llvm-project/mlir/lib/Interfaces/ValueBoundsOpInterface.cpp
Tres Popp 68f58812e3 [mlir] Move casting calls from methods to function calls
The MLIR classes Type/Attribute/Operation/Op/Value support
cast/dyn_cast/isa/dyn_cast_or_null functionality through llvm's doCast
functionality in addition to defining methods with the same name.
This change begins the migration of uses of the method to the
corresponding function call as has been decided as more consistent.

Note that there still exist classes that only define methods directly,
such as AffineExpr, and this does not include work currently to support
a functional cast/isa call.

Context:
- https://mlir.llvm.org/deprecation/ at "Use the free function variants
  for dyn_cast/cast/isa/…"
- Original discussion at https://discourse.llvm.org/t/preferred-casting-style-going-forward/68443

Implementation:
This patch updates all remaining uses of the deprecated functionality in
mlir/. This was done with clang-tidy as described below and further
modifications to GPUBase.td and OpenMPOpsInterfaces.td.

Steps are described per line, as comments are removed by git:
0. Retrieve the change from the following to build clang-tidy with an
   additional check:
   main...tpopp:llvm-project:tidy-cast-check
1. Build clang-tidy
2. Run clang-tidy over your entire codebase while disabling all checks
   and enabling the one relevant one. Run on all header files also.
3. Delete .inc files that were also modified, so the next build rebuilds
   them to a pure state.

```
ninja -C $BUILD_DIR clang-tidy

run-clang-tidy -clang-tidy-binary=$BUILD_DIR/bin/clang-tidy -checks='-*,misc-cast-functions'\
               -header-filter=mlir/ mlir/* -fix

rm -rf $BUILD_DIR/tools/mlir/**/*.inc
```

Differential Revision: https://reviews.llvm.org/D151542
2023-05-26 10:29:55 +02:00

575 lines
20 KiB
C++

//===- ValueBoundsOpInterface.cpp - Value Bounds -------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Interfaces/ValueBoundsOpInterface.h"
#include "mlir/IR/BuiltinTypes.h"
#include "mlir/IR/Matchers.h"
#include "llvm/ADT/APSInt.h"
#include "llvm/Support/Debug.h"
#define DEBUG_TYPE "value-bounds-op-interface"
using namespace mlir;
using presburger::BoundType;
using presburger::VarKind;
namespace mlir {
#include "mlir/Interfaces/ValueBoundsOpInterface.cpp.inc"
} // namespace mlir
/// If ofr is a constant integer or an IntegerAttr, return the integer.
static std::optional<int64_t> getConstantIntValue(OpFoldResult ofr) {
// Case 1: Check for Constant integer.
if (auto val = llvm::dyn_cast_if_present<Value>(ofr)) {
APSInt intVal;
if (matchPattern(val, m_ConstantInt(&intVal)))
return intVal.getSExtValue();
return std::nullopt;
}
// Case 2: Check for IntegerAttr.
Attribute attr = llvm::dyn_cast_if_present<Attribute>(ofr);
if (auto intAttr = dyn_cast_or_null<IntegerAttr>(attr))
return intAttr.getValue().getSExtValue();
return std::nullopt;
}
ValueBoundsConstraintSet::ValueBoundsConstraintSet(MLIRContext *ctx)
: builder(ctx) {}
#ifndef NDEBUG
static void assertValidValueDim(Value value, std::optional<int64_t> dim) {
if (value.getType().isIndex()) {
assert(!dim.has_value() && "invalid dim value");
} else if (auto shapedType = dyn_cast<ShapedType>(value.getType())) {
assert(*dim >= 0 && "invalid dim value");
if (shapedType.hasRank())
assert(*dim < shapedType.getRank() && "invalid dim value");
} else {
llvm_unreachable("unsupported type");
}
}
#endif // NDEBUG
void ValueBoundsConstraintSet::addBound(BoundType type, int64_t pos,
AffineExpr expr) {
LogicalResult status = cstr.addBound(
type, pos,
AffineMap::get(cstr.getNumDimVars(), cstr.getNumSymbolVars(), expr));
if (failed(status)) {
// Non-pure (e.g., semi-affine) expressions are not yet supported by
// FlatLinearConstraints. However, we can just ignore such failures here.
// Even without this bound, there may be enough information in the
// constraint system to compute the requested bound. In case this bound is
// actually needed, `computeBound` will return `failure`.
LLVM_DEBUG(llvm::dbgs() << "Failed to add bound: " << expr << "\n");
}
}
AffineExpr ValueBoundsConstraintSet::getExpr(Value value,
std::optional<int64_t> dim) {
#ifndef NDEBUG
assertValidValueDim(value, dim);
#endif // NDEBUG
auto shapedType = dyn_cast<ShapedType>(value.getType());
if (shapedType) {
// Static dimension: return constant directly.
if (shapedType.hasRank() && !shapedType.isDynamicDim(*dim))
return builder.getAffineConstantExpr(shapedType.getDimSize(*dim));
} else {
// Constant index value: return directly.
if (auto constInt = getConstantIntValue(value))
return builder.getAffineConstantExpr(*constInt);
}
// Dynamic value: add to constraint set.
ValueDim valueDim = std::make_pair(value, dim.value_or(kIndexValue));
if (!valueDimToPosition.contains(valueDim))
(void)insert(value, dim);
int64_t pos = getPos(value, dim);
return pos < cstr.getNumDimVars()
? builder.getAffineDimExpr(pos)
: builder.getAffineSymbolExpr(pos - cstr.getNumDimVars());
}
AffineExpr ValueBoundsConstraintSet::getExpr(OpFoldResult ofr) {
if (Value value = llvm::dyn_cast_if_present<Value>(ofr))
return getExpr(value, /*dim=*/std::nullopt);
auto constInt = getConstantIntValue(ofr);
assert(constInt.has_value() && "expected Integer constant");
return builder.getAffineConstantExpr(*constInt);
}
AffineExpr ValueBoundsConstraintSet::getExpr(int64_t constant) {
return builder.getAffineConstantExpr(constant);
}
int64_t ValueBoundsConstraintSet::insert(Value value,
std::optional<int64_t> dim,
bool isSymbol) {
#ifndef NDEBUG
assertValidValueDim(value, dim);
#endif // NDEBUG
ValueDim valueDim = std::make_pair(value, dim.value_or(kIndexValue));
assert(!valueDimToPosition.contains(valueDim) && "already mapped");
int64_t pos = isSymbol ? cstr.appendVar(VarKind::Symbol)
: cstr.appendVar(VarKind::SetDim);
positionToValueDim.insert(positionToValueDim.begin() + pos, valueDim);
// Update reverse mapping.
for (int64_t i = pos, e = positionToValueDim.size(); i < e; ++i)
if (positionToValueDim[i].has_value())
valueDimToPosition[*positionToValueDim[i]] = i;
worklist.push(pos);
return pos;
}
int64_t ValueBoundsConstraintSet::insert(bool isSymbol) {
int64_t pos = isSymbol ? cstr.appendVar(VarKind::Symbol)
: cstr.appendVar(VarKind::SetDim);
positionToValueDim.insert(positionToValueDim.begin() + pos, std::nullopt);
// Update reverse mapping.
for (int64_t i = pos, e = positionToValueDim.size(); i < e; ++i)
if (positionToValueDim[i].has_value())
valueDimToPosition[*positionToValueDim[i]] = i;
return pos;
}
int64_t ValueBoundsConstraintSet::getPos(Value value,
std::optional<int64_t> dim) const {
#ifndef NDEBUG
assertValidValueDim(value, dim);
assert((isa<OpResult>(value) ||
cast<BlockArgument>(value).getOwner()->isEntryBlock()) &&
"unstructured control flow is not supported");
#endif // NDEBUG
auto it =
valueDimToPosition.find(std::make_pair(value, dim.value_or(kIndexValue)));
assert(it != valueDimToPosition.end() && "expected mapped entry");
return it->second;
}
static Operation *getOwnerOfValue(Value value) {
if (auto bbArg = dyn_cast<BlockArgument>(value))
return bbArg.getOwner()->getParentOp();
return value.getDefiningOp();
}
void ValueBoundsConstraintSet::processWorklist(StopConditionFn stopCondition) {
while (!worklist.empty()) {
int64_t pos = worklist.front();
worklist.pop();
assert(positionToValueDim[pos].has_value() &&
"did not expect std::nullopt on worklist");
ValueDim valueDim = *positionToValueDim[pos];
Value value = valueDim.first;
int64_t dim = valueDim.second;
// Check for static dim size.
if (dim != kIndexValue) {
auto shapedType = cast<ShapedType>(value.getType());
if (shapedType.hasRank() && !shapedType.isDynamicDim(dim)) {
bound(value)[dim] == getExpr(shapedType.getDimSize(dim));
continue;
}
}
// Do not process any further if the stop condition is met.
auto maybeDim = dim == kIndexValue ? std::nullopt : std::make_optional(dim);
if (stopCondition(value, maybeDim))
continue;
// Query `ValueBoundsOpInterface` for constraints. New items may be added to
// the worklist.
auto valueBoundsOp =
dyn_cast<ValueBoundsOpInterface>(getOwnerOfValue(value));
if (!valueBoundsOp)
continue;
if (dim == kIndexValue) {
valueBoundsOp.populateBoundsForIndexValue(value, *this);
} else {
valueBoundsOp.populateBoundsForShapedValueDim(value, dim, *this);
}
}
}
void ValueBoundsConstraintSet::projectOut(int64_t pos) {
assert(pos >= 0 && pos < static_cast<int64_t>(positionToValueDim.size()) &&
"invalid position");
cstr.projectOut(pos);
if (positionToValueDim[pos].has_value()) {
bool erased = valueDimToPosition.erase(*positionToValueDim[pos]);
(void)erased;
assert(erased && "inconsistent reverse mapping");
}
positionToValueDim.erase(positionToValueDim.begin() + pos);
// Update reverse mapping.
for (int64_t i = pos, e = positionToValueDim.size(); i < e; ++i)
if (positionToValueDim[i].has_value())
valueDimToPosition[*positionToValueDim[i]] = i;
}
void ValueBoundsConstraintSet::projectOut(
function_ref<bool(ValueDim)> condition) {
int64_t nextPos = 0;
while (nextPos < static_cast<int64_t>(positionToValueDim.size())) {
if (positionToValueDim[nextPos].has_value() &&
condition(*positionToValueDim[nextPos])) {
projectOut(nextPos);
// The column was projected out so another column is now at that position.
// Do not increase the counter.
} else {
++nextPos;
}
}
}
LogicalResult ValueBoundsConstraintSet::computeBound(
AffineMap &resultMap, ValueDimList &mapOperands, presburger::BoundType type,
Value value, std::optional<int64_t> dim, StopConditionFn stopCondition,
bool closedUB) {
#ifndef NDEBUG
assertValidValueDim(value, dim);
assert(!stopCondition(value, dim) &&
"stop condition should not be satisfied for starting point");
#endif // NDEBUG
int64_t ubAdjustment = closedUB ? 0 : 1;
Builder b(value.getContext());
mapOperands.clear();
if (stopCondition(value, dim)) {
// Special case: If the stop condition is satisfied for the input
// value/dimension, directly return it.
mapOperands.push_back(std::make_pair(value, dim));
AffineExpr bound = b.getAffineDimExpr(0);
if (type == BoundType::UB)
bound = bound + ubAdjustment;
resultMap = AffineMap::get(/*dimCount=*/1, /*symbolCount=*/0,
b.getAffineDimExpr(0));
return success();
}
// Process the backward slice of `value` (i.e., reverse use-def chain) until
// `stopCondition` is met.
ValueDim valueDim = std::make_pair(value, dim.value_or(kIndexValue));
ValueBoundsConstraintSet cstr(value.getContext());
int64_t pos = cstr.insert(value, dim, /*isSymbol=*/false);
cstr.processWorklist(stopCondition);
// Project out all variables (apart from `valueDim`) that do not match the
// stop condition.
cstr.projectOut([&](ValueDim p) {
// Do not project out `valueDim`.
if (valueDim == p)
return false;
auto maybeDim =
p.second == kIndexValue ? std::nullopt : std::make_optional(p.second);
return !stopCondition(p.first, maybeDim);
});
// Compute lower and upper bounds for `valueDim`.
SmallVector<AffineMap> lb(1), ub(1);
cstr.cstr.getSliceBounds(pos, 1, value.getContext(), &lb, &ub,
/*getClosedUB=*/true);
// Note: There are TODOs in the implementation of `getSliceBounds`. In such a
// case, no lower/upper bound can be computed at the moment.
// EQ, UB bounds: upper bound is needed.
if ((type != BoundType::LB) &&
(ub.empty() || !ub[0] || ub[0].getNumResults() == 0))
return failure();
// EQ, LB bounds: lower bound is needed.
if ((type != BoundType::UB) &&
(lb.empty() || !lb[0] || lb[0].getNumResults() == 0))
return failure();
// TODO: Generate an affine map with multiple results.
if (type != BoundType::LB)
assert(ub.size() == 1 && ub[0].getNumResults() == 1 &&
"multiple bounds not supported");
if (type != BoundType::UB)
assert(lb.size() == 1 && lb[0].getNumResults() == 1 &&
"multiple bounds not supported");
// EQ bound: lower and upper bound must match.
if (type == BoundType::EQ && ub[0] != lb[0])
return failure();
AffineMap bound;
if (type == BoundType::EQ || type == BoundType::LB) {
bound = lb[0];
} else {
// Computed UB is a closed bound.
bound = AffineMap::get(ub[0].getNumDims(), ub[0].getNumSymbols(),
ub[0].getResult(0) + ubAdjustment);
}
// Gather all SSA values that are used in the computed bound.
assert(cstr.cstr.getNumDimAndSymbolVars() == cstr.positionToValueDim.size() &&
"inconsistent mapping state");
SmallVector<AffineExpr> replacementDims, replacementSymbols;
int64_t numDims = 0, numSymbols = 0;
for (int64_t i = 0; i < cstr.cstr.getNumDimAndSymbolVars(); ++i) {
// Skip `value`.
if (i == pos)
continue;
// Check if the position `i` is used in the generated bound. If so, it must
// be included in the generated affine.apply op.
bool used = false;
bool isDim = i < cstr.cstr.getNumDimVars();
if (isDim) {
if (bound.isFunctionOfDim(i))
used = true;
} else {
if (bound.isFunctionOfSymbol(i - cstr.cstr.getNumDimVars()))
used = true;
}
if (!used) {
// Not used: Remove dim/symbol from the result.
if (isDim) {
replacementDims.push_back(b.getAffineConstantExpr(0));
} else {
replacementSymbols.push_back(b.getAffineConstantExpr(0));
}
continue;
}
if (isDim) {
replacementDims.push_back(b.getAffineDimExpr(numDims++));
} else {
replacementSymbols.push_back(b.getAffineSymbolExpr(numSymbols++));
}
assert(cstr.positionToValueDim[i].has_value() &&
"cannot build affine map in terms of anonymous column");
ValueBoundsConstraintSet::ValueDim valueDim = *cstr.positionToValueDim[i];
Value value = valueDim.first;
int64_t dim = valueDim.second;
if (dim == ValueBoundsConstraintSet::kIndexValue) {
// An index-type value is used: can be used directly in the affine.apply
// op.
assert(value.getType().isIndex() && "expected index type");
mapOperands.push_back(std::make_pair(value, std::nullopt));
continue;
}
assert(cast<ShapedType>(value.getType()).isDynamicDim(dim) &&
"expected dynamic dim");
mapOperands.push_back(std::make_pair(value, dim));
}
resultMap = bound.replaceDimsAndSymbols(replacementDims, replacementSymbols,
numDims, numSymbols);
return success();
}
LogicalResult ValueBoundsConstraintSet::computeDependentBound(
AffineMap &resultMap, ValueDimList &mapOperands, presburger::BoundType type,
Value value, std::optional<int64_t> dim, ValueDimList dependencies,
bool closedUB) {
return computeBound(
resultMap, mapOperands, type, value, dim,
[&](Value v, std::optional<int64_t> d) {
return llvm::is_contained(dependencies, std::make_pair(v, d));
},
closedUB);
}
LogicalResult ValueBoundsConstraintSet::computeIndependentBound(
AffineMap &resultMap, ValueDimList &mapOperands, presburger::BoundType type,
Value value, std::optional<int64_t> dim, ValueRange independencies,
bool closedUB) {
// Return "true" if the given value is independent of all values in
// `independencies`. I.e., neither the value itself nor any value in the
// backward slice (reverse use-def chain) is contained in `independencies`.
auto isIndependent = [&](Value v) {
SmallVector<Value> worklist;
DenseSet<Value> visited;
worklist.push_back(v);
while (!worklist.empty()) {
Value next = worklist.pop_back_val();
if (visited.contains(next))
continue;
visited.insert(next);
if (llvm::is_contained(independencies, next))
return false;
// TODO: DominanceInfo could be used to stop the traversal early.
Operation *op = next.getDefiningOp();
if (!op)
continue;
worklist.append(op->getOperands().begin(), op->getOperands().end());
}
return true;
};
// Reify bounds in terms of any independent values.
return computeBound(
resultMap, mapOperands, type, value, dim,
[&](Value v, std::optional<int64_t> d) { return isIndependent(v); },
closedUB);
}
FailureOr<int64_t> ValueBoundsConstraintSet::computeConstantBound(
presburger::BoundType type, Value value, std::optional<int64_t> dim,
StopConditionFn stopCondition, bool closedUB) {
#ifndef NDEBUG
assertValidValueDim(value, dim);
#endif // NDEBUG
AffineMap map =
AffineMap::get(/*dimCount=*/1, /*symbolCount=*/0,
Builder(value.getContext()).getAffineDimExpr(0));
return computeConstantBound(type, map, {{value, dim}}, stopCondition,
closedUB);
}
FailureOr<int64_t> ValueBoundsConstraintSet::computeConstantBound(
presburger::BoundType type, AffineMap map, ValueDimList operands,
StopConditionFn stopCondition, bool closedUB) {
assert(map.getNumResults() == 1 && "expected affine map with one result");
ValueBoundsConstraintSet cstr(map.getContext());
int64_t pos = cstr.insert(/*isSymbol=*/false);
// Add map and operands to the constraint set. Dimensions are converted to
// symbols. All operands are added to the worklist.
auto mapper = [&](std::pair<Value, std::optional<int64_t>> v) {
return cstr.getExpr(v.first, v.second);
};
SmallVector<AffineExpr> dimReplacements = llvm::to_vector(
llvm::map_range(ArrayRef(operands).take_front(map.getNumDims()), mapper));
SmallVector<AffineExpr> symReplacements = llvm::to_vector(
llvm::map_range(ArrayRef(operands).drop_front(map.getNumDims()), mapper));
cstr.addBound(
presburger::BoundType::EQ, pos,
map.getResult(0).replaceDimsAndSymbols(dimReplacements, symReplacements));
// Process the backward slice of `operands` (i.e., reverse use-def chain)
// until `stopCondition` is met.
if (stopCondition) {
cstr.processWorklist(stopCondition);
} else {
// No stop condition specified: Keep adding constraints until a bound could
// be computed.
cstr.processWorklist(
/*stopCondition=*/[&](Value v, std::optional<int64_t> dim) {
return cstr.cstr.getConstantBound64(type, pos).has_value();
});
}
// Compute constant bound for `valueDim`.
int64_t ubAdjustment = closedUB ? 0 : 1;
if (auto bound = cstr.cstr.getConstantBound64(type, pos))
return type == BoundType::UB ? *bound + ubAdjustment : *bound;
return failure();
}
FailureOr<bool>
ValueBoundsConstraintSet::areEqual(Value value1, Value value2,
std::optional<int64_t> dim1,
std::optional<int64_t> dim2) {
#ifndef NDEBUG
assertValidValueDim(value1, dim1);
assertValidValueDim(value2, dim2);
#endif // NDEBUG
// Subtract the two values/dimensions from each other. If the result is 0,
// both are equal.
Builder b(value1.getContext());
AffineMap map = AffineMap::get(/*dimCount=*/2, /*symbolCount=*/0,
b.getAffineDimExpr(0) - b.getAffineDimExpr(1));
FailureOr<int64_t> bound = computeConstantBound(
presburger::BoundType::EQ, map, {{value1, dim1}, {value2, dim2}});
if (failed(bound))
return failure();
return *bound == 0;
}
ValueBoundsConstraintSet::BoundBuilder &
ValueBoundsConstraintSet::BoundBuilder::operator[](int64_t dim) {
assert(!this->dim.has_value() && "dim was already set");
this->dim = dim;
#ifndef NDEBUG
assertValidValueDim(value, this->dim);
#endif // NDEBUG
return *this;
}
void ValueBoundsConstraintSet::BoundBuilder::operator<(AffineExpr expr) {
#ifndef NDEBUG
assertValidValueDim(value, this->dim);
#endif // NDEBUG
cstr.addBound(BoundType::UB, cstr.getPos(value, this->dim), expr);
}
void ValueBoundsConstraintSet::BoundBuilder::operator<=(AffineExpr expr) {
operator<(expr + 1);
}
void ValueBoundsConstraintSet::BoundBuilder::operator>(AffineExpr expr) {
operator>=(expr + 1);
}
void ValueBoundsConstraintSet::BoundBuilder::operator>=(AffineExpr expr) {
#ifndef NDEBUG
assertValidValueDim(value, this->dim);
#endif // NDEBUG
cstr.addBound(BoundType::LB, cstr.getPos(value, this->dim), expr);
}
void ValueBoundsConstraintSet::BoundBuilder::operator==(AffineExpr expr) {
#ifndef NDEBUG
assertValidValueDim(value, this->dim);
#endif // NDEBUG
cstr.addBound(BoundType::EQ, cstr.getPos(value, this->dim), expr);
}
void ValueBoundsConstraintSet::BoundBuilder::operator<(OpFoldResult ofr) {
operator<(cstr.getExpr(ofr));
}
void ValueBoundsConstraintSet::BoundBuilder::operator<=(OpFoldResult ofr) {
operator<=(cstr.getExpr(ofr));
}
void ValueBoundsConstraintSet::BoundBuilder::operator>(OpFoldResult ofr) {
operator>(cstr.getExpr(ofr));
}
void ValueBoundsConstraintSet::BoundBuilder::operator>=(OpFoldResult ofr) {
operator>=(cstr.getExpr(ofr));
}
void ValueBoundsConstraintSet::BoundBuilder::operator==(OpFoldResult ofr) {
operator==(cstr.getExpr(ofr));
}
void ValueBoundsConstraintSet::BoundBuilder::operator<(int64_t i) {
operator<(cstr.getExpr(i));
}
void ValueBoundsConstraintSet::BoundBuilder::operator<=(int64_t i) {
operator<=(cstr.getExpr(i));
}
void ValueBoundsConstraintSet::BoundBuilder::operator>(int64_t i) {
operator>(cstr.getExpr(i));
}
void ValueBoundsConstraintSet::BoundBuilder::operator>=(int64_t i) {
operator>=(cstr.getExpr(i));
}
void ValueBoundsConstraintSet::BoundBuilder::operator==(int64_t i) {
operator==(cstr.getExpr(i));
}