// Sparse codegen rule for the dealloc operator.
class SparseTensorDeallocConverter
: public OpConversionPattern<bufferization::DeallocTensorOp> {
public:
using OpConversionPattern::OpConversionPattern;
SparseTensorDeallocConverter(TypeConverter &typeConverter,
MLIRContext *context, bool createDeallocs)
: OpConversionPattern(typeConverter, context),
createDeallocs(createDeallocs) {}
LogicalResult
matchAndRewrite(bufferization::DeallocTensorOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
auto enc = getSparseTensorEncoding(op.getTensor().getType());
if (!enc)
return failure();
// If user requests not to deallocate sparse tensors, simply erase the
// operation.
if (createDeallocs) {
// Replace the sparse tensor deallocation with field deallocations.
Location loc = op.getLoc();
auto desc = getDescriptorFromTensorTuple(adaptor.getTensor());
for (auto input : desc.getMemRefFields())
// Deallocate every buffer used to store the sparse tensor handler.
rewriter.create<memref::DeallocOp>(loc, input);
}
rewriter.eraseOp(op);
return success();
}
private:
const bool createDeallocs;
};
/// Sparse codegen rule for tensor rematerialization.
class SparseTensorLoadConverter : public OpConversionPattern<LoadOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(LoadOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
// Prepare descriptor.
auto desc = getDescriptorFromTensorTuple(adaptor.getTensor());
// Generate optional insertion finalization code.
if (op.getHasInserts())
genEndInsert(rewriter, op.getLoc(), desc);
// Replace operation with resulting memrefs.
rewriter.replaceOp(op, genTuple(rewriter, op.getLoc(), desc));
return success();
}
};
/// Sparse codegen rule for the expand op.
class SparseExpandConverter : public OpConversionPattern<ExpandOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(ExpandOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
if (!getSparseTensorEncoding(op.getTensor().getType()))
return failure();
Location loc = op->getLoc();
auto desc = getDescriptorFromTensorTuple(adaptor.getTensor());
const auto srcType = getSparseTensorType(op.getTensor());
Type eltType = srcType.getElementType();
Type boolType = rewriter.getIntegerType(1);
Type idxType = rewriter.getIndexType();
// All initialization should be done on entry of the loop nest.
rewriter.setInsertionPointAfter(op.getTensor().getDefiningOp());
// Determine the size for access expansion (always the innermost stored
// level size, translated back to original dimension). Note that we
// recursively rewrite the new DimOp on the **original** tensor.
// FIXME: `toOrigDim` is deprecated.
const Dimension innerDim = toOrigDim(srcType, srcType.getLvlRank() - 1);
const auto sz = sizeFromTensorAtDim(rewriter, loc, desc, innerDim);
// Generate a memref for `sz` elements of type `t`.
const auto genAlloc = [&](Type t) {
const auto memTp = MemRefType::get({ShapedType::kDynamic}, t);
return rewriter.create<memref::AllocOp>(loc, memTp, ValueRange{sz});
};
// Allocate temporary buffers for values/filled-switch and added.
// We do not use stack buffers for this, since the expanded size may
// be rather large (as it envelops a single expanded dense dimension).
Value values = genAlloc(eltType);
Value filled = genAlloc(boolType);
Value added = genAlloc(idxType);
Value zero = constantZero(rewriter, loc, idxType);
// Reset the values/filled-switch to all-zero/false. Note that this
// introduces an O(N) operation into the computation, but this reset
// operation is amortized over the innermost loops for the access
// pattern expansion. As noted in the operation doc, we would like
// to amortize this setup cost even between kernels.
rewriter.create<linalg::FillOp>(
loc, ValueRange{constantZero(rewriter, loc, eltType)},
ValueRange{values});
rewriter.create<linalg::FillOp>(
loc, ValueRange{constantZero(rewriter, loc, boolType)},
ValueRange{filled});
// Replace expansion op with these buffers and initial coordinate.
assert(op.getNumResults() == 4);
rewriter.replaceOp(op, {values, filled, added, zero});
return success();
}
};
/// Sparse codegen rule for the compress operator.
class SparseCompressConverter : public OpConversionPattern<CompressOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(CompressOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
Location loc = op->getLoc();
SmallVector<Value> fields;
auto desc = getMutDescriptorFromTensorTuple(adaptor.getTensor(), fields);
Value values = adaptor.getValues();
Value filled = adaptor.getFilled();
Value added = adaptor.getAdded();
Value count = adaptor.getCount();
const SparseTensorType dstType(desc.getRankedTensorType());
Type eltType = dstType.getElementType();
// If the innermost level is ordered, we need to sort the coordinates
// in the "added" array prior to applying the compression.
if (dstType.isOrderedLvl(dstType.getLvlRank() - 1))
rewriter.create<SortOp>(loc, count, ValueRange{added}, ValueRange{},
SparseTensorSortKind::HybridQuickSort);
// While performing the insertions, we also need to reset the elements
// of the values/filled-switch by only iterating over the set elements,
// to ensure that the runtime complexity remains proportional to the
// sparsity of the expanded access pattern.
//
// Generate
// out_memrefs = for (i = 0; i < count; i++)(in_memrefs) {
// crd = added[i];
// value = values[crd];
// insert({lvlCoords, crd}, value);
// new_memrefs = insert(in_memrefs, {lvlCoords, crd}, value);
// values[crd] = 0;
// filled[crd] = false;
// yield new_memrefs
// }
scf::ForOp loop = createFor(rewriter, loc, count, desc.getFields());
Value i = loop.getInductionVar();
Value crd = genLoad(rewriter, loc, added, i);
Value value = genLoad(rewriter, loc, values, crd);
SmallVector<Value> params(desc.getFields().begin(), desc.getFields().end());
SmallVector<Type> flatSpTensorTps = llvm::to_vector(
llvm::map_range(desc.getFields(), [](Value v) { return v.getType(); }));
params.append(adaptor.getLvlCoords().begin(), adaptor.getLvlCoords().end());
params.push_back(crd);
params.push_back(value);
SparseInsertGenerator insertGen(op.getTensor().getType(), flatSpTensorTps,
params, /*genCall=*/true);
SmallVector<Value> insertRet = insertGen.genCallOrInline(rewriter, loc);
genStore(rewriter, loc, constantZero(rewriter, loc, eltType), values, crd);
genStore(rewriter, loc, constantI1(rewriter, loc, false), filled, crd);
rewriter.create<scf::YieldOp>(loc, insertRet);
rewriter.setInsertionPointAfter(loop);
Value result = genTuple(rewriter, loc, dstType, loop->getResults());
// Deallocate the buffers on exit of the full loop nest.
Operation *parent = getTop(op);
rewriter.setInsertionPointAfter(parent);
rewriter.create<memref::DeallocOp>(loc, values);
rewriter.create<memref::DeallocOp>(loc, filled);
rewriter.create<memref::DeallocOp>(loc, added);
// Replace operation with resulting memrefs.
rewriter.replaceOp(op, result);
return success();
}
};
/// Sparse codegen rule for the insert operator.
class SparseInsertConverter : public OpConversionPattern<InsertOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(InsertOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
Location loc = op.getLoc();
auto desc = getDescriptorFromTensorTuple(adaptor.getTensor());
TypeRange flatSpTensorTps = desc.getFields().getTypes();
SmallVector<Value> params = llvm::to_vector(desc.getFields());
params.append(adaptor.getLvlCoords().begin(), adaptor.getLvlCoords().end());
params.push_back(adaptor.getValue());
SparseInsertGenerator insertGen(op.getTensor().getType(), flatSpTensorTps,
params, /*genCall=*/true);
SmallVector<Value> ret = insertGen.genCallOrInline(rewriter, loc);
// Replace operation with resulting memrefs.
rewriter.replaceOp(op,
genTuple(rewriter, loc, op.getTensor().getType(), ret));
return success();
}
};
/// Sparse codegen rule for position accesses.
class SparseToPositionsConverter : public OpConversionPattern<ToPositionsOp> {
public:
using OpAdaptor = typename ToPositionsOp::Adaptor;
using OpConversionPattern<ToPositionsOp>::OpConversionPattern;
LogicalResult
matchAndRewrite(ToPositionsOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
// Replace the requested position access with corresponding field.
// The cast_op is inserted by type converter to intermix 1:N type
// conversion.
auto desc = getDescriptorFromTensorTuple(adaptor.getTensor());
rewriter.replaceOp(op, desc.getPosMemRef(op.getLevel()));
return success();
}
};
/// Sparse codegen rule for accessing the coordinates arrays.
class SparseToCoordinatesConverter
: public OpConversionPattern<ToCoordinatesOp> {
public:
using OpAdaptor = typename ToCoordinatesOp::Adaptor;
using OpConversionPattern<ToCoordinatesOp>::OpConversionPattern;
LogicalResult
matchAndRewrite(ToCoordinatesOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
// Replace the requested coordinates access with corresponding field.
// The cast_op is inserted by type converter to intermix 1:N type
// conversion.
Location loc = op.getLoc();
auto desc = getDescriptorFromTensorTuple(adaptor.getTensor());
Value field = desc.getCrdMemRefOrView(rewriter, loc, op.getLevel());
// Insert a cast to bridge the actual type to the user expected type. If the
// actual type and the user expected type aren't compatible, the compiler or
// the runtime will issue an error.
Type resType = op.getResult().getType();
if (resType != field.getType())
field = rewriter.create<memref::CastOp>(loc, resType, field);
rewriter.replaceOp(op, field);
return success();
}
};
/// Sparse codegen rule for accessing the linear coordinates buffer.
class SparseToCoordinatesBufferConverter
: public OpConversionPattern<ToCoordinatesBufferOp> {
public:
using OpAdaptor = typename ToCoordinatesBufferOp::Adaptor;
using OpConversionPattern<ToCoordinatesBufferOp>::OpConversionPattern;
LogicalResult
matchAndRewrite(ToCoordinatesBufferOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
// Replace the requested coordinates access with corresponding field.
// The cast_op is inserted by type converter to intermix 1:N type
// conversion.
auto desc = getDescriptorFromTensorTuple(adaptor.getTensor());
rewriter.replaceOp(op, desc.getAOSMemRef());
return success();
}
};
/// Sparse codegen rule for value accesses.
class SparseToValuesConverter : public OpConversionPattern<ToValuesOp> {
public:
using OpAdaptor = typename ToValuesOp::Adaptor;
using OpConversionPattern<ToValuesOp>::OpConversionPattern;
LogicalResult
matchAndRewrite(ToValuesOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
// Replace the requested values access with corresponding field.
// The cast_op is inserted by type converter to intermix 1:N type
// conversion.
auto desc = getDescriptorFromTensorTuple(adaptor.getTensor());
rewriter.replaceOp(op, desc.getValMemRef());
return success();
}
};
/// Sparse codegen rule for the convert operator.
class SparseConvertConverter : public OpConversionPattern<ConvertOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(ConvertOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
SparseTensorEncodingAttr encDst = getSparseTensorEncoding(op.getType());
SparseTensorEncodingAttr encSrc =
getSparseTensorEncoding(op.getSource().getType());
// The output tensor can not be a slice and those cases should have been
// rejected by ConvertOp::verify() already.
assert(!encDst.isSlice() && "Cannot convert to a sparse tensor slices.");
// Different encoding (except for different bitwidth) should be handled by
// rewriting.
// We need further rewrites if the input tensor is a slice too.
if (encDst.withoutBitWidths() != encSrc.withoutBitWidths() ||
encSrc.isSlice()) {
return failure();
}
Type retElemTp = op.getResult().getType().getElementType();
Type srcElemTp = op.getSource().getType().getElementType();
// Fold the trivial cases.
if (retElemTp == srcElemTp && encDst == encSrc) {
rewriter.replaceOp(op, adaptor.getSource());
return success();
}
//
// Do element-wise type conversion without using InsertOp.
//
// for each memref in srcTensor:
// dst = memref.alloc
// if srcMemRefType != dstMemRefType:
// for every dst[i] = cast(src[i])
// else:
// dst = memref.copy(src)
Location loc = op.getLoc();
auto srcDesc = getDescriptorFromTensorTuple(adaptor.getSource());
SmallVector<Value> fields;
foreachFieldAndTypeInSparseTensor(
SparseTensorType(cast<RankedTensorType>(op.getResult().getType())),
[&rewriter, &fields, srcDesc,
loc](Type fTp, FieldIndex fIdx, SparseTensorFieldKind fKind, Level lvl,
DimLevelType /*dlt*/) -> bool {
// Simply reuses the storage specifier as it is an SSA value.
if (fKind == SparseTensorFieldKind::StorageSpec) {
fields.push_back(srcDesc.getSpecifier());
} else {
// Allocates new memrefs
Value srcMem = srcDesc.getMemRefField(fIdx);
// TODO: We can instead use the actual memSize in specifier, that
// would require a subViewOp to avoid overflow when copying
// values.
Value sz = linalg::createOrFoldDimOp(rewriter, loc, srcMem, 0);
auto dstMem = rewriter.create<memref::AllocOp>(
loc, cast<MemRefType>(fTp), sz);
if (fTp != srcMem.getType()) {
// Converts elements type.
scf::buildLoopNest(
rewriter, loc, constantIndex(rewriter, loc, 0), sz,
constantIndex(rewriter, loc, 1),
[srcMem, &dstMem](OpBuilder &builder, Location loc,
ValueRange ivs) {
Value v = builder.create<memref::LoadOp>(loc, srcMem, ivs);
Value casted = genCast(builder, loc, v,
dstMem.getType().getElementType());
builder.create<memref::StoreOp>(loc, casted, dstMem, ivs);
});
} else {
// TODO: We can even reuse the same memref for the new tensor,
// but that requires a `ref-counting` based memory management
// for shared memrefs between multiple sparse tensors.
rewriter.create<memref::CopyOp>(loc, srcMem, dstMem);
}
fields.push_back(dstMem);
}
return true;
});
rewriter.replaceOp(
op, genTuple(rewriter, loc, op.getResult().getType(), fields));
return success();
}
};
class SparseExtractSliceConverter
: public OpConversionPattern<tensor::ExtractSliceOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(tensor::ExtractSliceOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
Location loc = op.getLoc();
MLIRContext *ctx = op.getContext();
auto srcEnc = getSparseTensorEncoding(op.getSourceType());
auto dstEnc = getSparseTensorEncoding(op.getResult().getType());
// TODO: We should check these in ExtractSliceOp::verify.
if (!srcEnc || !dstEnc || !dstEnc.isSlice())
return failure();
assert(srcEnc.getLvlTypes() == dstEnc.getLvlTypes());
assert(srcEnc.getDimOrdering() == dstEnc.getDimOrdering());
assert(srcEnc.getHigherOrdering() == dstEnc.getHigherOrdering());
assert(srcEnc.getPosWidth() == dstEnc.getPosWidth());
assert(srcEnc.getCrdWidth() == dstEnc.getCrdWidth());
SmallVector<Value> fields;
auto desc = getMutDescriptorFromTensorTuple(adaptor.getSource(), fields);
auto newSpec = rewriter.create<StorageSpecifierInitOp>(
loc, StorageSpecifierType::get(ctx, dstEnc), desc.getSpecifier());
desc.setSpecifier(newSpec);
// Fills in slice information.
for (auto [idx, offset, size, stride] : llvm::enumerate(
op.getMixedOffsets(), op.getMixedSizes(), op.getMixedStrides())) {
Dimension dim = idx;
Value offsetV = getValueOrCreateConstantIndexOp(rewriter, loc, offset);
Value sizeV = getValueOrCreateConstantIndexOp(rewriter, loc, size);
Value strideV = getValueOrCreateConstantIndexOp(rewriter, loc, stride);
// TODO: We could probably only set dynamic value here. But it would
// requires us to fill the hole when casting a static slice to dynamic
// slice.
desc.setSpecifierField(rewriter, loc, StorageSpecifierKind::DimOffset,
dim, offsetV);
// FIXME: we need to distinguish level sizes and dimension size for slices
// here. Maybe we should store slice level sizes in a different array
// instead of reusing it.
assert(srcEnc.hasIdDimOrdering());
desc.setSpecifierField(rewriter, loc, StorageSpecifierKind::LvlSize, dim,
sizeV);
desc.setSpecifierField(rewriter, loc, StorageSpecifierKind::DimStride,
dim, strideV);
}
// NOTE: we can not generate tuples directly from descriptor here, as the
// descriptor is holding the original type, yet we want the slice type
// here (they shared every memref but with an updated specifier).
rewriter.replaceOp(op, genTuple(rewriter, loc, op.getResult().getType(),
desc.getFields()));
return success();
}
};
/// Sparse codegen rule for number of entries operator.
class SparseNumberOfEntriesConverter
: public OpConversionPattern<NumberOfEntriesOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(NumberOfEntriesOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
// Query memSizes for the actually stored values.
// FIXME: the nse value computed in this way might be wrong when there is
// any "compressed-hi" level.
rewriter.replaceOp(
op, genValMemSize(rewriter, op.getLoc(), adaptor.getTensor()));
return success();
}
};
struct SparsePackOpConverter : public OpConversionPattern<PackOp> {
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(PackOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
Location loc = op.getLoc();
const auto stt = getSparseTensorType(op.getResult());
SmallVector<Value> fields;
foreachFieldAndTypeInSparseTensor(
stt,
[&rewriter, &fields, &op, &stt,
loc](Type fType, FieldIndex fIdx, SparseTensorFieldKind fKind,
Level /*lvl*/, DimLevelType dlt) -> bool {
assert(fields.size() == fIdx);
if (fKind == SparseTensorFieldKind::StorageSpec) {
fields.push_back(
SparseTensorSpecifier::getInitValue(rewriter, loc, stt));
} else {
// Else simply takes the inputs.
Value tensor = fKind == SparseTensorFieldKind::ValMemRef
? op.getValues()
: op.getLevels()[fIdx];
TypedValue<BaseMemRefType> mem = genToMemref(rewriter, loc, tensor);
if (mem.getType().getRank() > 1) {
// Flattens the buffer to rank 1.
auto reassoc = getReassociationForFlattening(mem.getType());
mem = rewriter.create<memref::CastOp>(
loc, fType,
rewriter.create<memref::CollapseShapeOp>(loc, mem, reassoc));
} else {
mem = rewriter.create<memref::CastOp>(loc, fType, mem);
}
fields.push_back(mem);
}
return true;
});
MutSparseTensorDescriptor desc(stt, fields);
Value c0 = constantIndex(rewriter, loc, 0);
Value c1 = constantIndex(rewriter, loc, 1);
Value c2 = constantIndex(rewriter, loc, 2);
Value posBack = c0; // index to the last value in the postion array
Value memSize = c1; // memory size for current array
Level trailCOOStart = getCOOStart(stt.getEncoding());
Level trailCOORank = stt.getLvlRank() - trailCOOStart;
// Sets up SparseTensorSpecifier.
for (Level lvl = 0, lvlRank = stt.getLvlRank(); lvl < lvlRank; lvl++) {
assert(!ShapedType::isDynamic(stt.getDimShape()[lvl]));
// FIXME: dim/lvl confusion!
// Sets up the level size.
auto lvlSize = constantIndex(rewriter, loc, stt.getDimShape()[lvl]);
desc.setLvlSize(rewriter, loc, lvl, lvlSize);
// We use a single AOS array to store the trailing COO, so there is only
// one memory size to set for the entire COO section.
if (lvl > trailCOOStart)
continue;
// Sets up the memory size by reading the last value in position array.
DimLevelType dlt = stt.getLvlType(lvl);
// Simply forwards the position index when this is a dense level.
if (isDenseDLT(dlt)) {
memSize = rewriter.create<arith::MulIOp>(loc, lvlSize, memSize);
posBack = rewriter.create<arith::SubIOp>(loc, memSize, c1);
continue;
}
if (isDLTWithPos(dlt)) {
assert(isCompressedDLT(dlt) || isCompressedWithHiDLT(dlt));
if (isCompressedWithHiDLT(dlt)) {
memSize = rewriter.create<arith::MulIOp>(loc, memSize, c2);
posBack = rewriter.create<arith::SubIOp>(loc, memSize, c1);
} else {
assert(isCompressedDLT(dlt));
posBack = memSize;
memSize = rewriter.create<arith::AddIOp>(loc, memSize, c1);
}
desc.setPosMemSize(rewriter, loc, lvl, memSize);
// The last value in position array is the memory size for next level.
memSize = genIndexLoad(rewriter, loc, desc.getPosMemRef(lvl), posBack);
posBack = rewriter.create<arith::SubIOp>(loc, posBack, c1);
}
assert(isDLTWithCrd(dlt) && lvl <= trailCOOStart);
// FIXME: This seems to be unnecessarily complex, can we simplify it?
if (lvl == trailCOOStart) {
Value cooSz = rewriter.create<arith::MulIOp>(
loc, memSize, constantIndex(rewriter, loc, trailCOORank));
desc.setCrdMemSize(rewriter, loc, lvl, cooSz);
} else {
desc.setCrdMemSize(rewriter, loc, lvl, memSize);
}
}
desc.setValMemSize(rewriter, loc, memSize);
rewriter.replaceOp(op, genTuple(rewriter, loc, desc));
return success();
}
};
struct SparseUnpackOpConverter : public OpConversionPattern<UnpackOp> {
using OpConversionPattern::OpConversionPattern;
SparseUnpackOpConverter(TypeConverter &typeConverter, MLIRContext *context)
: OpConversionPattern(typeConverter, context) {}
LogicalResult
matchAndRewrite(UnpackOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
auto desc = getDescriptorFromTensorTuple(adaptor.getTensor());
Location loc = op.getLoc();
SmallVector<Value> retMem;
desc.getLayout().foreachField([desc, loc, &rewriter, &op, &retMem](
FieldIndex fid,
SparseTensorFieldKind fKind, Level lvl,
DimLevelType dlt) -> bool {
if (fKind == SparseTensorFieldKind::StorageSpec)
return true;
SparseTensorType stt(desc.getRankedTensorType());
Value sz, src;
TypedValue<BaseMemRefType> dst;
if (fKind == SparseTensorFieldKind::ValMemRef) {
sz = desc.getValMemSize(rewriter, loc);
src = desc.getValMemRef();
dst = genToMemref(rewriter, loc, op.getOutValues());
// Values is the last field in descriptor, but it is the first
// operand in unpack operation.
// TODO: maybe change unpack/pack operation instead to be
// consistent.
retMem.insert(retMem.begin(), dst);
} else {
assert(fKind == SparseTensorFieldKind::PosMemRef ||
fKind == SparseTensorFieldKind::CrdMemRef);
sz = fKind == SparseTensorFieldKind::PosMemRef
? desc.getPosMemSize(rewriter, loc, lvl)
: desc.getCrdMemSize(rewriter, loc, lvl);
src = desc.getMemRefField(fid);
dst = genToMemref(rewriter, loc, op.getOutLevels()[fid]);
retMem.push_back(dst);
}
Value flatOut = dst;
if (dst.getType().getRank() != 1) {
auto reassoc = getReassociationForFlattening(dst.getType());
flatOut = rewriter.create<memref::CollapseShapeOp>(loc, dst, reassoc);
}
Value dstMem = genSliceToSize(rewriter, loc, flatOut, sz);
Value srcMem = genSliceToSize(rewriter, loc, src, sz);
rewriter.create<memref::CopyOp>(loc, srcMem, dstMem);
return true;
});
// Converts MemRefs back to Tensors.
SmallVector<Value> retTensor = llvm::to_vector(
llvm::map_range(retMem, [&rewriter, loc](Value v) -> Value {
return rewriter.create<bufferization::ToTensorOp>(loc, v);
}));
rewriter.replaceOp(op, retTensor);
return success();
}
};
struct SparseNewOpConverter : public OpConversionPattern<NewOp> {
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(NewOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
Location loc = op.getLoc();
const auto dstTp = getSparseTensorType(op.getResult());
// Creating COO with NewOp is handled by direct IR codegen. All other cases
// are handled by rewriting.
if (!dstTp.hasEncoding() || getCOOStart(dstTp.getEncoding()) != 0)
return failure();
// Implement the NewOp(filename) as follows:
// %reader = @getSparseTensorReader(%filename)
// %nse = @getSparseTensorNSE(%reader)
// %coo = bufferization.alloc_tensor an ordered COO with
// dst dim ordering, size_hint = %nse
// %coordinates = sparse_tensor.coordinates_buffer(%coo)
// %values = sparse_tensor.values(%coo)
// %isSorted = @sparseTensorReaderReadToBuffers(%coordinates, %values)
// if (! %isSorted) sparse_tensor.sort_coo(%nse, %coordinates, %values)
// update storage specifier
// @delSparseTensorReader(%reader)
// Create a sparse tensor reader.
const Value fileName = op.getSource();
const Type opaqueTp = getOpaquePointerType(rewriter);
// FIXME: use `createCheckedSparseTensorReader` instead, because
// `createSparseTensorReader` is unsafe.
Value reader = createFuncCall(rewriter, loc, "createSparseTensorReader",
{opaqueTp}, {fileName}, EmitCInterface::Off)
.getResult(0);
const Type indexTp = rewriter.getIndexType();
const Dimension dimRank = dstTp.getDimRank();
const Level lvlRank = dstTp.getLvlRank();
// If the result tensor has dynamic dimensions, get the dynamic sizes from
// the sparse tensor reader.
SmallVector<Value> dynSizes;
if (dstTp.hasDynamicDimShape()) {
// FIXME: call `getSparseTensorReaderDimSizes` instead, because
// `copySparseTensorReaderDimSizes` copies the memref over,
// instead of just accessing the reader's memory directly.
Value dimSizes = genAlloca(rewriter, loc, dimRank, indexTp);
createFuncCall(rewriter, loc, "copySparseTensorReaderDimSizes", {},
{reader, dimSizes}, EmitCInterface::On);
for (const auto &d : llvm::enumerate(dstTp.getDimShape()))
if (ShapedType::isDynamic(d.value()))
dynSizes.push_back(rewriter.create<memref::LoadOp>(
loc, dimSizes, constantIndex(rewriter, loc, d.index())));
}
Value nse = createFuncCall(rewriter, loc, "getSparseTensorReaderNSE",
{indexTp}, {reader}, EmitCInterface::Off)
.getResult(0);
// Construct allocation for each field.
SmallVector<Value> fields;
createAllocFields(rewriter, loc, dstTp, dynSizes, /*enableInit=*/false,
fields, nse);
MutSparseTensorDescriptor desc(dstTp, fields);
// Construct the `dim2lvl` buffer for handing off to the runtime library.
// FIXME: This code is (mostly) copied from the SparseTensorConversion.cpp
// handling of `NewOp`, and only handles permutations. Fixing this
// requires waiting for wrengr to finish redoing the CL that handles
// all dim<->lvl stuff more robustly.
SmallVector<Value> dim2lvlValues(dimRank);
if (!dstTp.isIdentity()) {
const auto dimOrder = dstTp.getDimToLvlMap();
assert(dimOrder.isPermutation() && "Got non-permutation");
for (Level l = 0; l < lvlRank; l++) {
const Dimension d = dimOrder.getDimPosition(l);
dim2lvlValues[d] = constantIndex(rewriter, loc, l);
}
} else {
// The `SparseTensorType` ctor already ensures `dimRank == lvlRank`
// when `isIdentity`; so no need to re-assert it here.
for (Dimension d = 0; d < dimRank; d++)
dim2lvlValues[d] = constantIndex(rewriter, loc, d);
}
Value dim2lvl = allocaBuffer(rewriter, loc, dim2lvlValues);
// Read the COO tensor data.
Value xs = desc.getAOSMemRef();
Value ys = desc.getValMemRef();
const Type boolTp = rewriter.getIntegerType(1);
const Type elemTp = dstTp.getElementType();
const Type crdTp = dstTp.getCrdType();
// FIXME: This function name is weird; should rename to
// "sparseTensorReaderReadToBuffers".
SmallString<32> readToBuffersFuncName{"getSparseTensorReaderRead",
overheadTypeFunctionSuffix(crdTp),
primaryTypeFunctionSuffix(elemTp)};
Value isSorted =
createFuncCall(rewriter, loc, readToBuffersFuncName, {boolTp},
{reader, dim2lvl, xs, ys}, EmitCInterface::On)
.getResult(0);
// If the destination tensor is a sorted COO, we need to sort the COO tensor
// data if the input elements aren't sorted yet.
if (dstTp.isOrderedLvl(lvlRank - 1)) {
Value kFalse = constantI1(rewriter, loc, false);
Value notSorted = rewriter.create<arith::CmpIOp>(
loc, arith::CmpIPredicate::eq, isSorted, kFalse);
scf::IfOp ifOp =
rewriter.create<scf::IfOp>(loc, notSorted, /*else*/ false);
rewriter.setInsertionPointToStart(&ifOp.getThenRegion().front());
rewriter.create<SortCooOp>(
loc, nse, xs, ValueRange{ys}, rewriter.getIndexAttr(lvlRank),
rewriter.getIndexAttr(0), SparseTensorSortKind::HybridQuickSort);
rewriter.setInsertionPointAfter(ifOp);
}
// Set PosMemRef0[1] = nse.
const Value c1 = constantIndex(rewriter, loc, 1);
const Value posMemref0 = desc.getPosMemRef(0);
const Type posTp = dstTp.getPosType();
const Value posNse = genCast(rewriter, loc, nse, posTp);
rewriter.create<memref::StoreOp>(loc, posNse, posMemref0, c1);
// Update storage specifier.
Value coordinatesSize = rewriter.create<arith::MulIOp>(
loc, nse, constantIndex(rewriter, loc, lvlRank));
desc.setSpecifierField(rewriter, loc, StorageSpecifierKind::CrdMemSize, 0,
coordinatesSize);
desc.setSpecifierField(rewriter, loc, StorageSpecifierKind::ValMemSize,
std::nullopt, nse);
// Release the sparse tensor reader.
createFuncCall(rewriter, loc, "delSparseTensorReader", {}, {reader},
EmitCInterface::Off);
// Replace operation with resulting memrefs.
rewriter.replaceOp(op, genTuple(rewriter, loc, dstTp, fields));
return success();
}
};
} // namespace
//===----------------------------------------------------------------------===//
// Public method for populating conversion rules.
//===----------------------------------------------------------------------===//
/// Populates the given patterns list with conversion rules required for
/// the sparsification of linear algebra operations.
void mlir::populateSparseTensorCodegenPatterns(
TypeConverter &typeConverter, RewritePatternSet &patterns,
bool createSparseDeallocs, bool enableBufferInitialization) {
patterns.add<SparsePackOpConverter, SparseUnpackOpConverter,
SparseReturnConverter, SparseCallConverter, SparseDimOpConverter,
SparseCastConverter, SparseExtractSliceConverter,
SparseTensorLoadConverter, SparseExpandConverter,
SparseCompressConverter, SparseInsertConverter,
SparseSliceGetterOpConverter<ToSliceOffsetOp,
StorageSpecifierKind::DimOffset>,
SparseSliceGetterOpConverter<ToSliceStrideOp,
StorageSpecifierKind::DimStride>,
SparseToPositionsConverter, SparseToCoordinatesConverter,
SparseToCoordinatesBufferConverter, SparseToValuesConverter,
SparseConvertConverter, SparseNewOpConverter,
SparseNumberOfEntriesConverter>(typeConverter,
patterns.getContext());
patterns.add<SparseTensorDeallocConverter>(
typeConverter, patterns.getContext(), createSparseDeallocs);
patterns.add<SparseTensorAllocConverter>(typeConverter, patterns.getContext(),
enableBufferInitialization);
}