llvm-project/mlir/lib/Transforms/Utils/DialectConversion.cpp
Jacques Pienaar 6ae7f66ff5 [mlir] Add config for PDL (#69927)
Make it so that PDL in pattern rewrites can be optionally disabled.

PDL is still enabled by default and not optional bazel. So this should
be a NOP for most folks, while enabling other to disable.

This only works with tests disabled. With tests enabled this still
compiles but tests fail as there is no lit config to disable tests that
depend on PDL rewrites yet.
2024-01-03 20:37:20 -08:00

3449 lines
134 KiB
C++

//===- DialectConversion.cpp - MLIR dialect conversion generic pass -------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Transforms/DialectConversion.h"
#include "mlir/Config/mlir-config.h"
#include "mlir/IR/Block.h"
#include "mlir/IR/Builders.h"
#include "mlir/IR/BuiltinOps.h"
#include "mlir/IR/IRMapping.h"
#include "mlir/IR/Iterators.h"
#include "mlir/Interfaces/FunctionInterfaces.h"
#include "mlir/Rewrite/PatternApplicator.h"
#include "llvm/ADT/ScopeExit.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/FormatVariadic.h"
#include "llvm/Support/SaveAndRestore.h"
#include "llvm/Support/ScopedPrinter.h"
#include <optional>
using namespace mlir;
using namespace mlir::detail;
#define DEBUG_TYPE "dialect-conversion"
/// A utility function to log a successful result for the given reason.
template <typename... Args>
static void logSuccess(llvm::ScopedPrinter &os, StringRef fmt, Args &&...args) {
LLVM_DEBUG({
os.unindent();
os.startLine() << "} -> SUCCESS";
if (!fmt.empty())
os.getOStream() << " : "
<< llvm::formatv(fmt.data(), std::forward<Args>(args)...);
os.getOStream() << "\n";
});
}
/// A utility function to log a failure result for the given reason.
template <typename... Args>
static void logFailure(llvm::ScopedPrinter &os, StringRef fmt, Args &&...args) {
LLVM_DEBUG({
os.unindent();
os.startLine() << "} -> FAILURE : "
<< llvm::formatv(fmt.data(), std::forward<Args>(args)...)
<< "\n";
});
}
//===----------------------------------------------------------------------===//
// ConversionValueMapping
//===----------------------------------------------------------------------===//
namespace {
/// This class wraps a IRMapping to provide recursive lookup
/// functionality, i.e. we will traverse if the mapped value also has a mapping.
struct ConversionValueMapping {
/// Lookup a mapped value within the map. If a mapping for the provided value
/// does not exist then return the provided value. If `desiredType` is
/// non-null, returns the most recently mapped value with that type. If an
/// operand of that type does not exist, defaults to normal behavior.
Value lookupOrDefault(Value from, Type desiredType = nullptr) const;
/// Lookup a mapped value within the map, or return null if a mapping does not
/// exist. If a mapping exists, this follows the same behavior of
/// `lookupOrDefault`.
Value lookupOrNull(Value from, Type desiredType = nullptr) const;
/// Map a value to the one provided.
void map(Value oldVal, Value newVal) {
LLVM_DEBUG({
for (Value it = newVal; it; it = mapping.lookupOrNull(it))
assert(it != oldVal && "inserting cyclic mapping");
});
mapping.map(oldVal, newVal);
}
/// Try to map a value to the one provided. Returns false if a transitive
/// mapping from the new value to the old value already exists, true if the
/// map was updated.
bool tryMap(Value oldVal, Value newVal);
/// Drop the last mapping for the given value.
void erase(Value value) { mapping.erase(value); }
/// Returns the inverse raw value mapping (without recursive query support).
DenseMap<Value, SmallVector<Value>> getInverse() const {
DenseMap<Value, SmallVector<Value>> inverse;
for (auto &it : mapping.getValueMap())
inverse[it.second].push_back(it.first);
return inverse;
}
private:
/// Current value mappings.
IRMapping mapping;
};
} // namespace
Value ConversionValueMapping::lookupOrDefault(Value from,
Type desiredType) const {
// If there was no desired type, simply find the leaf value.
if (!desiredType) {
// If this value had a valid mapping, unmap that value as well in the case
// that it was also replaced.
while (auto mappedValue = mapping.lookupOrNull(from))
from = mappedValue;
return from;
}
// Otherwise, try to find the deepest value that has the desired type.
Value desiredValue;
do {
if (from.getType() == desiredType)
desiredValue = from;
Value mappedValue = mapping.lookupOrNull(from);
if (!mappedValue)
break;
from = mappedValue;
} while (true);
// If the desired value was found use it, otherwise default to the leaf value.
return desiredValue ? desiredValue : from;
}
Value ConversionValueMapping::lookupOrNull(Value from, Type desiredType) const {
Value result = lookupOrDefault(from, desiredType);
if (result == from || (desiredType && result.getType() != desiredType))
return nullptr;
return result;
}
bool ConversionValueMapping::tryMap(Value oldVal, Value newVal) {
for (Value it = newVal; it; it = mapping.lookupOrNull(it))
if (it == oldVal)
return false;
map(oldVal, newVal);
return true;
}
//===----------------------------------------------------------------------===//
// Rewriter and Translation State
//===----------------------------------------------------------------------===//
namespace {
/// This class contains a snapshot of the current conversion rewriter state.
/// This is useful when saving and undoing a set of rewrites.
struct RewriterState {
RewriterState(unsigned numCreatedOps, unsigned numUnresolvedMaterializations,
unsigned numReplacements, unsigned numArgReplacements,
unsigned numBlockActions, unsigned numIgnoredOperations,
unsigned numRootUpdates)
: numCreatedOps(numCreatedOps),
numUnresolvedMaterializations(numUnresolvedMaterializations),
numReplacements(numReplacements),
numArgReplacements(numArgReplacements),
numBlockActions(numBlockActions),
numIgnoredOperations(numIgnoredOperations),
numRootUpdates(numRootUpdates) {}
/// The current number of created operations.
unsigned numCreatedOps;
/// The current number of unresolved materializations.
unsigned numUnresolvedMaterializations;
/// The current number of replacements queued.
unsigned numReplacements;
/// The current number of argument replacements queued.
unsigned numArgReplacements;
/// The current number of block actions performed.
unsigned numBlockActions;
/// The current number of ignored operations.
unsigned numIgnoredOperations;
/// The current number of operations that were updated in place.
unsigned numRootUpdates;
};
//===----------------------------------------------------------------------===//
// OperationTransactionState
/// The state of an operation that was updated by a pattern in-place. This
/// contains all of the necessary information to reconstruct an operation that
/// was updated in place.
class OperationTransactionState {
public:
OperationTransactionState() = default;
OperationTransactionState(Operation *op)
: op(op), loc(op->getLoc()), attrs(op->getAttrDictionary()),
operands(op->operand_begin(), op->operand_end()),
successors(op->successor_begin(), op->successor_end()) {}
/// Discard the transaction state and reset the state of the original
/// operation.
void resetOperation() const {
op->setLoc(loc);
op->setAttrs(attrs);
op->setOperands(operands);
for (const auto &it : llvm::enumerate(successors))
op->setSuccessor(it.value(), it.index());
}
/// Return the original operation of this state.
Operation *getOperation() const { return op; }
private:
Operation *op;
LocationAttr loc;
DictionaryAttr attrs;
SmallVector<Value, 8> operands;
SmallVector<Block *, 2> successors;
};
//===----------------------------------------------------------------------===//
// OpReplacement
/// This class represents one requested operation replacement via 'replaceOp' or
/// 'eraseOp`.
struct OpReplacement {
OpReplacement(const TypeConverter *converter = nullptr)
: converter(converter) {}
/// An optional type converter that can be used to materialize conversions
/// between the new and old values if necessary.
const TypeConverter *converter;
};
//===----------------------------------------------------------------------===//
// BlockAction
/// The kind of the block action performed during the rewrite. Actions can be
/// undone if the conversion fails.
enum class BlockActionKind {
Create,
Erase,
Inline,
Move,
Split,
TypeConversion
};
/// Original position of the given block in its parent region. During undo
/// actions, the block needs to be placed after `insertAfterBlock`.
struct BlockPosition {
Region *region;
Block *insertAfterBlock;
};
/// Information needed to undo inlining actions.
/// - the source block
/// - the first inlined operation (could be null if the source block was empty)
/// - the last inlined operation (could be null if the source block was empty)
struct InlineInfo {
Block *sourceBlock;
Operation *firstInlinedInst;
Operation *lastInlinedInst;
};
/// The storage class for an undoable block action (one of BlockActionKind),
/// contains the information necessary to undo this action.
struct BlockAction {
static BlockAction getCreate(Block *block) {
return {BlockActionKind::Create, block, {}};
}
static BlockAction getErase(Block *block, BlockPosition originalPosition) {
return {BlockActionKind::Erase, block, {originalPosition}};
}
static BlockAction getInline(Block *block, Block *srcBlock,
Block::iterator before) {
BlockAction action{BlockActionKind::Inline, block, {}};
action.inlineInfo = {srcBlock,
srcBlock->empty() ? nullptr : &srcBlock->front(),
srcBlock->empty() ? nullptr : &srcBlock->back()};
return action;
}
static BlockAction getMove(Block *block, BlockPosition originalPosition) {
return {BlockActionKind::Move, block, {originalPosition}};
}
static BlockAction getSplit(Block *block, Block *originalBlock) {
BlockAction action{BlockActionKind::Split, block, {}};
action.originalBlock = originalBlock;
return action;
}
static BlockAction getTypeConversion(Block *block) {
return BlockAction{BlockActionKind::TypeConversion, block, {}};
}
// The action kind.
BlockActionKind kind;
// A pointer to the block that was created by the action.
Block *block;
union {
// In use if kind == BlockActionKind::Inline or BlockActionKind::Erase, and
// contains a pointer to the region that originally contained the block as
// well as the position of the block in that region.
BlockPosition originalPosition;
// In use if kind == BlockActionKind::Split and contains a pointer to the
// block that was split into two parts.
Block *originalBlock;
// In use if kind == BlockActionKind::Inline, and contains the information
// needed to undo the inlining.
InlineInfo inlineInfo;
};
};
//===----------------------------------------------------------------------===//
// UnresolvedMaterialization
/// This class represents an unresolved materialization, i.e. a materialization
/// that was inserted during conversion that needs to be legalized at the end of
/// the conversion process.
class UnresolvedMaterialization {
public:
/// The type of materialization.
enum Kind {
/// This materialization materializes a conversion for an illegal block
/// argument type, to a legal one.
Argument,
/// This materialization materializes a conversion from an illegal type to a
/// legal one.
Target
};
UnresolvedMaterialization(UnrealizedConversionCastOp op = nullptr,
const TypeConverter *converter = nullptr,
Kind kind = Target, Type origOutputType = nullptr)
: op(op), converterAndKind(converter, kind),
origOutputType(origOutputType) {}
/// Return the temporary conversion operation inserted for this
/// materialization.
UnrealizedConversionCastOp getOp() const { return op; }
/// Return the type converter of this materialization (which may be null).
const TypeConverter *getConverter() const {
return converterAndKind.getPointer();
}
/// Return the kind of this materialization.
Kind getKind() const { return converterAndKind.getInt(); }
/// Set the kind of this materialization.
void setKind(Kind kind) { converterAndKind.setInt(kind); }
/// Return the original illegal output type of the input values.
Type getOrigOutputType() const { return origOutputType; }
private:
/// The unresolved materialization operation created during conversion.
UnrealizedConversionCastOp op;
/// The corresponding type converter to use when resolving this
/// materialization, and the kind of this materialization.
llvm::PointerIntPair<const TypeConverter *, 1, Kind> converterAndKind;
/// The original output type. This is only used for argument conversions.
Type origOutputType;
};
} // namespace
/// Build an unresolved materialization operation given an output type and set
/// of input operands.
static Value buildUnresolvedMaterialization(
UnresolvedMaterialization::Kind kind, Block *insertBlock,
Block::iterator insertPt, Location loc, ValueRange inputs, Type outputType,
Type origOutputType, const TypeConverter *converter,
SmallVectorImpl<UnresolvedMaterialization> &unresolvedMaterializations) {
// Avoid materializing an unnecessary cast.
if (inputs.size() == 1 && inputs.front().getType() == outputType)
return inputs.front();
// Create an unresolved materialization. We use a new OpBuilder to avoid
// tracking the materialization like we do for other operations.
OpBuilder builder(insertBlock, insertPt);
auto convertOp =
builder.create<UnrealizedConversionCastOp>(loc, outputType, inputs);
unresolvedMaterializations.emplace_back(convertOp, converter, kind,
origOutputType);
return convertOp.getResult(0);
}
static Value buildUnresolvedArgumentMaterialization(
PatternRewriter &rewriter, Location loc, ValueRange inputs,
Type origOutputType, Type outputType, const TypeConverter *converter,
SmallVectorImpl<UnresolvedMaterialization> &unresolvedMaterializations) {
return buildUnresolvedMaterialization(
UnresolvedMaterialization::Argument, rewriter.getInsertionBlock(),
rewriter.getInsertionPoint(), loc, inputs, outputType, origOutputType,
converter, unresolvedMaterializations);
}
static Value buildUnresolvedTargetMaterialization(
Location loc, Value input, Type outputType, const TypeConverter *converter,
SmallVectorImpl<UnresolvedMaterialization> &unresolvedMaterializations) {
Block *insertBlock = input.getParentBlock();
Block::iterator insertPt = insertBlock->begin();
if (OpResult inputRes = dyn_cast<OpResult>(input))
insertPt = ++inputRes.getOwner()->getIterator();
return buildUnresolvedMaterialization(
UnresolvedMaterialization::Target, insertBlock, insertPt, loc, input,
outputType, outputType, converter, unresolvedMaterializations);
}
//===----------------------------------------------------------------------===//
// ArgConverter
//===----------------------------------------------------------------------===//
namespace {
/// This class provides a simple interface for converting the types of block
/// arguments. This is done by creating a new block that contains the new legal
/// types and extracting the block that contains the old illegal types to allow
/// for undoing pending rewrites in the case of failure.
struct ArgConverter {
ArgConverter(
PatternRewriter &rewriter,
SmallVectorImpl<UnresolvedMaterialization> &unresolvedMaterializations)
: rewriter(rewriter),
unresolvedMaterializations(unresolvedMaterializations) {}
/// This structure contains the information pertaining to an argument that has
/// been converted.
struct ConvertedArgInfo {
ConvertedArgInfo(unsigned newArgIdx, unsigned newArgSize,
Value castValue = nullptr)
: newArgIdx(newArgIdx), newArgSize(newArgSize), castValue(castValue) {}
/// The start index of in the new argument list that contains arguments that
/// replace the original.
unsigned newArgIdx;
/// The number of arguments that replaced the original argument.
unsigned newArgSize;
/// The cast value that was created to cast from the new arguments to the
/// old. This only used if 'newArgSize' > 1.
Value castValue;
};
/// This structure contains information pertaining to a block that has had its
/// signature converted.
struct ConvertedBlockInfo {
ConvertedBlockInfo(Block *origBlock, const TypeConverter *converter)
: origBlock(origBlock), converter(converter) {}
/// The original block that was requested to have its signature converted.
Block *origBlock;
/// The conversion information for each of the arguments. The information is
/// std::nullopt if the argument was dropped during conversion.
SmallVector<std::optional<ConvertedArgInfo>, 1> argInfo;
/// The type converter used to convert the arguments.
const TypeConverter *converter;
};
/// Return if the signature of the given block has already been converted.
bool hasBeenConverted(Block *block) const {
return conversionInfo.count(block) || convertedBlocks.count(block);
}
/// Set the type converter to use for the given region.
void setConverter(Region *region, const TypeConverter *typeConverter) {
assert(typeConverter && "expected valid type converter");
regionToConverter[region] = typeConverter;
}
/// Return the type converter to use for the given region, or null if there
/// isn't one.
const TypeConverter *getConverter(Region *region) {
return regionToConverter.lookup(region);
}
//===--------------------------------------------------------------------===//
// Rewrite Application
//===--------------------------------------------------------------------===//
/// Erase any rewrites registered for the blocks within the given operation
/// which is about to be removed. This merely drops the rewrites without
/// undoing them.
void notifyOpRemoved(Operation *op);
/// Cleanup and undo any generated conversions for the arguments of block.
/// This method replaces the new block with the original, reverting the IR to
/// its original state.
void discardRewrites(Block *block);
/// Fully replace uses of the old arguments with the new.
void applyRewrites(ConversionValueMapping &mapping);
/// Materialize any necessary conversions for converted arguments that have
/// live users, using the provided `findLiveUser` to search for a user that
/// survives the conversion process.
LogicalResult
materializeLiveConversions(ConversionValueMapping &mapping,
OpBuilder &builder,
function_ref<Operation *(Value)> findLiveUser);
//===--------------------------------------------------------------------===//
// Conversion
//===--------------------------------------------------------------------===//
/// Attempt to convert the signature of the given block, if successful a new
/// block is returned containing the new arguments. Returns `block` if it did
/// not require conversion.
FailureOr<Block *>
convertSignature(Block *block, const TypeConverter *converter,
ConversionValueMapping &mapping,
SmallVectorImpl<BlockArgument> &argReplacements);
/// Apply the given signature conversion on the given block. The new block
/// containing the updated signature is returned. If no conversions were
/// necessary, e.g. if the block has no arguments, `block` is returned.
/// `converter` is used to generate any necessary cast operations that
/// translate between the origin argument types and those specified in the
/// signature conversion.
Block *applySignatureConversion(
Block *block, const TypeConverter *converter,
TypeConverter::SignatureConversion &signatureConversion,
ConversionValueMapping &mapping,
SmallVectorImpl<BlockArgument> &argReplacements);
/// Insert a new conversion into the cache.
void insertConversion(Block *newBlock, ConvertedBlockInfo &&info);
/// A collection of blocks that have had their arguments converted. This is a
/// map from the new replacement block, back to the original block.
llvm::MapVector<Block *, ConvertedBlockInfo> conversionInfo;
/// The set of original blocks that were converted.
DenseSet<Block *> convertedBlocks;
/// A mapping from valid regions, to those containing the original blocks of a
/// conversion.
DenseMap<Region *, std::unique_ptr<Region>> regionMapping;
/// A mapping of regions to type converters that should be used when
/// converting the arguments of blocks within that region.
DenseMap<Region *, const TypeConverter *> regionToConverter;
/// The pattern rewriter to use when materializing conversions.
PatternRewriter &rewriter;
/// An ordered set of unresolved materializations during conversion.
SmallVectorImpl<UnresolvedMaterialization> &unresolvedMaterializations;
};
} // namespace
//===----------------------------------------------------------------------===//
// Rewrite Application
void ArgConverter::notifyOpRemoved(Operation *op) {
if (conversionInfo.empty())
return;
for (Region &region : op->getRegions()) {
for (Block &block : region) {
// Drop any rewrites from within.
for (Operation &nestedOp : block)
if (nestedOp.getNumRegions())
notifyOpRemoved(&nestedOp);
// Check if this block was converted.
auto it = conversionInfo.find(&block);
if (it == conversionInfo.end())
continue;
// Drop all uses of the original arguments and delete the original block.
Block *origBlock = it->second.origBlock;
for (BlockArgument arg : origBlock->getArguments())
arg.dropAllUses();
conversionInfo.erase(it);
}
}
}
void ArgConverter::discardRewrites(Block *block) {
auto it = conversionInfo.find(block);
if (it == conversionInfo.end())
return;
Block *origBlock = it->second.origBlock;
// Drop all uses of the new block arguments and replace uses of the new block.
for (int i = block->getNumArguments() - 1; i >= 0; --i)
block->getArgument(i).dropAllUses();
block->replaceAllUsesWith(origBlock);
// Move the operations back the original block and the delete the new block.
origBlock->getOperations().splice(origBlock->end(), block->getOperations());
origBlock->moveBefore(block);
block->erase();
convertedBlocks.erase(origBlock);
conversionInfo.erase(it);
}
void ArgConverter::applyRewrites(ConversionValueMapping &mapping) {
for (auto &info : conversionInfo) {
ConvertedBlockInfo &blockInfo = info.second;
Block *origBlock = blockInfo.origBlock;
// Process the remapping for each of the original arguments.
for (unsigned i = 0, e = origBlock->getNumArguments(); i != e; ++i) {
std::optional<ConvertedArgInfo> &argInfo = blockInfo.argInfo[i];
BlockArgument origArg = origBlock->getArgument(i);
// Handle the case of a 1->0 value mapping.
if (!argInfo) {
if (Value newArg = mapping.lookupOrNull(origArg, origArg.getType()))
origArg.replaceAllUsesWith(newArg);
continue;
}
// Otherwise this is a 1->1+ value mapping.
Value castValue = argInfo->castValue;
assert(argInfo->newArgSize >= 1 && castValue && "expected 1->1+ mapping");
// If the argument is still used, replace it with the generated cast.
if (!origArg.use_empty()) {
origArg.replaceAllUsesWith(
mapping.lookupOrDefault(castValue, origArg.getType()));
}
}
}
}
LogicalResult ArgConverter::materializeLiveConversions(
ConversionValueMapping &mapping, OpBuilder &builder,
function_ref<Operation *(Value)> findLiveUser) {
for (auto &info : conversionInfo) {
Block *newBlock = info.first;
ConvertedBlockInfo &blockInfo = info.second;
Block *origBlock = blockInfo.origBlock;
// Process the remapping for each of the original arguments.
for (unsigned i = 0, e = origBlock->getNumArguments(); i != e; ++i) {
// If the type of this argument changed and the argument is still live, we
// need to materialize a conversion.
BlockArgument origArg = origBlock->getArgument(i);
if (mapping.lookupOrNull(origArg, origArg.getType()))
continue;
Operation *liveUser = findLiveUser(origArg);
if (!liveUser)
continue;
Value replacementValue = mapping.lookupOrDefault(origArg);
bool isDroppedArg = replacementValue == origArg;
if (isDroppedArg)
rewriter.setInsertionPointToStart(newBlock);
else
rewriter.setInsertionPointAfterValue(replacementValue);
Value newArg;
if (blockInfo.converter) {
newArg = blockInfo.converter->materializeSourceConversion(
rewriter, origArg.getLoc(), origArg.getType(),
isDroppedArg ? ValueRange() : ValueRange(replacementValue));
assert((!newArg || newArg.getType() == origArg.getType()) &&
"materialization hook did not provide a value of the expected "
"type");
}
if (!newArg) {
InFlightDiagnostic diag =
emitError(origArg.getLoc())
<< "failed to materialize conversion for block argument #" << i
<< " that remained live after conversion, type was "
<< origArg.getType();
if (!isDroppedArg)
diag << ", with target type " << replacementValue.getType();
diag.attachNote(liveUser->getLoc())
<< "see existing live user here: " << *liveUser;
return failure();
}
mapping.map(origArg, newArg);
}
}
return success();
}
//===----------------------------------------------------------------------===//
// Conversion
FailureOr<Block *> ArgConverter::convertSignature(
Block *block, const TypeConverter *converter,
ConversionValueMapping &mapping,
SmallVectorImpl<BlockArgument> &argReplacements) {
// Check if the block was already converted. If the block is detached,
// conservatively assume it is going to be deleted.
if (hasBeenConverted(block) || !block->getParent())
return block;
// If a converter wasn't provided, and the block wasn't already converted,
// there is nothing we can do.
if (!converter)
return failure();
// Try to convert the signature for the block with the provided converter.
if (auto conversion = converter->convertBlockSignature(block))
return applySignatureConversion(block, converter, *conversion, mapping,
argReplacements);
return failure();
}
Block *ArgConverter::applySignatureConversion(
Block *block, const TypeConverter *converter,
TypeConverter::SignatureConversion &signatureConversion,
ConversionValueMapping &mapping,
SmallVectorImpl<BlockArgument> &argReplacements) {
// If no arguments are being changed or added, there is nothing to do.
unsigned origArgCount = block->getNumArguments();
auto convertedTypes = signatureConversion.getConvertedTypes();
if (origArgCount == 0 && convertedTypes.empty())
return block;
// Split the block at the beginning to get a new block to use for the updated
// signature.
Block *newBlock = block->splitBlock(block->begin());
block->replaceAllUsesWith(newBlock);
// Map all new arguments to the location of the argument they originate from.
SmallVector<Location> newLocs(convertedTypes.size(),
rewriter.getUnknownLoc());
for (unsigned i = 0; i < origArgCount; ++i) {
auto inputMap = signatureConversion.getInputMapping(i);
if (!inputMap || inputMap->replacementValue)
continue;
Location origLoc = block->getArgument(i).getLoc();
for (unsigned j = 0; j < inputMap->size; ++j)
newLocs[inputMap->inputNo + j] = origLoc;
}
SmallVector<Value, 4> newArgRange(
newBlock->addArguments(convertedTypes, newLocs));
ArrayRef<Value> newArgs(newArgRange);
// Remap each of the original arguments as determined by the signature
// conversion.
ConvertedBlockInfo info(block, converter);
info.argInfo.resize(origArgCount);
OpBuilder::InsertionGuard guard(rewriter);
rewriter.setInsertionPointToStart(newBlock);
for (unsigned i = 0; i != origArgCount; ++i) {
auto inputMap = signatureConversion.getInputMapping(i);
if (!inputMap)
continue;
BlockArgument origArg = block->getArgument(i);
// If inputMap->replacementValue is not nullptr, then the argument is
// dropped and a replacement value is provided to be the remappedValue.
if (inputMap->replacementValue) {
assert(inputMap->size == 0 &&
"invalid to provide a replacement value when the argument isn't "
"dropped");
mapping.map(origArg, inputMap->replacementValue);
argReplacements.push_back(origArg);
continue;
}
// Otherwise, this is a 1->1+ mapping.
auto replArgs = newArgs.slice(inputMap->inputNo, inputMap->size);
Value newArg;
// If this is a 1->1 mapping and the types of new and replacement arguments
// match (i.e. it's an identity map), then the argument is mapped to its
// original type.
// FIXME: We simply pass through the replacement argument if there wasn't a
// converter, which isn't great as it allows implicit type conversions to
// appear. We should properly restructure this code to handle cases where a
// converter isn't provided and also to properly handle the case where an
// argument materialization is actually a temporary source materialization
// (e.g. in the case of 1->N).
if (replArgs.size() == 1 &&
(!converter || replArgs[0].getType() == origArg.getType())) {
newArg = replArgs.front();
} else {
Type origOutputType = origArg.getType();
// Legalize the argument output type.
Type outputType = origOutputType;
if (Type legalOutputType = converter->convertType(outputType))
outputType = legalOutputType;
newArg = buildUnresolvedArgumentMaterialization(
rewriter, origArg.getLoc(), replArgs, origOutputType, outputType,
converter, unresolvedMaterializations);
}
mapping.map(origArg, newArg);
argReplacements.push_back(origArg);
info.argInfo[i] =
ConvertedArgInfo(inputMap->inputNo, inputMap->size, newArg);
}
// Remove the original block from the region and return the new one.
insertConversion(newBlock, std::move(info));
return newBlock;
}
void ArgConverter::insertConversion(Block *newBlock,
ConvertedBlockInfo &&info) {
// Get a region to insert the old block.
Region *region = newBlock->getParent();
std::unique_ptr<Region> &mappedRegion = regionMapping[region];
if (!mappedRegion)
mappedRegion = std::make_unique<Region>(region->getParentOp());
// Move the original block to the mapped region and emplace the conversion.
mappedRegion->getBlocks().splice(mappedRegion->end(), region->getBlocks(),
info.origBlock->getIterator());
convertedBlocks.insert(info.origBlock);
conversionInfo.insert({newBlock, std::move(info)});
}
//===----------------------------------------------------------------------===//
// ConversionPatternRewriterImpl
//===----------------------------------------------------------------------===//
namespace mlir {
namespace detail {
struct ConversionPatternRewriterImpl {
explicit ConversionPatternRewriterImpl(PatternRewriter &rewriter)
: argConverter(rewriter, unresolvedMaterializations),
notifyCallback(nullptr) {}
/// Cleanup and destroy any generated rewrite operations. This method is
/// invoked when the conversion process fails.
void discardRewrites();
/// Apply all requested operation rewrites. This method is invoked when the
/// conversion process succeeds.
void applyRewrites();
//===--------------------------------------------------------------------===//
// State Management
//===--------------------------------------------------------------------===//
/// Return the current state of the rewriter.
RewriterState getCurrentState();
/// Reset the state of the rewriter to a previously saved point.
void resetState(RewriterState state);
/// Erase any blocks that were unlinked from their regions and stored in block
/// actions.
void eraseDanglingBlocks();
/// Undo the block actions (motions, splits) one by one in reverse order until
/// "numActionsToKeep" actions remains.
void undoBlockActions(unsigned numActionsToKeep = 0);
/// Remap the given values to those with potentially different types. Returns
/// success if the values could be remapped, failure otherwise. `valueDiagTag`
/// is the tag used when describing a value within a diagnostic, e.g.
/// "operand".
LogicalResult remapValues(StringRef valueDiagTag,
std::optional<Location> inputLoc,
PatternRewriter &rewriter, ValueRange values,
SmallVectorImpl<Value> &remapped);
/// Returns true if the given operation is ignored, and does not need to be
/// converted.
bool isOpIgnored(Operation *op) const;
/// Recursively marks the nested operations under 'op' as ignored. This
/// removes them from being considered for legalization.
void markNestedOpsIgnored(Operation *op);
//===--------------------------------------------------------------------===//
// Type Conversion
//===--------------------------------------------------------------------===//
/// Convert the signature of the given block.
FailureOr<Block *> convertBlockSignature(
Block *block, const TypeConverter *converter,
TypeConverter::SignatureConversion *conversion = nullptr);
/// Apply a signature conversion on the given region, using `converter` for
/// materializations if not null.
Block *
applySignatureConversion(Region *region,
TypeConverter::SignatureConversion &conversion,
const TypeConverter *converter);
/// Convert the types of block arguments within the given region.
FailureOr<Block *>
convertRegionTypes(Region *region, const TypeConverter &converter,
TypeConverter::SignatureConversion *entryConversion);
/// Convert the types of non-entry block arguments within the given region.
LogicalResult convertNonEntryRegionTypes(
Region *region, const TypeConverter &converter,
ArrayRef<TypeConverter::SignatureConversion> blockConversions = {});
//===--------------------------------------------------------------------===//
// Rewriter Notification Hooks
//===--------------------------------------------------------------------===//
/// PatternRewriter hook for replacing the results of an operation.
void notifyOpReplaced(Operation *op, ValueRange newValues);
/// Notifies that a block is about to be erased.
void notifyBlockIsBeingErased(Block *block);
/// Notifies that a block was created.
void notifyCreatedBlock(Block *block);
/// Notifies that a block was split.
void notifySplitBlock(Block *block, Block *continuation);
/// Notifies that a block is being inlined into another block.
void notifyBlockBeingInlined(Block *block, Block *srcBlock,
Block::iterator before);
/// Notifies that the blocks of a region are about to be moved.
void notifyRegionIsBeingInlinedBefore(Region &region, Region &parent,
Region::iterator before);
/// Notifies that a pattern match failed for the given reason.
LogicalResult
notifyMatchFailure(Location loc,
function_ref<void(Diagnostic &)> reasonCallback);
//===--------------------------------------------------------------------===//
// State
//===--------------------------------------------------------------------===//
// Mapping between replaced values that differ in type. This happens when
// replacing a value with one of a different type.
ConversionValueMapping mapping;
/// Utility used to convert block arguments.
ArgConverter argConverter;
/// Ordered vector of all of the newly created operations during conversion.
SmallVector<Operation *> createdOps;
/// Ordered vector of all unresolved type conversion materializations during
/// conversion.
SmallVector<UnresolvedMaterialization> unresolvedMaterializations;
/// Ordered map of requested operation replacements.
llvm::MapVector<Operation *, OpReplacement> replacements;
/// Ordered vector of any requested block argument replacements.
SmallVector<BlockArgument, 4> argReplacements;
/// Ordered list of block operations (creations, splits, motions).
SmallVector<BlockAction, 4> blockActions;
/// A set of operations that should no longer be considered for legalization,
/// but were not directly replace/erased/etc. by a pattern. These are
/// generally child operations of other operations who were
/// replaced/erased/etc. This is not meant to be an exhaustive list of all
/// operations, but the minimal set that can be used to detect if a given
/// operation should be `ignored`. For example, we may add the operations that
/// define non-empty regions to the set, but not any of the others. This
/// simplifies the amount of memory needed as we can query if the parent
/// operation was ignored.
SetVector<Operation *> ignoredOps;
/// A transaction state for each of operations that were updated in-place.
SmallVector<OperationTransactionState, 4> rootUpdates;
/// A vector of indices into `replacements` of operations that were replaced
/// with values with different result types than the original operation, e.g.
/// 1->N conversion of some kind.
SmallVector<unsigned, 4> operationsWithChangedResults;
/// The current type converter, or nullptr if no type converter is currently
/// active.
const TypeConverter *currentTypeConverter = nullptr;
/// This allows the user to collect the match failure message.
function_ref<void(Diagnostic &)> notifyCallback;
#ifndef NDEBUG
/// A set of operations that have pending updates. This tracking isn't
/// strictly necessary, and is thus only active during debug builds for extra
/// verification.
SmallPtrSet<Operation *, 1> pendingRootUpdates;
/// A logger used to emit diagnostics during the conversion process.
llvm::ScopedPrinter logger{llvm::dbgs()};
#endif
};
} // namespace detail
} // namespace mlir
/// Detach any operations nested in the given operation from their parent
/// blocks, and erase the given operation. This can be used when the nested
/// operations are scheduled for erasure themselves, so deleting the regions of
/// the given operation together with their content would result in double-free.
/// This happens, for example, when rolling back op creation in the reverse
/// order and if the nested ops were created before the parent op. This function
/// does not need to collect nested ops recursively because it is expected to
/// also be called for each nested op when it is about to be deleted.
static void detachNestedAndErase(Operation *op) {
for (Region &region : op->getRegions()) {
for (Block &block : region.getBlocks()) {
while (!block.getOperations().empty())
block.getOperations().remove(block.getOperations().begin());
block.dropAllDefinedValueUses();
}
}
op->dropAllUses();
op->erase();
}
void ConversionPatternRewriterImpl::discardRewrites() {
// Reset any operations that were updated in place.
for (auto &state : rootUpdates)
state.resetOperation();
undoBlockActions();
// Remove any newly created ops.
for (UnresolvedMaterialization &materialization : unresolvedMaterializations)
detachNestedAndErase(materialization.getOp());
for (auto *op : llvm::reverse(createdOps))
detachNestedAndErase(op);
}
void ConversionPatternRewriterImpl::applyRewrites() {
// Apply all of the rewrites replacements requested during conversion.
for (auto &repl : replacements) {
for (OpResult result : repl.first->getResults())
if (Value newValue = mapping.lookupOrNull(result, result.getType()))
result.replaceAllUsesWith(newValue);
// If this operation defines any regions, drop any pending argument
// rewrites.
if (repl.first->getNumRegions())
argConverter.notifyOpRemoved(repl.first);
}
// Apply all of the requested argument replacements.
for (BlockArgument arg : argReplacements) {
Value repl = mapping.lookupOrNull(arg, arg.getType());
if (!repl)
continue;
if (isa<BlockArgument>(repl)) {
arg.replaceAllUsesWith(repl);
continue;
}
// If the replacement value is an operation, we check to make sure that we
// don't replace uses that are within the parent operation of the
// replacement value.
Operation *replOp = cast<OpResult>(repl).getOwner();
Block *replBlock = replOp->getBlock();
arg.replaceUsesWithIf(repl, [&](OpOperand &operand) {
Operation *user = operand.getOwner();
return user->getBlock() != replBlock || replOp->isBeforeInBlock(user);
});
}
// Drop all of the unresolved materialization operations created during
// conversion.
for (auto &mat : unresolvedMaterializations) {
mat.getOp()->dropAllUses();
mat.getOp()->erase();
}
// In a second pass, erase all of the replaced operations in reverse. This
// allows processing nested operations before their parent region is
// destroyed. Because we process in reverse order, producers may be deleted
// before their users (a pattern deleting a producer and then the consumer)
// so we first drop all uses explicitly.
for (auto &repl : llvm::reverse(replacements)) {
repl.first->dropAllUses();
repl.first->erase();
}
argConverter.applyRewrites(mapping);
// Now that the ops have been erased, also erase dangling blocks.
eraseDanglingBlocks();
}
//===----------------------------------------------------------------------===//
// State Management
RewriterState ConversionPatternRewriterImpl::getCurrentState() {
return RewriterState(createdOps.size(), unresolvedMaterializations.size(),
replacements.size(), argReplacements.size(),
blockActions.size(), ignoredOps.size(),
rootUpdates.size());
}
void ConversionPatternRewriterImpl::resetState(RewriterState state) {
// Reset any operations that were updated in place.
for (unsigned i = state.numRootUpdates, e = rootUpdates.size(); i != e; ++i)
rootUpdates[i].resetOperation();
rootUpdates.resize(state.numRootUpdates);
// Reset any replaced arguments.
for (BlockArgument replacedArg :
llvm::drop_begin(argReplacements, state.numArgReplacements))
mapping.erase(replacedArg);
argReplacements.resize(state.numArgReplacements);
// Undo any block actions.
undoBlockActions(state.numBlockActions);
// Reset any replaced operations and undo any saved mappings.
for (auto &repl : llvm::drop_begin(replacements, state.numReplacements))
for (auto result : repl.first->getResults())
mapping.erase(result);
while (replacements.size() != state.numReplacements)
replacements.pop_back();
// Pop all of the newly inserted materializations.
while (unresolvedMaterializations.size() !=
state.numUnresolvedMaterializations) {
UnresolvedMaterialization mat = unresolvedMaterializations.pop_back_val();
UnrealizedConversionCastOp op = mat.getOp();
// If this was a target materialization, drop the mapping that was inserted.
if (mat.getKind() == UnresolvedMaterialization::Target) {
for (Value input : op->getOperands())
mapping.erase(input);
}
detachNestedAndErase(op);
}
// Pop all of the newly created operations.
while (createdOps.size() != state.numCreatedOps) {
detachNestedAndErase(createdOps.back());
createdOps.pop_back();
}
// Pop all of the recorded ignored operations that are no longer valid.
while (ignoredOps.size() != state.numIgnoredOperations)
ignoredOps.pop_back();
// Reset operations with changed results.
while (!operationsWithChangedResults.empty() &&
operationsWithChangedResults.back() >= state.numReplacements)
operationsWithChangedResults.pop_back();
}
void ConversionPatternRewriterImpl::eraseDanglingBlocks() {
for (auto &action : blockActions)
if (action.kind == BlockActionKind::Erase)
delete action.block;
}
void ConversionPatternRewriterImpl::undoBlockActions(
unsigned numActionsToKeep) {
for (auto &action :
llvm::reverse(llvm::drop_begin(blockActions, numActionsToKeep))) {
switch (action.kind) {
// Delete the created block.
case BlockActionKind::Create: {
// Unlink all of the operations within this block, they will be deleted
// separately.
auto &blockOps = action.block->getOperations();
while (!blockOps.empty())
blockOps.remove(blockOps.begin());
action.block->dropAllDefinedValueUses();
action.block->erase();
break;
}
// Put the block (owned by action) back into its original position.
case BlockActionKind::Erase: {
auto &blockList = action.originalPosition.region->getBlocks();
Block *insertAfterBlock = action.originalPosition.insertAfterBlock;
blockList.insert((insertAfterBlock
? std::next(Region::iterator(insertAfterBlock))
: blockList.begin()),
action.block);
break;
}
// Put the instructions from the destination block (owned by the action)
// back into the source block.
case BlockActionKind::Inline: {
Block *sourceBlock = action.inlineInfo.sourceBlock;
if (action.inlineInfo.firstInlinedInst) {
assert(action.inlineInfo.lastInlinedInst && "expected operation");
sourceBlock->getOperations().splice(
sourceBlock->begin(), action.block->getOperations(),
Block::iterator(action.inlineInfo.firstInlinedInst),
++Block::iterator(action.inlineInfo.lastInlinedInst));
}
break;
}
// Move the block back to its original position.
case BlockActionKind::Move: {
Region *originalRegion = action.originalPosition.region;
Block *insertAfterBlock = action.originalPosition.insertAfterBlock;
originalRegion->getBlocks().splice(
(insertAfterBlock ? std::next(Region::iterator(insertAfterBlock))
: originalRegion->end()),
action.block->getParent()->getBlocks(), action.block);
break;
}
// Merge back the block that was split out.
case BlockActionKind::Split: {
action.originalBlock->getOperations().splice(
action.originalBlock->end(), action.block->getOperations());
action.block->dropAllDefinedValueUses();
action.block->erase();
break;
}
// Undo the type conversion.
case BlockActionKind::TypeConversion: {
argConverter.discardRewrites(action.block);
break;
}
}
}
blockActions.resize(numActionsToKeep);
}
LogicalResult ConversionPatternRewriterImpl::remapValues(
StringRef valueDiagTag, std::optional<Location> inputLoc,
PatternRewriter &rewriter, ValueRange values,
SmallVectorImpl<Value> &remapped) {
remapped.reserve(llvm::size(values));
SmallVector<Type, 1> legalTypes;
for (const auto &it : llvm::enumerate(values)) {
Value operand = it.value();
Type origType = operand.getType();
// If a converter was provided, get the desired legal types for this
// operand.
Type desiredType;
if (currentTypeConverter) {
// If there is no legal conversion, fail to match this pattern.
legalTypes.clear();
if (failed(currentTypeConverter->convertType(origType, legalTypes))) {
Location operandLoc = inputLoc ? *inputLoc : operand.getLoc();
return notifyMatchFailure(operandLoc, [=](Diagnostic &diag) {
diag << "unable to convert type for " << valueDiagTag << " #"
<< it.index() << ", type was " << origType;
});
}
// TODO: There currently isn't any mechanism to do 1->N type conversion
// via the PatternRewriter replacement API, so for now we just ignore it.
if (legalTypes.size() == 1)
desiredType = legalTypes.front();
} else {
// TODO: What we should do here is just set `desiredType` to `origType`
// and then handle the necessary type conversions after the conversion
// process has finished. Unfortunately a lot of patterns currently rely on
// receiving the new operands even if the types change, so we keep the
// original behavior here for now until all of the patterns relying on
// this get updated.
}
Value newOperand = mapping.lookupOrDefault(operand, desiredType);
// Handle the case where the conversion was 1->1 and the new operand type
// isn't legal.
Type newOperandType = newOperand.getType();
if (currentTypeConverter && desiredType && newOperandType != desiredType) {
Location operandLoc = inputLoc ? *inputLoc : operand.getLoc();
Value castValue = buildUnresolvedTargetMaterialization(
operandLoc, newOperand, desiredType, currentTypeConverter,
unresolvedMaterializations);
mapping.map(mapping.lookupOrDefault(newOperand), castValue);
newOperand = castValue;
}
remapped.push_back(newOperand);
}
return success();
}
bool ConversionPatternRewriterImpl::isOpIgnored(Operation *op) const {
// Check to see if this operation was replaced or its parent ignored.
return replacements.count(op) || ignoredOps.count(op->getParentOp());
}
void ConversionPatternRewriterImpl::markNestedOpsIgnored(Operation *op) {
// Walk this operation and collect nested operations that define non-empty
// regions. We mark such operations as 'ignored' so that we know we don't have
// to convert them, or their nested ops.
if (op->getNumRegions() == 0)
return;
op->walk([&](Operation *op) {
if (llvm::any_of(op->getRegions(),
[](Region &region) { return !region.empty(); }))
ignoredOps.insert(op);
});
}
//===----------------------------------------------------------------------===//
// Type Conversion
FailureOr<Block *> ConversionPatternRewriterImpl::convertBlockSignature(
Block *block, const TypeConverter *converter,
TypeConverter::SignatureConversion *conversion) {
FailureOr<Block *> result =
conversion ? argConverter.applySignatureConversion(
block, converter, *conversion, mapping, argReplacements)
: argConverter.convertSignature(block, converter, mapping,
argReplacements);
if (failed(result))
return failure();
if (Block *newBlock = *result) {
if (newBlock != block)
blockActions.push_back(BlockAction::getTypeConversion(newBlock));
}
return result;
}
Block *ConversionPatternRewriterImpl::applySignatureConversion(
Region *region, TypeConverter::SignatureConversion &conversion,
const TypeConverter *converter) {
if (!region->empty())
return *convertBlockSignature(&region->front(), converter, &conversion);
return nullptr;
}
FailureOr<Block *> ConversionPatternRewriterImpl::convertRegionTypes(
Region *region, const TypeConverter &converter,
TypeConverter::SignatureConversion *entryConversion) {
argConverter.setConverter(region, &converter);
if (region->empty())
return nullptr;
if (failed(convertNonEntryRegionTypes(region, converter)))
return failure();
FailureOr<Block *> newEntry =
convertBlockSignature(&region->front(), &converter, entryConversion);
return newEntry;
}
LogicalResult ConversionPatternRewriterImpl::convertNonEntryRegionTypes(
Region *region, const TypeConverter &converter,
ArrayRef<TypeConverter::SignatureConversion> blockConversions) {
argConverter.setConverter(region, &converter);
if (region->empty())
return success();
// Convert the arguments of each block within the region.
int blockIdx = 0;
assert((blockConversions.empty() ||
blockConversions.size() == region->getBlocks().size() - 1) &&
"expected either to provide no SignatureConversions at all or to "
"provide a SignatureConversion for each non-entry block");
for (Block &block :
llvm::make_early_inc_range(llvm::drop_begin(*region, 1))) {
TypeConverter::SignatureConversion *blockConversion =
blockConversions.empty()
? nullptr
: const_cast<TypeConverter::SignatureConversion *>(
&blockConversions[blockIdx++]);
if (failed(convertBlockSignature(&block, &converter, blockConversion)))
return failure();
}
return success();
}
//===----------------------------------------------------------------------===//
// Rewriter Notification Hooks
void ConversionPatternRewriterImpl::notifyOpReplaced(Operation *op,
ValueRange newValues) {
assert(newValues.size() == op->getNumResults());
assert(!replacements.count(op) && "operation was already replaced");
// Track if any of the results changed, e.g. erased and replaced with null.
bool resultChanged = false;
// Create mappings for each of the new result values.
for (auto [newValue, result] : llvm::zip(newValues, op->getResults())) {
if (!newValue) {
resultChanged = true;
continue;
}
// Remap, and check for any result type changes.
mapping.map(result, newValue);
resultChanged |= (newValue.getType() != result.getType());
}
if (resultChanged)
operationsWithChangedResults.push_back(replacements.size());
// Record the requested operation replacement.
replacements.insert(std::make_pair(op, OpReplacement(currentTypeConverter)));
// Mark this operation as recursively ignored so that we don't need to
// convert any nested operations.
markNestedOpsIgnored(op);
}
void ConversionPatternRewriterImpl::notifyBlockIsBeingErased(Block *block) {
Region *region = block->getParent();
Block *origPrevBlock = block->getPrevNode();
blockActions.push_back(BlockAction::getErase(block, {region, origPrevBlock}));
}
void ConversionPatternRewriterImpl::notifyCreatedBlock(Block *block) {
blockActions.push_back(BlockAction::getCreate(block));
}
void ConversionPatternRewriterImpl::notifySplitBlock(Block *block,
Block *continuation) {
blockActions.push_back(BlockAction::getSplit(continuation, block));
}
void ConversionPatternRewriterImpl::notifyBlockBeingInlined(
Block *block, Block *srcBlock, Block::iterator before) {
blockActions.push_back(BlockAction::getInline(block, srcBlock, before));
}
void ConversionPatternRewriterImpl::notifyRegionIsBeingInlinedBefore(
Region &region, Region &parent, Region::iterator before) {
if (region.empty())
return;
Block *laterBlock = &region.back();
for (auto &earlierBlock : llvm::drop_begin(llvm::reverse(region), 1)) {
blockActions.push_back(
BlockAction::getMove(laterBlock, {&region, &earlierBlock}));
laterBlock = &earlierBlock;
}
blockActions.push_back(BlockAction::getMove(laterBlock, {&region, nullptr}));
}
LogicalResult ConversionPatternRewriterImpl::notifyMatchFailure(
Location loc, function_ref<void(Diagnostic &)> reasonCallback) {
LLVM_DEBUG({
Diagnostic diag(loc, DiagnosticSeverity::Remark);
reasonCallback(diag);
logger.startLine() << "** Failure : " << diag.str() << "\n";
if (notifyCallback)
notifyCallback(diag);
});
return failure();
}
//===----------------------------------------------------------------------===//
// ConversionPatternRewriter
//===----------------------------------------------------------------------===//
ConversionPatternRewriter::ConversionPatternRewriter(MLIRContext *ctx)
: PatternRewriter(ctx),
impl(new detail::ConversionPatternRewriterImpl(*this)) {
setListener(this);
}
ConversionPatternRewriter::~ConversionPatternRewriter() = default;
void ConversionPatternRewriter::replaceOpWithIf(
Operation *op, ValueRange newValues, bool *allUsesReplaced,
llvm::unique_function<bool(OpOperand &) const> functor) {
// TODO: To support this we will need to rework a bit of how replacements are
// tracked, given that this isn't guranteed to replace all of the uses of an
// operation. The main change is that now an operation can be replaced
// multiple times, in parts. The current "set" based tracking is mainly useful
// for tracking if a replaced operation should be ignored, i.e. if all of the
// uses will be replaced.
llvm_unreachable(
"replaceOpWithIf is currently not supported by DialectConversion");
}
void ConversionPatternRewriter::replaceOp(Operation *op, Operation *newOp) {
assert(op && newOp && "expected non-null op");
replaceOp(op, newOp->getResults());
}
void ConversionPatternRewriter::replaceOp(Operation *op, ValueRange newValues) {
assert(op->getNumResults() == newValues.size() &&
"incorrect # of replacement values");
LLVM_DEBUG({
impl->logger.startLine()
<< "** Replace : '" << op->getName() << "'(" << op << ")\n";
});
impl->notifyOpReplaced(op, newValues);
}
void ConversionPatternRewriter::eraseOp(Operation *op) {
LLVM_DEBUG({
impl->logger.startLine()
<< "** Erase : '" << op->getName() << "'(" << op << ")\n";
});
SmallVector<Value, 1> nullRepls(op->getNumResults(), nullptr);
impl->notifyOpReplaced(op, nullRepls);
}
void ConversionPatternRewriter::eraseBlock(Block *block) {
impl->notifyBlockIsBeingErased(block);
// Mark all ops for erasure.
for (Operation &op : *block)
eraseOp(&op);
// Unlink the block from its parent region. The block is kept in the block
// action and will be actually destroyed when rewrites are applied. This
// allows us to keep the operations in the block live and undo the removal by
// re-inserting the block.
block->getParent()->getBlocks().remove(block);
}
Block *ConversionPatternRewriter::applySignatureConversion(
Region *region, TypeConverter::SignatureConversion &conversion,
const TypeConverter *converter) {
return impl->applySignatureConversion(region, conversion, converter);
}
FailureOr<Block *> ConversionPatternRewriter::convertRegionTypes(
Region *region, const TypeConverter &converter,
TypeConverter::SignatureConversion *entryConversion) {
return impl->convertRegionTypes(region, converter, entryConversion);
}
LogicalResult ConversionPatternRewriter::convertNonEntryRegionTypes(
Region *region, const TypeConverter &converter,
ArrayRef<TypeConverter::SignatureConversion> blockConversions) {
return impl->convertNonEntryRegionTypes(region, converter, blockConversions);
}
void ConversionPatternRewriter::replaceUsesOfBlockArgument(BlockArgument from,
Value to) {
LLVM_DEBUG({
Operation *parentOp = from.getOwner()->getParentOp();
impl->logger.startLine() << "** Replace Argument : '" << from
<< "'(in region of '" << parentOp->getName()
<< "'(" << from.getOwner()->getParentOp() << ")\n";
});
impl->argReplacements.push_back(from);
impl->mapping.map(impl->mapping.lookupOrDefault(from), to);
}
Value ConversionPatternRewriter::getRemappedValue(Value key) {
SmallVector<Value> remappedValues;
if (failed(impl->remapValues("value", /*inputLoc=*/std::nullopt, *this, key,
remappedValues)))
return nullptr;
return remappedValues.front();
}
LogicalResult
ConversionPatternRewriter::getRemappedValues(ValueRange keys,
SmallVectorImpl<Value> &results) {
if (keys.empty())
return success();
return impl->remapValues("value", /*inputLoc=*/std::nullopt, *this, keys,
results);
}
void ConversionPatternRewriter::notifyBlockCreated(Block *block) {
impl->notifyCreatedBlock(block);
}
Block *ConversionPatternRewriter::splitBlock(Block *block,
Block::iterator before) {
auto *continuation = PatternRewriter::splitBlock(block, before);
impl->notifySplitBlock(block, continuation);
return continuation;
}
void ConversionPatternRewriter::inlineBlockBefore(Block *source, Block *dest,
Block::iterator before,
ValueRange argValues) {
assert(argValues.size() == source->getNumArguments() &&
"incorrect # of argument replacement values");
#ifndef NDEBUG
auto opIgnored = [&](Operation *op) { return impl->isOpIgnored(op); };
#endif // NDEBUG
// The source block will be deleted, so it should not have any users (i.e.,
// there should be no predecessors).
assert(llvm::all_of(source->getUsers(), opIgnored) &&
"expected 'source' to have no predecessors");
impl->notifyBlockBeingInlined(dest, source, before);
for (auto it : llvm::zip(source->getArguments(), argValues))
replaceUsesOfBlockArgument(std::get<0>(it), std::get<1>(it));
dest->getOperations().splice(before, source->getOperations());
eraseBlock(source);
}
void ConversionPatternRewriter::inlineRegionBefore(Region &region,
Region &parent,
Region::iterator before) {
impl->notifyRegionIsBeingInlinedBefore(region, parent, before);
PatternRewriter::inlineRegionBefore(region, parent, before);
}
void ConversionPatternRewriter::cloneRegionBefore(Region &region,
Region &parent,
Region::iterator before,
IRMapping &mapping) {
if (region.empty())
return;
PatternRewriter::cloneRegionBefore(region, parent, before, mapping);
for (Block &b : ForwardDominanceIterator<>::makeIterable(region)) {
Block *cloned = mapping.lookup(&b);
impl->notifyCreatedBlock(cloned);
cloned->walk<WalkOrder::PreOrder, ForwardDominanceIterator<>>(
[&](Operation *op) { notifyOperationInserted(op); });
}
}
void ConversionPatternRewriter::notifyOperationInserted(Operation *op) {
LLVM_DEBUG({
impl->logger.startLine()
<< "** Insert : '" << op->getName() << "'(" << op << ")\n";
});
impl->createdOps.push_back(op);
}
void ConversionPatternRewriter::startRootUpdate(Operation *op) {
#ifndef NDEBUG
impl->pendingRootUpdates.insert(op);
#endif
impl->rootUpdates.emplace_back(op);
}
void ConversionPatternRewriter::finalizeRootUpdate(Operation *op) {
PatternRewriter::finalizeRootUpdate(op);
// There is nothing to do here, we only need to track the operation at the
// start of the update.
#ifndef NDEBUG
assert(impl->pendingRootUpdates.erase(op) &&
"operation did not have a pending in-place update");
#endif
}
void ConversionPatternRewriter::cancelRootUpdate(Operation *op) {
#ifndef NDEBUG
assert(impl->pendingRootUpdates.erase(op) &&
"operation did not have a pending in-place update");
#endif
// Erase the last update for this operation.
auto stateHasOp = [op](const auto &it) { return it.getOperation() == op; };
auto &rootUpdates = impl->rootUpdates;
auto it = llvm::find_if(llvm::reverse(rootUpdates), stateHasOp);
assert(it != rootUpdates.rend() && "no root update started on op");
(*it).resetOperation();
int updateIdx = std::prev(rootUpdates.rend()) - it;
rootUpdates.erase(rootUpdates.begin() + updateIdx);
}
LogicalResult ConversionPatternRewriter::notifyMatchFailure(
Location loc, function_ref<void(Diagnostic &)> reasonCallback) {
return impl->notifyMatchFailure(loc, reasonCallback);
}
detail::ConversionPatternRewriterImpl &ConversionPatternRewriter::getImpl() {
return *impl;
}
//===----------------------------------------------------------------------===//
// ConversionPattern
//===----------------------------------------------------------------------===//
LogicalResult
ConversionPattern::matchAndRewrite(Operation *op,
PatternRewriter &rewriter) const {
auto &dialectRewriter = static_cast<ConversionPatternRewriter &>(rewriter);
auto &rewriterImpl = dialectRewriter.getImpl();
// Track the current conversion pattern type converter in the rewriter.
llvm::SaveAndRestore currentConverterGuard(rewriterImpl.currentTypeConverter,
getTypeConverter());
// Remap the operands of the operation.
SmallVector<Value, 4> operands;
if (failed(rewriterImpl.remapValues("operand", op->getLoc(), rewriter,
op->getOperands(), operands))) {
return failure();
}
return matchAndRewrite(op, operands, dialectRewriter);
}
//===----------------------------------------------------------------------===//
// OperationLegalizer
//===----------------------------------------------------------------------===//
namespace {
/// A set of rewrite patterns that can be used to legalize a given operation.
using LegalizationPatterns = SmallVector<const Pattern *, 1>;
/// This class defines a recursive operation legalizer.
class OperationLegalizer {
public:
using LegalizationAction = ConversionTarget::LegalizationAction;
OperationLegalizer(const ConversionTarget &targetInfo,
const FrozenRewritePatternSet &patterns);
/// Returns true if the given operation is known to be illegal on the target.
bool isIllegal(Operation *op) const;
/// Attempt to legalize the given operation. Returns success if the operation
/// was legalized, failure otherwise.
LogicalResult legalize(Operation *op, ConversionPatternRewriter &rewriter);
/// Returns the conversion target in use by the legalizer.
const ConversionTarget &getTarget() { return target; }
private:
/// Attempt to legalize the given operation by folding it.
LogicalResult legalizeWithFold(Operation *op,
ConversionPatternRewriter &rewriter);
/// Attempt to legalize the given operation by applying a pattern. Returns
/// success if the operation was legalized, failure otherwise.
LogicalResult legalizeWithPattern(Operation *op,
ConversionPatternRewriter &rewriter);
/// Return true if the given pattern may be applied to the given operation,
/// false otherwise.
bool canApplyPattern(Operation *op, const Pattern &pattern,
ConversionPatternRewriter &rewriter);
/// Legalize the resultant IR after successfully applying the given pattern.
LogicalResult legalizePatternResult(Operation *op, const Pattern &pattern,
ConversionPatternRewriter &rewriter,
RewriterState &curState);
/// Legalizes the actions registered during the execution of a pattern.
LogicalResult legalizePatternBlockActions(Operation *op,
ConversionPatternRewriter &rewriter,
ConversionPatternRewriterImpl &impl,
RewriterState &state,
RewriterState &newState);
LogicalResult legalizePatternCreatedOperations(
ConversionPatternRewriter &rewriter, ConversionPatternRewriterImpl &impl,
RewriterState &state, RewriterState &newState);
LogicalResult legalizePatternRootUpdates(ConversionPatternRewriter &rewriter,
ConversionPatternRewriterImpl &impl,
RewriterState &state,
RewriterState &newState);
//===--------------------------------------------------------------------===//
// Cost Model
//===--------------------------------------------------------------------===//
/// Build an optimistic legalization graph given the provided patterns. This
/// function populates 'anyOpLegalizerPatterns' and 'legalizerPatterns' with
/// patterns for operations that are not directly legal, but may be
/// transitively legal for the current target given the provided patterns.
void buildLegalizationGraph(
LegalizationPatterns &anyOpLegalizerPatterns,
DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns);
/// Compute the benefit of each node within the computed legalization graph.
/// This orders the patterns within 'legalizerPatterns' based upon two
/// criteria:
/// 1) Prefer patterns that have the lowest legalization depth, i.e.
/// represent the more direct mapping to the target.
/// 2) When comparing patterns with the same legalization depth, prefer the
/// pattern with the highest PatternBenefit. This allows for users to
/// prefer specific legalizations over others.
void computeLegalizationGraphBenefit(
LegalizationPatterns &anyOpLegalizerPatterns,
DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns);
/// Compute the legalization depth when legalizing an operation of the given
/// type.
unsigned computeOpLegalizationDepth(
OperationName op, DenseMap<OperationName, unsigned> &minOpPatternDepth,
DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns);
/// Apply the conversion cost model to the given set of patterns, and return
/// the smallest legalization depth of any of the patterns. See
/// `computeLegalizationGraphBenefit` for the breakdown of the cost model.
unsigned applyCostModelToPatterns(
LegalizationPatterns &patterns,
DenseMap<OperationName, unsigned> &minOpPatternDepth,
DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns);
/// The current set of patterns that have been applied.
SmallPtrSet<const Pattern *, 8> appliedPatterns;
/// The legalization information provided by the target.
const ConversionTarget &target;
/// The pattern applicator to use for conversions.
PatternApplicator applicator;
};
} // namespace
OperationLegalizer::OperationLegalizer(const ConversionTarget &targetInfo,
const FrozenRewritePatternSet &patterns)
: target(targetInfo), applicator(patterns) {
// The set of patterns that can be applied to illegal operations to transform
// them into legal ones.
DenseMap<OperationName, LegalizationPatterns> legalizerPatterns;
LegalizationPatterns anyOpLegalizerPatterns;
buildLegalizationGraph(anyOpLegalizerPatterns, legalizerPatterns);
computeLegalizationGraphBenefit(anyOpLegalizerPatterns, legalizerPatterns);
}
bool OperationLegalizer::isIllegal(Operation *op) const {
return target.isIllegal(op);
}
LogicalResult
OperationLegalizer::legalize(Operation *op,
ConversionPatternRewriter &rewriter) {
#ifndef NDEBUG
const char *logLineComment =
"//===-------------------------------------------===//\n";
auto &logger = rewriter.getImpl().logger;
#endif
LLVM_DEBUG({
logger.getOStream() << "\n";
logger.startLine() << logLineComment;
logger.startLine() << "Legalizing operation : '" << op->getName() << "'("
<< op << ") {\n";
logger.indent();
// If the operation has no regions, just print it here.
if (op->getNumRegions() == 0) {
op->print(logger.startLine(), OpPrintingFlags().printGenericOpForm());
logger.getOStream() << "\n\n";
}
});
// Check if this operation is legal on the target.
if (auto legalityInfo = target.isLegal(op)) {
LLVM_DEBUG({
logSuccess(
logger, "operation marked legal by the target{0}",
legalityInfo->isRecursivelyLegal
? "; NOTE: operation is recursively legal; skipping internals"
: "");
logger.startLine() << logLineComment;
});
// If this operation is recursively legal, mark its children as ignored so
// that we don't consider them for legalization.
if (legalityInfo->isRecursivelyLegal)
rewriter.getImpl().markNestedOpsIgnored(op);
return success();
}
// Check to see if the operation is ignored and doesn't need to be converted.
if (rewriter.getImpl().isOpIgnored(op)) {
LLVM_DEBUG({
logSuccess(logger, "operation marked 'ignored' during conversion");
logger.startLine() << logLineComment;
});
return success();
}
// If the operation isn't legal, try to fold it in-place.
// TODO: Should we always try to do this, even if the op is
// already legal?
if (succeeded(legalizeWithFold(op, rewriter))) {
LLVM_DEBUG({
logSuccess(logger, "operation was folded");
logger.startLine() << logLineComment;
});
return success();
}
// Otherwise, we need to apply a legalization pattern to this operation.
if (succeeded(legalizeWithPattern(op, rewriter))) {
LLVM_DEBUG({
logSuccess(logger, "");
logger.startLine() << logLineComment;
});
return success();
}
LLVM_DEBUG({
logFailure(logger, "no matched legalization pattern");
logger.startLine() << logLineComment;
});
return failure();
}
LogicalResult
OperationLegalizer::legalizeWithFold(Operation *op,
ConversionPatternRewriter &rewriter) {
auto &rewriterImpl = rewriter.getImpl();
RewriterState curState = rewriterImpl.getCurrentState();
LLVM_DEBUG({
rewriterImpl.logger.startLine() << "* Fold {\n";
rewriterImpl.logger.indent();
});
// Try to fold the operation.
SmallVector<Value, 2> replacementValues;
rewriter.setInsertionPoint(op);
if (failed(rewriter.tryFold(op, replacementValues))) {
LLVM_DEBUG(logFailure(rewriterImpl.logger, "unable to fold"));
return failure();
}
// Insert a replacement for 'op' with the folded replacement values.
rewriter.replaceOp(op, replacementValues);
// Recursively legalize any new constant operations.
for (unsigned i = curState.numCreatedOps, e = rewriterImpl.createdOps.size();
i != e; ++i) {
Operation *cstOp = rewriterImpl.createdOps[i];
if (failed(legalize(cstOp, rewriter))) {
LLVM_DEBUG(logFailure(rewriterImpl.logger,
"failed to legalize generated constant '{0}'",
cstOp->getName()));
rewriterImpl.resetState(curState);
return failure();
}
}
LLVM_DEBUG(logSuccess(rewriterImpl.logger, ""));
return success();
}
LogicalResult
OperationLegalizer::legalizeWithPattern(Operation *op,
ConversionPatternRewriter &rewriter) {
auto &rewriterImpl = rewriter.getImpl();
// Functor that returns if the given pattern may be applied.
auto canApply = [&](const Pattern &pattern) {
return canApplyPattern(op, pattern, rewriter);
};
// Functor that cleans up the rewriter state after a pattern failed to match.
RewriterState curState = rewriterImpl.getCurrentState();
auto onFailure = [&](const Pattern &pattern) {
LLVM_DEBUG({
logFailure(rewriterImpl.logger, "pattern failed to match");
if (rewriterImpl.notifyCallback) {
Diagnostic diag(op->getLoc(), DiagnosticSeverity::Remark);
diag << "Failed to apply pattern \"" << pattern.getDebugName()
<< "\" on op:\n"
<< *op;
rewriterImpl.notifyCallback(diag);
}
});
rewriterImpl.resetState(curState);
appliedPatterns.erase(&pattern);
};
// Functor that performs additional legalization when a pattern is
// successfully applied.
auto onSuccess = [&](const Pattern &pattern) {
auto result = legalizePatternResult(op, pattern, rewriter, curState);
appliedPatterns.erase(&pattern);
if (failed(result))
rewriterImpl.resetState(curState);
return result;
};
// Try to match and rewrite a pattern on this operation.
return applicator.matchAndRewrite(op, rewriter, canApply, onFailure,
onSuccess);
}
bool OperationLegalizer::canApplyPattern(Operation *op, const Pattern &pattern,
ConversionPatternRewriter &rewriter) {
LLVM_DEBUG({
auto &os = rewriter.getImpl().logger;
os.getOStream() << "\n";
os.startLine() << "* Pattern : '" << op->getName() << " -> (";
llvm::interleaveComma(pattern.getGeneratedOps(), os.getOStream());
os.getOStream() << ")' {\n";
os.indent();
});
// Ensure that we don't cycle by not allowing the same pattern to be
// applied twice in the same recursion stack if it is not known to be safe.
if (!pattern.hasBoundedRewriteRecursion() &&
!appliedPatterns.insert(&pattern).second) {
LLVM_DEBUG(
logFailure(rewriter.getImpl().logger, "pattern was already applied"));
return false;
}
return true;
}
LogicalResult
OperationLegalizer::legalizePatternResult(Operation *op, const Pattern &pattern,
ConversionPatternRewriter &rewriter,
RewriterState &curState) {
auto &impl = rewriter.getImpl();
#ifndef NDEBUG
assert(impl.pendingRootUpdates.empty() && "dangling root updates");
#endif
// Check that the root was either replaced or updated in place.
auto replacedRoot = [&] {
return llvm::any_of(
llvm::drop_begin(impl.replacements, curState.numReplacements),
[op](auto &it) { return it.first == op; });
};
auto updatedRootInPlace = [&] {
return llvm::any_of(
llvm::drop_begin(impl.rootUpdates, curState.numRootUpdates),
[op](auto &state) { return state.getOperation() == op; });
};
(void)replacedRoot;
(void)updatedRootInPlace;
assert((replacedRoot() || updatedRootInPlace()) &&
"expected pattern to replace the root operation");
// Legalize each of the actions registered during application.
RewriterState newState = impl.getCurrentState();
if (failed(legalizePatternBlockActions(op, rewriter, impl, curState,
newState)) ||
failed(legalizePatternRootUpdates(rewriter, impl, curState, newState)) ||
failed(legalizePatternCreatedOperations(rewriter, impl, curState,
newState))) {
return failure();
}
LLVM_DEBUG(logSuccess(impl.logger, "pattern applied successfully"));
return success();
}
LogicalResult OperationLegalizer::legalizePatternBlockActions(
Operation *op, ConversionPatternRewriter &rewriter,
ConversionPatternRewriterImpl &impl, RewriterState &state,
RewriterState &newState) {
SmallPtrSet<Operation *, 16> operationsToIgnore;
// If the pattern moved or created any blocks, make sure the types of block
// arguments get legalized.
for (int i = state.numBlockActions, e = newState.numBlockActions; i != e;
++i) {
auto &action = impl.blockActions[i];
if (action.kind == BlockActionKind::TypeConversion ||
action.kind == BlockActionKind::Erase)
continue;
// Only check blocks outside of the current operation.
Operation *parentOp = action.block->getParentOp();
if (!parentOp || parentOp == op || action.block->getNumArguments() == 0)
continue;
// If the region of the block has a type converter, try to convert the block
// directly.
if (auto *converter =
impl.argConverter.getConverter(action.block->getParent())) {
if (failed(impl.convertBlockSignature(action.block, converter))) {
LLVM_DEBUG(logFailure(impl.logger, "failed to convert types of moved "
"block"));
return failure();
}
continue;
}
// Otherwise, check that this operation isn't one generated by this pattern.
// This is because we will attempt to legalize the parent operation, and
// blocks in regions created by this pattern will already be legalized later
// on. If we haven't built the set yet, build it now.
if (operationsToIgnore.empty()) {
auto createdOps = ArrayRef<Operation *>(impl.createdOps)
.drop_front(state.numCreatedOps);
operationsToIgnore.insert(createdOps.begin(), createdOps.end());
}
// If this operation should be considered for re-legalization, try it.
if (operationsToIgnore.insert(parentOp).second &&
failed(legalize(parentOp, rewriter))) {
LLVM_DEBUG(logFailure(
impl.logger, "operation '{0}'({1}) became illegal after block action",
parentOp->getName(), parentOp));
return failure();
}
}
return success();
}
LogicalResult OperationLegalizer::legalizePatternCreatedOperations(
ConversionPatternRewriter &rewriter, ConversionPatternRewriterImpl &impl,
RewriterState &state, RewriterState &newState) {
for (int i = state.numCreatedOps, e = newState.numCreatedOps; i != e; ++i) {
Operation *op = impl.createdOps[i];
if (failed(legalize(op, rewriter))) {
LLVM_DEBUG(logFailure(impl.logger,
"failed to legalize generated operation '{0}'({1})",
op->getName(), op));
return failure();
}
}
return success();
}
LogicalResult OperationLegalizer::legalizePatternRootUpdates(
ConversionPatternRewriter &rewriter, ConversionPatternRewriterImpl &impl,
RewriterState &state, RewriterState &newState) {
for (int i = state.numRootUpdates, e = newState.numRootUpdates; i != e; ++i) {
Operation *op = impl.rootUpdates[i].getOperation();
if (failed(legalize(op, rewriter))) {
LLVM_DEBUG(logFailure(
impl.logger, "failed to legalize operation updated in-place '{0}'",
op->getName()));
return failure();
}
}
return success();
}
//===----------------------------------------------------------------------===//
// Cost Model
void OperationLegalizer::buildLegalizationGraph(
LegalizationPatterns &anyOpLegalizerPatterns,
DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns) {
// A mapping between an operation and a set of operations that can be used to
// generate it.
DenseMap<OperationName, SmallPtrSet<OperationName, 2>> parentOps;
// A mapping between an operation and any currently invalid patterns it has.
DenseMap<OperationName, SmallPtrSet<const Pattern *, 2>> invalidPatterns;
// A worklist of patterns to consider for legality.
SetVector<const Pattern *> patternWorklist;
// Build the mapping from operations to the parent ops that may generate them.
applicator.walkAllPatterns([&](const Pattern &pattern) {
std::optional<OperationName> root = pattern.getRootKind();
// If the pattern has no specific root, we can't analyze the relationship
// between the root op and generated operations. Given that, add all such
// patterns to the legalization set.
if (!root) {
anyOpLegalizerPatterns.push_back(&pattern);
return;
}
// Skip operations that are always known to be legal.
if (target.getOpAction(*root) == LegalizationAction::Legal)
return;
// Add this pattern to the invalid set for the root op and record this root
// as a parent for any generated operations.
invalidPatterns[*root].insert(&pattern);
for (auto op : pattern.getGeneratedOps())
parentOps[op].insert(*root);
// Add this pattern to the worklist.
patternWorklist.insert(&pattern);
});
// If there are any patterns that don't have a specific root kind, we can't
// make direct assumptions about what operations will never be legalized.
// Note: Technically we could, but it would require an analysis that may
// recurse into itself. It would be better to perform this kind of filtering
// at a higher level than here anyways.
if (!anyOpLegalizerPatterns.empty()) {
for (const Pattern *pattern : patternWorklist)
legalizerPatterns[*pattern->getRootKind()].push_back(pattern);
return;
}
while (!patternWorklist.empty()) {
auto *pattern = patternWorklist.pop_back_val();
// Check to see if any of the generated operations are invalid.
if (llvm::any_of(pattern->getGeneratedOps(), [&](OperationName op) {
std::optional<LegalizationAction> action = target.getOpAction(op);
return !legalizerPatterns.count(op) &&
(!action || action == LegalizationAction::Illegal);
}))
continue;
// Otherwise, if all of the generated operation are valid, this op is now
// legal so add all of the child patterns to the worklist.
legalizerPatterns[*pattern->getRootKind()].push_back(pattern);
invalidPatterns[*pattern->getRootKind()].erase(pattern);
// Add any invalid patterns of the parent operations to see if they have now
// become legal.
for (auto op : parentOps[*pattern->getRootKind()])
patternWorklist.set_union(invalidPatterns[op]);
}
}
void OperationLegalizer::computeLegalizationGraphBenefit(
LegalizationPatterns &anyOpLegalizerPatterns,
DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns) {
// The smallest pattern depth, when legalizing an operation.
DenseMap<OperationName, unsigned> minOpPatternDepth;
// For each operation that is transitively legal, compute a cost for it.
for (auto &opIt : legalizerPatterns)
if (!minOpPatternDepth.count(opIt.first))
computeOpLegalizationDepth(opIt.first, minOpPatternDepth,
legalizerPatterns);
// Apply the cost model to the patterns that can match any operation. Those
// with a specific operation type are already resolved when computing the op
// legalization depth.
if (!anyOpLegalizerPatterns.empty())
applyCostModelToPatterns(anyOpLegalizerPatterns, minOpPatternDepth,
legalizerPatterns);
// Apply a cost model to the pattern applicator. We order patterns first by
// depth then benefit. `legalizerPatterns` contains per-op patterns by
// decreasing benefit.
applicator.applyCostModel([&](const Pattern &pattern) {
ArrayRef<const Pattern *> orderedPatternList;
if (std::optional<OperationName> rootName = pattern.getRootKind())
orderedPatternList = legalizerPatterns[*rootName];
else
orderedPatternList = anyOpLegalizerPatterns;
// If the pattern is not found, then it was removed and cannot be matched.
auto *it = llvm::find(orderedPatternList, &pattern);
if (it == orderedPatternList.end())
return PatternBenefit::impossibleToMatch();
// Patterns found earlier in the list have higher benefit.
return PatternBenefit(std::distance(it, orderedPatternList.end()));
});
}
unsigned OperationLegalizer::computeOpLegalizationDepth(
OperationName op, DenseMap<OperationName, unsigned> &minOpPatternDepth,
DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns) {
// Check for existing depth.
auto depthIt = minOpPatternDepth.find(op);
if (depthIt != minOpPatternDepth.end())
return depthIt->second;
// If a mapping for this operation does not exist, then this operation
// is always legal. Return 0 as the depth for a directly legal operation.
auto opPatternsIt = legalizerPatterns.find(op);
if (opPatternsIt == legalizerPatterns.end() || opPatternsIt->second.empty())
return 0u;
// Record this initial depth in case we encounter this op again when
// recursively computing the depth.
minOpPatternDepth.try_emplace(op, std::numeric_limits<unsigned>::max());
// Apply the cost model to the operation patterns, and update the minimum
// depth.
unsigned minDepth = applyCostModelToPatterns(
opPatternsIt->second, minOpPatternDepth, legalizerPatterns);
minOpPatternDepth[op] = minDepth;
return minDepth;
}
unsigned OperationLegalizer::applyCostModelToPatterns(
LegalizationPatterns &patterns,
DenseMap<OperationName, unsigned> &minOpPatternDepth,
DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns) {
unsigned minDepth = std::numeric_limits<unsigned>::max();
// Compute the depth for each pattern within the set.
SmallVector<std::pair<const Pattern *, unsigned>, 4> patternsByDepth;
patternsByDepth.reserve(patterns.size());
for (const Pattern *pattern : patterns) {
unsigned depth = 1;
for (auto generatedOp : pattern->getGeneratedOps()) {
unsigned generatedOpDepth = computeOpLegalizationDepth(
generatedOp, minOpPatternDepth, legalizerPatterns);
depth = std::max(depth, generatedOpDepth + 1);
}
patternsByDepth.emplace_back(pattern, depth);
// Update the minimum depth of the pattern list.
minDepth = std::min(minDepth, depth);
}
// If the operation only has one legalization pattern, there is no need to
// sort them.
if (patternsByDepth.size() == 1)
return minDepth;
// Sort the patterns by those likely to be the most beneficial.
std::stable_sort(patternsByDepth.begin(), patternsByDepth.end(),
[](const std::pair<const Pattern *, unsigned> &lhs,
const std::pair<const Pattern *, unsigned> &rhs) {
// First sort by the smaller pattern legalization
// depth.
if (lhs.second != rhs.second)
return lhs.second < rhs.second;
// Then sort by the larger pattern benefit.
auto lhsBenefit = lhs.first->getBenefit();
auto rhsBenefit = rhs.first->getBenefit();
return lhsBenefit > rhsBenefit;
});
// Update the legalization pattern to use the new sorted list.
patterns.clear();
for (auto &patternIt : patternsByDepth)
patterns.push_back(patternIt.first);
return minDepth;
}
//===----------------------------------------------------------------------===//
// OperationConverter
//===----------------------------------------------------------------------===//
namespace {
enum OpConversionMode {
/// In this mode, the conversion will ignore failed conversions to allow
/// illegal operations to co-exist in the IR.
Partial,
/// In this mode, all operations must be legal for the given target for the
/// conversion to succeed.
Full,
/// In this mode, operations are analyzed for legality. No actual rewrites are
/// applied to the operations on success.
Analysis,
};
// This class converts operations to a given conversion target via a set of
// rewrite patterns. The conversion behaves differently depending on the
// conversion mode.
struct OperationConverter {
explicit OperationConverter(const ConversionTarget &target,
const FrozenRewritePatternSet &patterns,
OpConversionMode mode,
DenseSet<Operation *> *trackedOps = nullptr)
: opLegalizer(target, patterns), mode(mode), trackedOps(trackedOps) {}
/// Converts the given operations to the conversion target.
LogicalResult
convertOperations(ArrayRef<Operation *> ops,
function_ref<void(Diagnostic &)> notifyCallback = nullptr);
private:
/// Converts an operation with the given rewriter.
LogicalResult convert(ConversionPatternRewriter &rewriter, Operation *op);
/// This method is called after the conversion process to legalize any
/// remaining artifacts and complete the conversion.
LogicalResult finalize(ConversionPatternRewriter &rewriter);
/// Legalize the types of converted block arguments.
LogicalResult
legalizeConvertedArgumentTypes(ConversionPatternRewriter &rewriter,
ConversionPatternRewriterImpl &rewriterImpl);
/// Legalize any unresolved type materializations.
LogicalResult legalizeUnresolvedMaterializations(
ConversionPatternRewriter &rewriter,
ConversionPatternRewriterImpl &rewriterImpl,
std::optional<DenseMap<Value, SmallVector<Value>>> &inverseMapping);
/// Legalize an operation result that was marked as "erased".
LogicalResult
legalizeErasedResult(Operation *op, OpResult result,
ConversionPatternRewriterImpl &rewriterImpl);
/// Legalize an operation result that was replaced with a value of a different
/// type.
LogicalResult legalizeChangedResultType(
Operation *op, OpResult result, Value newValue,
const TypeConverter *replConverter, ConversionPatternRewriter &rewriter,
ConversionPatternRewriterImpl &rewriterImpl,
const DenseMap<Value, SmallVector<Value>> &inverseMapping);
/// The legalizer to use when converting operations.
OperationLegalizer opLegalizer;
/// The conversion mode to use when legalizing operations.
OpConversionMode mode;
/// A set of pre-existing operations. When mode == OpConversionMode::Analysis,
/// this is populated with ops found to be legalizable to the target.
/// When mode == OpConversionMode::Partial, this is populated with ops found
/// *not* to be legalizable to the target.
DenseSet<Operation *> *trackedOps;
};
} // namespace
LogicalResult OperationConverter::convert(ConversionPatternRewriter &rewriter,
Operation *op) {
// Legalize the given operation.
if (failed(opLegalizer.legalize(op, rewriter))) {
// Handle the case of a failed conversion for each of the different modes.
// Full conversions expect all operations to be converted.
if (mode == OpConversionMode::Full)
return op->emitError()
<< "failed to legalize operation '" << op->getName() << "'";
// Partial conversions allow conversions to fail iff the operation was not
// explicitly marked as illegal. If the user provided a nonlegalizableOps
// set, non-legalizable ops are included.
if (mode == OpConversionMode::Partial) {
if (opLegalizer.isIllegal(op))
return op->emitError()
<< "failed to legalize operation '" << op->getName()
<< "' that was explicitly marked illegal";
if (trackedOps)
trackedOps->insert(op);
}
} else if (mode == OpConversionMode::Analysis) {
// Analysis conversions don't fail if any operations fail to legalize,
// they are only interested in the operations that were successfully
// legalized.
trackedOps->insert(op);
}
return success();
}
LogicalResult OperationConverter::convertOperations(
ArrayRef<Operation *> ops,
function_ref<void(Diagnostic &)> notifyCallback) {
if (ops.empty())
return success();
const ConversionTarget &target = opLegalizer.getTarget();
// Compute the set of operations and blocks to convert.
SmallVector<Operation *> toConvert;
for (auto *op : ops) {
op->walk<WalkOrder::PreOrder, ForwardDominanceIterator<>>(
[&](Operation *op) {
toConvert.push_back(op);
// Don't check this operation's children for conversion if the
// operation is recursively legal.
auto legalityInfo = target.isLegal(op);
if (legalityInfo && legalityInfo->isRecursivelyLegal)
return WalkResult::skip();
return WalkResult::advance();
});
}
// Convert each operation and discard rewrites on failure.
ConversionPatternRewriter rewriter(ops.front()->getContext());
ConversionPatternRewriterImpl &rewriterImpl = rewriter.getImpl();
rewriterImpl.notifyCallback = notifyCallback;
for (auto *op : toConvert)
if (failed(convert(rewriter, op)))
return rewriterImpl.discardRewrites(), failure();
// Now that all of the operations have been converted, finalize the conversion
// process to ensure any lingering conversion artifacts are cleaned up and
// legalized.
if (failed(finalize(rewriter)))
return rewriterImpl.discardRewrites(), failure();
// After a successful conversion, apply rewrites if this is not an analysis
// conversion.
if (mode == OpConversionMode::Analysis) {
rewriterImpl.discardRewrites();
} else {
rewriterImpl.applyRewrites();
// It is possible for a later pattern to erase an op that was originally
// identified as illegal and added to the trackedOps, remove it now after
// replacements have been computed.
if (trackedOps)
for (auto &repl : rewriterImpl.replacements)
trackedOps->erase(repl.first);
}
return success();
}
LogicalResult
OperationConverter::finalize(ConversionPatternRewriter &rewriter) {
std::optional<DenseMap<Value, SmallVector<Value>>> inverseMapping;
ConversionPatternRewriterImpl &rewriterImpl = rewriter.getImpl();
if (failed(legalizeUnresolvedMaterializations(rewriter, rewriterImpl,
inverseMapping)) ||
failed(legalizeConvertedArgumentTypes(rewriter, rewriterImpl)))
return failure();
if (rewriterImpl.operationsWithChangedResults.empty())
return success();
// Process requested operation replacements.
for (unsigned i = 0, e = rewriterImpl.operationsWithChangedResults.size();
i != e; ++i) {
unsigned replIdx = rewriterImpl.operationsWithChangedResults[i];
auto &repl = *(rewriterImpl.replacements.begin() + replIdx);
for (OpResult result : repl.first->getResults()) {
Value newValue = rewriterImpl.mapping.lookupOrNull(result);
// If the operation result was replaced with null, all of the uses of this
// value should be replaced.
if (!newValue) {
if (failed(legalizeErasedResult(repl.first, result, rewriterImpl)))
return failure();
continue;
}
// Otherwise, check to see if the type of the result changed.
if (result.getType() == newValue.getType())
continue;
// Compute the inverse mapping only if it is really needed.
if (!inverseMapping)
inverseMapping = rewriterImpl.mapping.getInverse();
// Legalize this result.
rewriter.setInsertionPoint(repl.first);
if (failed(legalizeChangedResultType(repl.first, result, newValue,
repl.second.converter, rewriter,
rewriterImpl, *inverseMapping)))
return failure();
// Update the end iterator for this loop in the case it was updated
// when legalizing generated conversion operations.
e = rewriterImpl.operationsWithChangedResults.size();
}
}
return success();
}
LogicalResult OperationConverter::legalizeConvertedArgumentTypes(
ConversionPatternRewriter &rewriter,
ConversionPatternRewriterImpl &rewriterImpl) {
// Functor used to check if all users of a value will be dead after
// conversion.
auto findLiveUser = [&](Value val) {
auto liveUserIt = llvm::find_if_not(val.getUsers(), [&](Operation *user) {
return rewriterImpl.isOpIgnored(user);
});
return liveUserIt == val.user_end() ? nullptr : *liveUserIt;
};
return rewriterImpl.argConverter.materializeLiveConversions(
rewriterImpl.mapping, rewriter, findLiveUser);
}
/// Replace the results of a materialization operation with the given values.
static void
replaceMaterialization(ConversionPatternRewriterImpl &rewriterImpl,
ResultRange matResults, ValueRange values,
DenseMap<Value, SmallVector<Value>> &inverseMapping) {
matResults.replaceAllUsesWith(values);
// For each of the materialization results, update the inverse mappings to
// point to the replacement values.
for (auto [matResult, newValue] : llvm::zip(matResults, values)) {
auto inverseMapIt = inverseMapping.find(matResult);
if (inverseMapIt == inverseMapping.end())
continue;
// Update the reverse mapping, or remove the mapping if we couldn't update
// it. Not being able to update signals that the mapping would have become
// circular (i.e. %foo -> newValue -> %foo), which may occur as values are
// propagated through temporary materializations. We simply drop the
// mapping, and let the post-conversion replacement logic handle updating
// uses.
for (Value inverseMapVal : inverseMapIt->second)
if (!rewriterImpl.mapping.tryMap(inverseMapVal, newValue))
rewriterImpl.mapping.erase(inverseMapVal);
}
}
/// Compute all of the unresolved materializations that will persist beyond the
/// conversion process, and require inserting a proper user materialization for.
static void computeNecessaryMaterializations(
DenseMap<Operation *, UnresolvedMaterialization *> &materializationOps,
ConversionPatternRewriter &rewriter,
ConversionPatternRewriterImpl &rewriterImpl,
DenseMap<Value, SmallVector<Value>> &inverseMapping,
SetVector<UnresolvedMaterialization *> &necessaryMaterializations) {
auto isLive = [&](Value value) {
auto findFn = [&](Operation *user) {
auto matIt = materializationOps.find(user);
if (matIt != materializationOps.end())
return !necessaryMaterializations.count(matIt->second);
return rewriterImpl.isOpIgnored(user);
};
// This value may be replacing another value that has a live user.
for (Value inv : inverseMapping.lookup(value))
if (llvm::find_if_not(inv.getUsers(), findFn) != inv.user_end())
return true;
// Or have live users itself.
return llvm::find_if_not(value.getUsers(), findFn) != value.user_end();
};
llvm::unique_function<Value(Value, Value, Type)> lookupRemappedValue =
[&](Value invalidRoot, Value value, Type type) {
// Check to see if the input operation was remapped to a variant of the
// output.
Value remappedValue = rewriterImpl.mapping.lookupOrDefault(value, type);
if (remappedValue.getType() == type && remappedValue != invalidRoot)
return remappedValue;
// Check to see if the input is a materialization operation that
// provides an inverse conversion. We just check blindly for
// UnrealizedConversionCastOp here, but it has no effect on correctness.
auto inputCastOp = value.getDefiningOp<UnrealizedConversionCastOp>();
if (inputCastOp && inputCastOp->getNumOperands() == 1)
return lookupRemappedValue(invalidRoot, inputCastOp->getOperand(0),
type);
return Value();
};
SetVector<UnresolvedMaterialization *> worklist;
for (auto &mat : rewriterImpl.unresolvedMaterializations) {
materializationOps.try_emplace(mat.getOp(), &mat);
worklist.insert(&mat);
}
while (!worklist.empty()) {
UnresolvedMaterialization *mat = worklist.pop_back_val();
UnrealizedConversionCastOp op = mat->getOp();
// We currently only handle target materializations here.
assert(op->getNumResults() == 1 && "unexpected materialization type");
OpResult opResult = op->getOpResult(0);
Type outputType = opResult.getType();
Operation::operand_range inputOperands = op.getOperands();
// Try to forward propagate operands for user conversion casts that result
// in the input types of the current cast.
for (Operation *user : llvm::make_early_inc_range(opResult.getUsers())) {
auto castOp = dyn_cast<UnrealizedConversionCastOp>(user);
if (!castOp)
continue;
if (castOp->getResultTypes() == inputOperands.getTypes()) {
replaceMaterialization(rewriterImpl, opResult, inputOperands,
inverseMapping);
necessaryMaterializations.remove(materializationOps.lookup(user));
}
}
// Try to avoid materializing a resolved materialization if possible.
// Handle the case of a 1-1 materialization.
if (inputOperands.size() == 1) {
// Check to see if the input operation was remapped to a variant of the
// output.
Value remappedValue =
lookupRemappedValue(opResult, inputOperands[0], outputType);
if (remappedValue && remappedValue != opResult) {
replaceMaterialization(rewriterImpl, opResult, remappedValue,
inverseMapping);
necessaryMaterializations.remove(mat);
continue;
}
} else {
// TODO: Avoid materializing other types of conversions here.
}
// Check to see if this is an argument materialization.
auto isBlockArg = [](Value v) { return isa<BlockArgument>(v); };
if (llvm::any_of(op->getOperands(), isBlockArg) ||
llvm::any_of(inverseMapping[op->getResult(0)], isBlockArg)) {
mat->setKind(UnresolvedMaterialization::Argument);
}
// If the materialization does not have any live users, we don't need to
// generate a user materialization for it.
// FIXME: For argument materializations, we currently need to check if any
// of the inverse mapped values are used because some patterns expect blind
// value replacement even if the types differ in some cases. When those
// patterns are fixed, we can drop the argument special case here.
bool isMaterializationLive = isLive(opResult);
if (mat->getKind() == UnresolvedMaterialization::Argument)
isMaterializationLive |= llvm::any_of(inverseMapping[opResult], isLive);
if (!isMaterializationLive)
continue;
if (!necessaryMaterializations.insert(mat))
continue;
// Reprocess input materializations to see if they have an updated status.
for (Value input : inputOperands) {
if (auto parentOp = input.getDefiningOp<UnrealizedConversionCastOp>()) {
if (auto *mat = materializationOps.lookup(parentOp))
worklist.insert(mat);
}
}
}
}
/// Legalize the given unresolved materialization. Returns success if the
/// materialization was legalized, failure otherise.
static LogicalResult legalizeUnresolvedMaterialization(
UnresolvedMaterialization &mat,
DenseMap<Operation *, UnresolvedMaterialization *> &materializationOps,
ConversionPatternRewriter &rewriter,
ConversionPatternRewriterImpl &rewriterImpl,
DenseMap<Value, SmallVector<Value>> &inverseMapping) {
auto findLiveUser = [&](auto &&users) {
auto liveUserIt = llvm::find_if_not(
users, [&](Operation *user) { return rewriterImpl.isOpIgnored(user); });
return liveUserIt == users.end() ? nullptr : *liveUserIt;
};
llvm::unique_function<Value(Value, Type)> lookupRemappedValue =
[&](Value value, Type type) {
// Check to see if the input operation was remapped to a variant of the
// output.
Value remappedValue = rewriterImpl.mapping.lookupOrDefault(value, type);
if (remappedValue.getType() == type)
return remappedValue;
return Value();
};
UnrealizedConversionCastOp op = mat.getOp();
if (!rewriterImpl.ignoredOps.insert(op))
return success();
// We currently only handle target materializations here.
OpResult opResult = op->getOpResult(0);
Operation::operand_range inputOperands = op.getOperands();
Type outputType = opResult.getType();
// If any input to this materialization is another materialization, resolve
// the input first.
for (Value value : op->getOperands()) {
auto valueCast = value.getDefiningOp<UnrealizedConversionCastOp>();
if (!valueCast)
continue;
auto matIt = materializationOps.find(valueCast);
if (matIt != materializationOps.end())
if (failed(legalizeUnresolvedMaterialization(
*matIt->second, materializationOps, rewriter, rewriterImpl,
inverseMapping)))
return failure();
}
// Perform a last ditch attempt to avoid materializing a resolved
// materialization if possible.
// Handle the case of a 1-1 materialization.
if (inputOperands.size() == 1) {
// Check to see if the input operation was remapped to a variant of the
// output.
Value remappedValue = lookupRemappedValue(inputOperands[0], outputType);
if (remappedValue && remappedValue != opResult) {
replaceMaterialization(rewriterImpl, opResult, remappedValue,
inverseMapping);
return success();
}
} else {
// TODO: Avoid materializing other types of conversions here.
}
// Try to materialize the conversion.
if (const TypeConverter *converter = mat.getConverter()) {
// FIXME: Determine a suitable insertion location when there are multiple
// inputs.
if (inputOperands.size() == 1)
rewriter.setInsertionPointAfterValue(inputOperands.front());
else
rewriter.setInsertionPoint(op);
Value newMaterialization;
switch (mat.getKind()) {
case UnresolvedMaterialization::Argument:
// Try to materialize an argument conversion.
// FIXME: The current argument materialization hook expects the original
// output type, even though it doesn't use that as the actual output type
// of the generated IR. The output type is just used as an indicator of
// the type of materialization to do. This behavior is really awkward in
// that it diverges from the behavior of the other hooks, and can be
// easily misunderstood. We should clean up the argument hooks to better
// represent the desired invariants we actually care about.
newMaterialization = converter->materializeArgumentConversion(
rewriter, op->getLoc(), mat.getOrigOutputType(), inputOperands);
if (newMaterialization)
break;
// If an argument materialization failed, fallback to trying a target
// materialization.
[[fallthrough]];
case UnresolvedMaterialization::Target:
newMaterialization = converter->materializeTargetConversion(
rewriter, op->getLoc(), outputType, inputOperands);
break;
}
if (newMaterialization) {
replaceMaterialization(rewriterImpl, opResult, newMaterialization,
inverseMapping);
return success();
}
}
InFlightDiagnostic diag = op->emitError()
<< "failed to legalize unresolved materialization "
"from "
<< inputOperands.getTypes() << " to " << outputType
<< " that remained live after conversion";
if (Operation *liveUser = findLiveUser(op->getUsers())) {
diag.attachNote(liveUser->getLoc())
<< "see existing live user here: " << *liveUser;
}
return failure();
}
LogicalResult OperationConverter::legalizeUnresolvedMaterializations(
ConversionPatternRewriter &rewriter,
ConversionPatternRewriterImpl &rewriterImpl,
std::optional<DenseMap<Value, SmallVector<Value>>> &inverseMapping) {
if (rewriterImpl.unresolvedMaterializations.empty())
return success();
inverseMapping = rewriterImpl.mapping.getInverse();
// As an initial step, compute all of the inserted materializations that we
// expect to persist beyond the conversion process.
DenseMap<Operation *, UnresolvedMaterialization *> materializationOps;
SetVector<UnresolvedMaterialization *> necessaryMaterializations;
computeNecessaryMaterializations(materializationOps, rewriter, rewriterImpl,
*inverseMapping, necessaryMaterializations);
// Once computed, legalize any necessary materializations.
for (auto *mat : necessaryMaterializations) {
if (failed(legalizeUnresolvedMaterialization(
*mat, materializationOps, rewriter, rewriterImpl, *inverseMapping)))
return failure();
}
return success();
}
LogicalResult OperationConverter::legalizeErasedResult(
Operation *op, OpResult result,
ConversionPatternRewriterImpl &rewriterImpl) {
// If the operation result was replaced with null, all of the uses of this
// value should be replaced.
auto liveUserIt = llvm::find_if_not(result.getUsers(), [&](Operation *user) {
return rewriterImpl.isOpIgnored(user);
});
if (liveUserIt != result.user_end()) {
InFlightDiagnostic diag = op->emitError("failed to legalize operation '")
<< op->getName() << "' marked as erased";
diag.attachNote(liveUserIt->getLoc())
<< "found live user of result #" << result.getResultNumber() << ": "
<< *liveUserIt;
return failure();
}
return success();
}
/// Finds a user of the given value, or of any other value that the given value
/// replaced, that was not replaced in the conversion process.
static Operation *findLiveUserOfReplaced(
Value initialValue, ConversionPatternRewriterImpl &rewriterImpl,
const DenseMap<Value, SmallVector<Value>> &inverseMapping) {
SmallVector<Value> worklist(1, initialValue);
while (!worklist.empty()) {
Value value = worklist.pop_back_val();
// Walk the users of this value to see if there are any live users that
// weren't replaced during conversion.
auto liveUserIt = llvm::find_if_not(value.getUsers(), [&](Operation *user) {
return rewriterImpl.isOpIgnored(user);
});
if (liveUserIt != value.user_end())
return *liveUserIt;
auto mapIt = inverseMapping.find(value);
if (mapIt != inverseMapping.end())
worklist.append(mapIt->second);
}
return nullptr;
}
LogicalResult OperationConverter::legalizeChangedResultType(
Operation *op, OpResult result, Value newValue,
const TypeConverter *replConverter, ConversionPatternRewriter &rewriter,
ConversionPatternRewriterImpl &rewriterImpl,
const DenseMap<Value, SmallVector<Value>> &inverseMapping) {
Operation *liveUser =
findLiveUserOfReplaced(result, rewriterImpl, inverseMapping);
if (!liveUser)
return success();
// Functor used to emit a conversion error for a failed materialization.
auto emitConversionError = [&] {
InFlightDiagnostic diag = op->emitError()
<< "failed to materialize conversion for result #"
<< result.getResultNumber() << " of operation '"
<< op->getName()
<< "' that remained live after conversion";
diag.attachNote(liveUser->getLoc())
<< "see existing live user here: " << *liveUser;
return failure();
};
// If the replacement has a type converter, attempt to materialize a
// conversion back to the original type.
if (!replConverter)
return emitConversionError();
// Materialize a conversion for this live result value.
Type resultType = result.getType();
Value convertedValue = replConverter->materializeSourceConversion(
rewriter, op->getLoc(), resultType, newValue);
if (!convertedValue)
return emitConversionError();
rewriterImpl.mapping.map(result, convertedValue);
return success();
}
//===----------------------------------------------------------------------===//
// Type Conversion
//===----------------------------------------------------------------------===//
void TypeConverter::SignatureConversion::addInputs(unsigned origInputNo,
ArrayRef<Type> types) {
assert(!types.empty() && "expected valid types");
remapInput(origInputNo, /*newInputNo=*/argTypes.size(), types.size());
addInputs(types);
}
void TypeConverter::SignatureConversion::addInputs(ArrayRef<Type> types) {
assert(!types.empty() &&
"1->0 type remappings don't need to be added explicitly");
argTypes.append(types.begin(), types.end());
}
void TypeConverter::SignatureConversion::remapInput(unsigned origInputNo,
unsigned newInputNo,
unsigned newInputCount) {
assert(!remappedInputs[origInputNo] && "input has already been remapped");
assert(newInputCount != 0 && "expected valid input count");
remappedInputs[origInputNo] =
InputMapping{newInputNo, newInputCount, /*replacementValue=*/nullptr};
}
void TypeConverter::SignatureConversion::remapInput(unsigned origInputNo,
Value replacementValue) {
assert(!remappedInputs[origInputNo] && "input has already been remapped");
remappedInputs[origInputNo] =
InputMapping{origInputNo, /*size=*/0, replacementValue};
}
LogicalResult TypeConverter::convertType(Type t,
SmallVectorImpl<Type> &results) const {
{
std::shared_lock<decltype(cacheMutex)> cacheReadLock(cacheMutex,
std::defer_lock);
if (t.getContext()->isMultithreadingEnabled())
cacheReadLock.lock();
auto existingIt = cachedDirectConversions.find(t);
if (existingIt != cachedDirectConversions.end()) {
if (existingIt->second)
results.push_back(existingIt->second);
return success(existingIt->second != nullptr);
}
auto multiIt = cachedMultiConversions.find(t);
if (multiIt != cachedMultiConversions.end()) {
results.append(multiIt->second.begin(), multiIt->second.end());
return success();
}
}
// Walk the added converters in reverse order to apply the most recently
// registered first.
size_t currentCount = results.size();
std::unique_lock<decltype(cacheMutex)> cacheWriteLock(cacheMutex,
std::defer_lock);
for (const ConversionCallbackFn &converter : llvm::reverse(conversions)) {
if (std::optional<LogicalResult> result = converter(t, results)) {
if (t.getContext()->isMultithreadingEnabled())
cacheWriteLock.lock();
if (!succeeded(*result)) {
cachedDirectConversions.try_emplace(t, nullptr);
return failure();
}
auto newTypes = ArrayRef<Type>(results).drop_front(currentCount);
if (newTypes.size() == 1)
cachedDirectConversions.try_emplace(t, newTypes.front());
else
cachedMultiConversions.try_emplace(t, llvm::to_vector<2>(newTypes));
return success();
}
}
return failure();
}
Type TypeConverter::convertType(Type t) const {
// Use the multi-type result version to convert the type.
SmallVector<Type, 1> results;
if (failed(convertType(t, results)))
return nullptr;
// Check to ensure that only one type was produced.
return results.size() == 1 ? results.front() : nullptr;
}
LogicalResult
TypeConverter::convertTypes(TypeRange types,
SmallVectorImpl<Type> &results) const {
for (Type type : types)
if (failed(convertType(type, results)))
return failure();
return success();
}
bool TypeConverter::isLegal(Type type) const {
return convertType(type) == type;
}
bool TypeConverter::isLegal(Operation *op) const {
return isLegal(op->getOperandTypes()) && isLegal(op->getResultTypes());
}
bool TypeConverter::isLegal(Region *region) const {
return llvm::all_of(*region, [this](Block &block) {
return isLegal(block.getArgumentTypes());
});
}
bool TypeConverter::isSignatureLegal(FunctionType ty) const {
return isLegal(llvm::concat<const Type>(ty.getInputs(), ty.getResults()));
}
LogicalResult
TypeConverter::convertSignatureArg(unsigned inputNo, Type type,
SignatureConversion &result) const {
// Try to convert the given input type.
SmallVector<Type, 1> convertedTypes;
if (failed(convertType(type, convertedTypes)))
return failure();
// If this argument is being dropped, there is nothing left to do.
if (convertedTypes.empty())
return success();
// Otherwise, add the new inputs.
result.addInputs(inputNo, convertedTypes);
return success();
}
LogicalResult
TypeConverter::convertSignatureArgs(TypeRange types,
SignatureConversion &result,
unsigned origInputOffset) const {
for (unsigned i = 0, e = types.size(); i != e; ++i)
if (failed(convertSignatureArg(origInputOffset + i, types[i], result)))
return failure();
return success();
}
Value TypeConverter::materializeConversion(
ArrayRef<MaterializationCallbackFn> materializations, OpBuilder &builder,
Location loc, Type resultType, ValueRange inputs) const {
for (const MaterializationCallbackFn &fn : llvm::reverse(materializations))
if (std::optional<Value> result = fn(builder, resultType, inputs, loc))
return *result;
return nullptr;
}
std::optional<TypeConverter::SignatureConversion>
TypeConverter::convertBlockSignature(Block *block) const {
SignatureConversion conversion(block->getNumArguments());
if (failed(convertSignatureArgs(block->getArgumentTypes(), conversion)))
return std::nullopt;
return conversion;
}
//===----------------------------------------------------------------------===//
// Type attribute conversion
//===----------------------------------------------------------------------===//
TypeConverter::AttributeConversionResult
TypeConverter::AttributeConversionResult::result(Attribute attr) {
return AttributeConversionResult(attr, resultTag);
}
TypeConverter::AttributeConversionResult
TypeConverter::AttributeConversionResult::na() {
return AttributeConversionResult(nullptr, naTag);
}
TypeConverter::AttributeConversionResult
TypeConverter::AttributeConversionResult::abort() {
return AttributeConversionResult(nullptr, abortTag);
}
bool TypeConverter::AttributeConversionResult::hasResult() const {
return impl.getInt() == resultTag;
}
bool TypeConverter::AttributeConversionResult::isNa() const {
return impl.getInt() == naTag;
}
bool TypeConverter::AttributeConversionResult::isAbort() const {
return impl.getInt() == abortTag;
}
Attribute TypeConverter::AttributeConversionResult::getResult() const {
assert(hasResult() && "Cannot get result from N/A or abort");
return impl.getPointer();
}
std::optional<Attribute>
TypeConverter::convertTypeAttribute(Type type, Attribute attr) const {
for (const TypeAttributeConversionCallbackFn &fn :
llvm::reverse(typeAttributeConversions)) {
AttributeConversionResult res = fn(type, attr);
if (res.hasResult())
return res.getResult();
if (res.isAbort())
return std::nullopt;
}
return std::nullopt;
}
//===----------------------------------------------------------------------===//
// FunctionOpInterfaceSignatureConversion
//===----------------------------------------------------------------------===//
static LogicalResult convertFuncOpTypes(FunctionOpInterface funcOp,
const TypeConverter &typeConverter,
ConversionPatternRewriter &rewriter) {
FunctionType type = dyn_cast<FunctionType>(funcOp.getFunctionType());
if (!type)
return failure();
// Convert the original function types.
TypeConverter::SignatureConversion result(type.getNumInputs());
SmallVector<Type, 1> newResults;
if (failed(typeConverter.convertSignatureArgs(type.getInputs(), result)) ||
failed(typeConverter.convertTypes(type.getResults(), newResults)) ||
failed(rewriter.convertRegionTypes(&funcOp.getFunctionBody(),
typeConverter, &result)))
return failure();
// Update the function signature in-place.
auto newType = FunctionType::get(rewriter.getContext(),
result.getConvertedTypes(), newResults);
rewriter.updateRootInPlace(funcOp, [&] { funcOp.setType(newType); });
return success();
}
/// Create a default conversion pattern that rewrites the type signature of a
/// FunctionOpInterface op. This only supports ops which use FunctionType to
/// represent their type.
namespace {
struct FunctionOpInterfaceSignatureConversion : public ConversionPattern {
FunctionOpInterfaceSignatureConversion(StringRef functionLikeOpName,
MLIRContext *ctx,
const TypeConverter &converter)
: ConversionPattern(converter, functionLikeOpName, /*benefit=*/1, ctx) {}
LogicalResult
matchAndRewrite(Operation *op, ArrayRef<Value> /*operands*/,
ConversionPatternRewriter &rewriter) const override {
FunctionOpInterface funcOp = cast<FunctionOpInterface>(op);
return convertFuncOpTypes(funcOp, *typeConverter, rewriter);
}
};
struct AnyFunctionOpInterfaceSignatureConversion
: public OpInterfaceConversionPattern<FunctionOpInterface> {
using OpInterfaceConversionPattern::OpInterfaceConversionPattern;
LogicalResult
matchAndRewrite(FunctionOpInterface funcOp, ArrayRef<Value> /*operands*/,
ConversionPatternRewriter &rewriter) const override {
return convertFuncOpTypes(funcOp, *typeConverter, rewriter);
}
};
} // namespace
void mlir::populateFunctionOpInterfaceTypeConversionPattern(
StringRef functionLikeOpName, RewritePatternSet &patterns,
const TypeConverter &converter) {
patterns.add<FunctionOpInterfaceSignatureConversion>(
functionLikeOpName, patterns.getContext(), converter);
}
void mlir::populateAnyFunctionOpInterfaceTypeConversionPattern(
RewritePatternSet &patterns, const TypeConverter &converter) {
patterns.add<AnyFunctionOpInterfaceSignatureConversion>(
converter, patterns.getContext());
}
//===----------------------------------------------------------------------===//
// ConversionTarget
//===----------------------------------------------------------------------===//
void ConversionTarget::setOpAction(OperationName op,
LegalizationAction action) {
legalOperations[op].action = action;
}
void ConversionTarget::setDialectAction(ArrayRef<StringRef> dialectNames,
LegalizationAction action) {
for (StringRef dialect : dialectNames)
legalDialects[dialect] = action;
}
auto ConversionTarget::getOpAction(OperationName op) const
-> std::optional<LegalizationAction> {
std::optional<LegalizationInfo> info = getOpInfo(op);
return info ? info->action : std::optional<LegalizationAction>();
}
auto ConversionTarget::isLegal(Operation *op) const
-> std::optional<LegalOpDetails> {
std::optional<LegalizationInfo> info = getOpInfo(op->getName());
if (!info)
return std::nullopt;
// Returns true if this operation instance is known to be legal.
auto isOpLegal = [&] {
// Handle dynamic legality either with the provided legality function.
if (info->action == LegalizationAction::Dynamic) {
std::optional<bool> result = info->legalityFn(op);
if (result)
return *result;
}
// Otherwise, the operation is only legal if it was marked 'Legal'.
return info->action == LegalizationAction::Legal;
};
if (!isOpLegal())
return std::nullopt;
// This operation is legal, compute any additional legality information.
LegalOpDetails legalityDetails;
if (info->isRecursivelyLegal) {
auto legalityFnIt = opRecursiveLegalityFns.find(op->getName());
if (legalityFnIt != opRecursiveLegalityFns.end()) {
legalityDetails.isRecursivelyLegal =
legalityFnIt->second(op).value_or(true);
} else {
legalityDetails.isRecursivelyLegal = true;
}
}
return legalityDetails;
}
bool ConversionTarget::isIllegal(Operation *op) const {
std::optional<LegalizationInfo> info = getOpInfo(op->getName());
if (!info)
return false;
if (info->action == LegalizationAction::Dynamic) {
std::optional<bool> result = info->legalityFn(op);
if (!result)
return false;
return !(*result);
}
return info->action == LegalizationAction::Illegal;
}
static ConversionTarget::DynamicLegalityCallbackFn composeLegalityCallbacks(
ConversionTarget::DynamicLegalityCallbackFn oldCallback,
ConversionTarget::DynamicLegalityCallbackFn newCallback) {
if (!oldCallback)
return newCallback;
auto chain = [oldCl = std::move(oldCallback), newCl = std::move(newCallback)](
Operation *op) -> std::optional<bool> {
if (std::optional<bool> result = newCl(op))
return *result;
return oldCl(op);
};
return chain;
}
void ConversionTarget::setLegalityCallback(
OperationName name, const DynamicLegalityCallbackFn &callback) {
assert(callback && "expected valid legality callback");
auto infoIt = legalOperations.find(name);
assert(infoIt != legalOperations.end() &&
infoIt->second.action == LegalizationAction::Dynamic &&
"expected operation to already be marked as dynamically legal");
infoIt->second.legalityFn =
composeLegalityCallbacks(std::move(infoIt->second.legalityFn), callback);
}
void ConversionTarget::markOpRecursivelyLegal(
OperationName name, const DynamicLegalityCallbackFn &callback) {
auto infoIt = legalOperations.find(name);
assert(infoIt != legalOperations.end() &&
infoIt->second.action != LegalizationAction::Illegal &&
"expected operation to already be marked as legal");
infoIt->second.isRecursivelyLegal = true;
if (callback)
opRecursiveLegalityFns[name] = composeLegalityCallbacks(
std::move(opRecursiveLegalityFns[name]), callback);
else
opRecursiveLegalityFns.erase(name);
}
void ConversionTarget::setLegalityCallback(
ArrayRef<StringRef> dialects, const DynamicLegalityCallbackFn &callback) {
assert(callback && "expected valid legality callback");
for (StringRef dialect : dialects)
dialectLegalityFns[dialect] = composeLegalityCallbacks(
std::move(dialectLegalityFns[dialect]), callback);
}
void ConversionTarget::setLegalityCallback(
const DynamicLegalityCallbackFn &callback) {
assert(callback && "expected valid legality callback");
unknownLegalityFn = composeLegalityCallbacks(unknownLegalityFn, callback);
}
auto ConversionTarget::getOpInfo(OperationName op) const
-> std::optional<LegalizationInfo> {
// Check for info for this specific operation.
auto it = legalOperations.find(op);
if (it != legalOperations.end())
return it->second;
// Check for info for the parent dialect.
auto dialectIt = legalDialects.find(op.getDialectNamespace());
if (dialectIt != legalDialects.end()) {
DynamicLegalityCallbackFn callback;
auto dialectFn = dialectLegalityFns.find(op.getDialectNamespace());
if (dialectFn != dialectLegalityFns.end())
callback = dialectFn->second;
return LegalizationInfo{dialectIt->second, /*isRecursivelyLegal=*/false,
callback};
}
// Otherwise, check if we mark unknown operations as dynamic.
if (unknownLegalityFn)
return LegalizationInfo{LegalizationAction::Dynamic,
/*isRecursivelyLegal=*/false, unknownLegalityFn};
return std::nullopt;
}
#if MLIR_ENABLE_PDL_IN_PATTERNMATCH
//===----------------------------------------------------------------------===//
// PDL Configuration
//===----------------------------------------------------------------------===//
void PDLConversionConfig::notifyRewriteBegin(PatternRewriter &rewriter) {
auto &rewriterImpl =
static_cast<ConversionPatternRewriter &>(rewriter).getImpl();
rewriterImpl.currentTypeConverter = getTypeConverter();
}
void PDLConversionConfig::notifyRewriteEnd(PatternRewriter &rewriter) {
auto &rewriterImpl =
static_cast<ConversionPatternRewriter &>(rewriter).getImpl();
rewriterImpl.currentTypeConverter = nullptr;
}
/// Remap the given value using the rewriter and the type converter in the
/// provided config.
static FailureOr<SmallVector<Value>>
pdllConvertValues(ConversionPatternRewriter &rewriter, ValueRange values) {
SmallVector<Value> mappedValues;
if (failed(rewriter.getRemappedValues(values, mappedValues)))
return failure();
return std::move(mappedValues);
}
void mlir::registerConversionPDLFunctions(RewritePatternSet &patterns) {
patterns.getPDLPatterns().registerRewriteFunction(
"convertValue",
[](PatternRewriter &rewriter, Value value) -> FailureOr<Value> {
auto results = pdllConvertValues(
static_cast<ConversionPatternRewriter &>(rewriter), value);
if (failed(results))
return failure();
return results->front();
});
patterns.getPDLPatterns().registerRewriteFunction(
"convertValues", [](PatternRewriter &rewriter, ValueRange values) {
return pdllConvertValues(
static_cast<ConversionPatternRewriter &>(rewriter), values);
});
patterns.getPDLPatterns().registerRewriteFunction(
"convertType",
[](PatternRewriter &rewriter, Type type) -> FailureOr<Type> {
auto &rewriterImpl =
static_cast<ConversionPatternRewriter &>(rewriter).getImpl();
if (const TypeConverter *converter =
rewriterImpl.currentTypeConverter) {
if (Type newType = converter->convertType(type))
return newType;
return failure();
}
return type;
});
patterns.getPDLPatterns().registerRewriteFunction(
"convertTypes",
[](PatternRewriter &rewriter,
TypeRange types) -> FailureOr<SmallVector<Type>> {
auto &rewriterImpl =
static_cast<ConversionPatternRewriter &>(rewriter).getImpl();
const TypeConverter *converter = rewriterImpl.currentTypeConverter;
if (!converter)
return SmallVector<Type>(types);
SmallVector<Type> remappedTypes;
if (failed(converter->convertTypes(types, remappedTypes)))
return failure();
return std::move(remappedTypes);
});
}
#endif // MLIR_ENABLE_PDL_IN_PATTERNMATCH
//===----------------------------------------------------------------------===//
// Op Conversion Entry Points
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// Partial Conversion
LogicalResult
mlir::applyPartialConversion(ArrayRef<Operation *> ops,
const ConversionTarget &target,
const FrozenRewritePatternSet &patterns,
DenseSet<Operation *> *unconvertedOps) {
OperationConverter opConverter(target, patterns, OpConversionMode::Partial,
unconvertedOps);
return opConverter.convertOperations(ops);
}
LogicalResult
mlir::applyPartialConversion(Operation *op, const ConversionTarget &target,
const FrozenRewritePatternSet &patterns,
DenseSet<Operation *> *unconvertedOps) {
return applyPartialConversion(llvm::ArrayRef(op), target, patterns,
unconvertedOps);
}
//===----------------------------------------------------------------------===//
// Full Conversion
LogicalResult
mlir::applyFullConversion(ArrayRef<Operation *> ops, const ConversionTarget &target,
const FrozenRewritePatternSet &patterns) {
OperationConverter opConverter(target, patterns, OpConversionMode::Full);
return opConverter.convertOperations(ops);
}
LogicalResult
mlir::applyFullConversion(Operation *op, const ConversionTarget &target,
const FrozenRewritePatternSet &patterns) {
return applyFullConversion(llvm::ArrayRef(op), target, patterns);
}
//===----------------------------------------------------------------------===//
// Analysis Conversion
LogicalResult
mlir::applyAnalysisConversion(ArrayRef<Operation *> ops,
ConversionTarget &target,
const FrozenRewritePatternSet &patterns,
DenseSet<Operation *> &convertedOps,
function_ref<void(Diagnostic &)> notifyCallback) {
OperationConverter opConverter(target, patterns, OpConversionMode::Analysis,
&convertedOps);
return opConverter.convertOperations(ops, notifyCallback);
}
LogicalResult
mlir::applyAnalysisConversion(Operation *op, ConversionTarget &target,
const FrozenRewritePatternSet &patterns,
DenseSet<Operation *> &convertedOps,
function_ref<void(Diagnostic &)> notifyCallback) {
return applyAnalysisConversion(llvm::ArrayRef(op), target, patterns,
convertedOps, notifyCallback);
}