llvm-project/llvm/lib/Target/AMDGPU/SIPeepholeSDWA.cpp
Frederik Harwath ba9bd22e1b
[AMDGPU] Account for existing SDWA selections (#123221)
The si-peephole-sdwa pass adjusts the selections on sdwa instructions to
the selections on their operands during its conversions. For instance,
if an instruction selects `BYTE_0` and its operand selects `WORD_1`, the
combined selection should be `BYTE_2`, i.e. "`BYTE_0` of `WORD_1`". The
existing implementation does not always handle this correctly in some
complex situations with instructions across different basic blocks as
demonstrated by the test cases included in this PR.

This PR adds an additional selection combination step to the conversion
to fix this issue. It reverts the changes made by PR #123942 which had
disabled the conversion of preexisting SDWA instructions completely as a
quick fix.

---------

Co-authored-by: Jeffrey Byrnes <Jeffrey.Byrnes@amd.com>
Co-authored-by: Matt Arsenault <arsenm2@gmail.com>
2025-03-03 17:07:28 +01:00

1435 lines
49 KiB
C++

//===- SIPeepholeSDWA.cpp - Peephole optimization for SDWA instructions ---===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
/// \file This pass tries to apply several peephole SDWA patterns.
///
/// E.g. original:
/// V_LSHRREV_B32_e32 %0, 16, %1
/// V_ADD_CO_U32_e32 %2, %0, %3
/// V_LSHLREV_B32_e32 %4, 16, %2
///
/// Replace:
/// V_ADD_CO_U32_sdwa %4, %1, %3
/// dst_sel:WORD_1 dst_unused:UNUSED_PAD src0_sel:WORD_1 src1_sel:DWORD
///
//===----------------------------------------------------------------------===//
#include "SIPeepholeSDWA.h"
#include "AMDGPU.h"
#include "GCNSubtarget.h"
#include "MCTargetDesc/AMDGPUMCTargetDesc.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include <optional>
using namespace llvm;
#define DEBUG_TYPE "si-peephole-sdwa"
STATISTIC(NumSDWAPatternsFound, "Number of SDWA patterns found.");
STATISTIC(NumSDWAInstructionsPeepholed,
"Number of instruction converted to SDWA.");
namespace {
bool isConvertibleToSDWA(MachineInstr &MI, const GCNSubtarget &ST,
const SIInstrInfo *TII);
class SDWAOperand;
class SDWADstOperand;
using SDWAOperandsVector = SmallVector<SDWAOperand *, 4>;
using SDWAOperandsMap = MapVector<MachineInstr *, SDWAOperandsVector>;
class SIPeepholeSDWA {
private:
MachineRegisterInfo *MRI;
const SIRegisterInfo *TRI;
const SIInstrInfo *TII;
MapVector<MachineInstr *, std::unique_ptr<SDWAOperand>> SDWAOperands;
SDWAOperandsMap PotentialMatches;
SmallVector<MachineInstr *, 8> ConvertedInstructions;
std::optional<int64_t> foldToImm(const MachineOperand &Op) const;
void matchSDWAOperands(MachineBasicBlock &MBB);
std::unique_ptr<SDWAOperand> matchSDWAOperand(MachineInstr &MI);
void pseudoOpConvertToVOP2(MachineInstr &MI,
const GCNSubtarget &ST) const;
MachineInstr *createSDWAVersion(MachineInstr &MI);
bool convertToSDWA(MachineInstr &MI, const SDWAOperandsVector &SDWAOperands);
void legalizeScalarOperands(MachineInstr &MI, const GCNSubtarget &ST) const;
public:
bool run(MachineFunction &MF);
};
class SIPeepholeSDWALegacy : public MachineFunctionPass {
public:
static char ID;
SIPeepholeSDWALegacy() : MachineFunctionPass(ID) {}
StringRef getPassName() const override { return "SI Peephole SDWA"; }
bool runOnMachineFunction(MachineFunction &MF) override;
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.setPreservesCFG();
MachineFunctionPass::getAnalysisUsage(AU);
}
};
using namespace AMDGPU::SDWA;
class SDWAOperand {
private:
MachineOperand *Target; // Operand that would be used in converted instruction
MachineOperand *Replaced; // Operand that would be replace by Target
/// Returns true iff the SDWA selection of this SDWAOperand can be combined
/// with the SDWA selections of its uses in \p MI.
virtual bool canCombineSelections(const MachineInstr &MI,
const SIInstrInfo *TII) = 0;
public:
SDWAOperand(MachineOperand *TargetOp, MachineOperand *ReplacedOp)
: Target(TargetOp), Replaced(ReplacedOp) {
assert(Target->isReg());
assert(Replaced->isReg());
}
virtual ~SDWAOperand() = default;
virtual MachineInstr *potentialToConvert(const SIInstrInfo *TII,
const GCNSubtarget &ST,
SDWAOperandsMap *PotentialMatches = nullptr) = 0;
virtual bool convertToSDWA(MachineInstr &MI, const SIInstrInfo *TII) = 0;
MachineOperand *getTargetOperand() const { return Target; }
MachineOperand *getReplacedOperand() const { return Replaced; }
MachineInstr *getParentInst() const { return Target->getParent(); }
MachineRegisterInfo *getMRI() const {
return &getParentInst()->getParent()->getParent()->getRegInfo();
}
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
virtual void print(raw_ostream& OS) const = 0;
void dump() const { print(dbgs()); }
#endif
};
class SDWASrcOperand : public SDWAOperand {
private:
SdwaSel SrcSel;
bool Abs;
bool Neg;
bool Sext;
public:
SDWASrcOperand(MachineOperand *TargetOp, MachineOperand *ReplacedOp,
SdwaSel SrcSel_ = DWORD, bool Abs_ = false, bool Neg_ = false,
bool Sext_ = false)
: SDWAOperand(TargetOp, ReplacedOp), SrcSel(SrcSel_), Abs(Abs_),
Neg(Neg_), Sext(Sext_) {}
MachineInstr *potentialToConvert(const SIInstrInfo *TII,
const GCNSubtarget &ST,
SDWAOperandsMap *PotentialMatches = nullptr) override;
bool convertToSDWA(MachineInstr &MI, const SIInstrInfo *TII) override;
bool canCombineSelections(const MachineInstr &MI,
const SIInstrInfo *TII) override;
SdwaSel getSrcSel() const { return SrcSel; }
bool getAbs() const { return Abs; }
bool getNeg() const { return Neg; }
bool getSext() const { return Sext; }
uint64_t getSrcMods(const SIInstrInfo *TII,
const MachineOperand *SrcOp) const;
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
void print(raw_ostream& OS) const override;
#endif
};
class SDWADstOperand : public SDWAOperand {
private:
SdwaSel DstSel;
DstUnused DstUn;
public:
SDWADstOperand(MachineOperand *TargetOp, MachineOperand *ReplacedOp,
SdwaSel DstSel_ = DWORD, DstUnused DstUn_ = UNUSED_PAD)
: SDWAOperand(TargetOp, ReplacedOp), DstSel(DstSel_), DstUn(DstUn_) {}
MachineInstr *potentialToConvert(const SIInstrInfo *TII,
const GCNSubtarget &ST,
SDWAOperandsMap *PotentialMatches = nullptr) override;
bool convertToSDWA(MachineInstr &MI, const SIInstrInfo *TII) override;
bool canCombineSelections(const MachineInstr &MI,
const SIInstrInfo *TII) override;
SdwaSel getDstSel() const { return DstSel; }
DstUnused getDstUnused() const { return DstUn; }
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
void print(raw_ostream& OS) const override;
#endif
};
class SDWADstPreserveOperand : public SDWADstOperand {
private:
MachineOperand *Preserve;
public:
SDWADstPreserveOperand(MachineOperand *TargetOp, MachineOperand *ReplacedOp,
MachineOperand *PreserveOp, SdwaSel DstSel_ = DWORD)
: SDWADstOperand(TargetOp, ReplacedOp, DstSel_, UNUSED_PRESERVE),
Preserve(PreserveOp) {}
bool convertToSDWA(MachineInstr &MI, const SIInstrInfo *TII) override;
bool canCombineSelections(const MachineInstr &MI,
const SIInstrInfo *TII) override;
MachineOperand *getPreservedOperand() const { return Preserve; }
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
void print(raw_ostream& OS) const override;
#endif
};
} // end anonymous namespace
INITIALIZE_PASS(SIPeepholeSDWALegacy, DEBUG_TYPE, "SI Peephole SDWA", false,
false)
char SIPeepholeSDWALegacy::ID = 0;
char &llvm::SIPeepholeSDWALegacyID = SIPeepholeSDWALegacy::ID;
FunctionPass *llvm::createSIPeepholeSDWALegacyPass() {
return new SIPeepholeSDWALegacy();
}
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
static raw_ostream& operator<<(raw_ostream &OS, SdwaSel Sel) {
switch(Sel) {
case BYTE_0: OS << "BYTE_0"; break;
case BYTE_1: OS << "BYTE_1"; break;
case BYTE_2: OS << "BYTE_2"; break;
case BYTE_3: OS << "BYTE_3"; break;
case WORD_0: OS << "WORD_0"; break;
case WORD_1: OS << "WORD_1"; break;
case DWORD: OS << "DWORD"; break;
}
return OS;
}
static raw_ostream& operator<<(raw_ostream &OS, const DstUnused &Un) {
switch(Un) {
case UNUSED_PAD: OS << "UNUSED_PAD"; break;
case UNUSED_SEXT: OS << "UNUSED_SEXT"; break;
case UNUSED_PRESERVE: OS << "UNUSED_PRESERVE"; break;
}
return OS;
}
LLVM_DUMP_METHOD
void SDWASrcOperand::print(raw_ostream& OS) const {
OS << "SDWA src: " << *getTargetOperand()
<< " src_sel:" << getSrcSel()
<< " abs:" << getAbs() << " neg:" << getNeg()
<< " sext:" << getSext() << '\n';
}
LLVM_DUMP_METHOD
void SDWADstOperand::print(raw_ostream& OS) const {
OS << "SDWA dst: " << *getTargetOperand()
<< " dst_sel:" << getDstSel()
<< " dst_unused:" << getDstUnused() << '\n';
}
LLVM_DUMP_METHOD
void SDWADstPreserveOperand::print(raw_ostream& OS) const {
OS << "SDWA preserve dst: " << *getTargetOperand()
<< " dst_sel:" << getDstSel()
<< " preserve:" << *getPreservedOperand() << '\n';
}
#endif
static void copyRegOperand(MachineOperand &To, const MachineOperand &From) {
assert(To.isReg() && From.isReg());
To.setReg(From.getReg());
To.setSubReg(From.getSubReg());
To.setIsUndef(From.isUndef());
if (To.isUse()) {
To.setIsKill(From.isKill());
} else {
To.setIsDead(From.isDead());
}
}
static bool isSameReg(const MachineOperand &LHS, const MachineOperand &RHS) {
return LHS.isReg() &&
RHS.isReg() &&
LHS.getReg() == RHS.getReg() &&
LHS.getSubReg() == RHS.getSubReg();
}
static MachineOperand *findSingleRegUse(const MachineOperand *Reg,
const MachineRegisterInfo *MRI) {
if (!Reg->isReg() || !Reg->isDef())
return nullptr;
MachineOperand *ResMO = nullptr;
for (MachineOperand &UseMO : MRI->use_nodbg_operands(Reg->getReg())) {
// If there exist use of subreg of Reg then return nullptr
if (!isSameReg(UseMO, *Reg))
return nullptr;
// Check that there is only one instruction that uses Reg
if (!ResMO) {
ResMO = &UseMO;
} else if (ResMO->getParent() != UseMO.getParent()) {
return nullptr;
}
}
return ResMO;
}
static MachineOperand *findSingleRegDef(const MachineOperand *Reg,
const MachineRegisterInfo *MRI) {
if (!Reg->isReg())
return nullptr;
MachineInstr *DefInstr = MRI->getUniqueVRegDef(Reg->getReg());
if (!DefInstr)
return nullptr;
for (auto &DefMO : DefInstr->defs()) {
if (DefMO.isReg() && DefMO.getReg() == Reg->getReg())
return &DefMO;
}
// Ignore implicit defs.
return nullptr;
}
/// Combine an SDWA instruction's existing SDWA selection \p Sel with
/// the SDWA selection \p OperandSel of its operand. If the selections
/// are compatible, return the combined selection, otherwise return a
/// nullopt.
/// For example, if we have Sel = BYTE_0 Sel and OperandSel = WORD_1:
/// BYTE_0 Sel (WORD_1 Sel (%X)) -> BYTE_2 Sel (%X)
static std::optional<SdwaSel> combineSdwaSel(SdwaSel Sel, SdwaSel OperandSel) {
if (Sel == SdwaSel::DWORD)
return OperandSel;
if (Sel == OperandSel || OperandSel == SdwaSel::DWORD)
return Sel;
if (Sel == SdwaSel::WORD_1 || Sel == SdwaSel::BYTE_2 ||
Sel == SdwaSel::BYTE_3)
return {};
if (OperandSel == SdwaSel::WORD_0)
return Sel;
if (OperandSel == SdwaSel::WORD_1) {
if (Sel == SdwaSel::BYTE_0)
return SdwaSel::BYTE_2;
if (Sel == SdwaSel::BYTE_1)
return SdwaSel::BYTE_3;
if (Sel == SdwaSel::WORD_0)
return SdwaSel::WORD_1;
}
return {};
}
uint64_t SDWASrcOperand::getSrcMods(const SIInstrInfo *TII,
const MachineOperand *SrcOp) const {
uint64_t Mods = 0;
const auto *MI = SrcOp->getParent();
if (TII->getNamedOperand(*MI, AMDGPU::OpName::src0) == SrcOp) {
if (auto *Mod = TII->getNamedOperand(*MI, AMDGPU::OpName::src0_modifiers)) {
Mods = Mod->getImm();
}
} else if (TII->getNamedOperand(*MI, AMDGPU::OpName::src1) == SrcOp) {
if (auto *Mod = TII->getNamedOperand(*MI, AMDGPU::OpName::src1_modifiers)) {
Mods = Mod->getImm();
}
}
if (Abs || Neg) {
assert(!Sext &&
"Float and integer src modifiers can't be set simultaneously");
Mods |= Abs ? SISrcMods::ABS : 0u;
Mods ^= Neg ? SISrcMods::NEG : 0u;
} else if (Sext) {
Mods |= SISrcMods::SEXT;
}
return Mods;
}
MachineInstr *SDWASrcOperand::potentialToConvert(const SIInstrInfo *TII,
const GCNSubtarget &ST,
SDWAOperandsMap *PotentialMatches) {
if (PotentialMatches != nullptr) {
// Fill out the map for all uses if all can be converted
MachineOperand *Reg = getReplacedOperand();
if (!Reg->isReg() || !Reg->isDef())
return nullptr;
for (MachineInstr &UseMI : getMRI()->use_nodbg_instructions(Reg->getReg()))
// Check that all instructions that use Reg can be converted
if (!isConvertibleToSDWA(UseMI, ST, TII) ||
!canCombineSelections(UseMI, TII))
return nullptr;
// Now that it's guaranteed all uses are legal, iterate over the uses again
// to add them for later conversion.
for (MachineOperand &UseMO : getMRI()->use_nodbg_operands(Reg->getReg())) {
// Should not get a subregister here
assert(isSameReg(UseMO, *Reg));
SDWAOperandsMap &potentialMatchesMap = *PotentialMatches;
MachineInstr *UseMI = UseMO.getParent();
potentialMatchesMap[UseMI].push_back(this);
}
return nullptr;
}
// For SDWA src operand potential instruction is one that use register
// defined by parent instruction
MachineOperand *PotentialMO = findSingleRegUse(getReplacedOperand(), getMRI());
if (!PotentialMO)
return nullptr;
MachineInstr *Parent = PotentialMO->getParent();
return canCombineSelections(*Parent, TII) ? Parent : nullptr;
}
bool SDWASrcOperand::convertToSDWA(MachineInstr &MI, const SIInstrInfo *TII) {
switch (MI.getOpcode()) {
case AMDGPU::V_CVT_F32_FP8_sdwa:
case AMDGPU::V_CVT_F32_BF8_sdwa:
case AMDGPU::V_CVT_PK_F32_FP8_sdwa:
case AMDGPU::V_CVT_PK_F32_BF8_sdwa:
// Does not support input modifiers: noabs, noneg, nosext.
return false;
}
// Find operand in instruction that matches source operand and replace it with
// target operand. Set corresponding src_sel
bool IsPreserveSrc = false;
MachineOperand *Src = TII->getNamedOperand(MI, AMDGPU::OpName::src0);
MachineOperand *SrcSel = TII->getNamedOperand(MI, AMDGPU::OpName::src0_sel);
MachineOperand *SrcMods =
TII->getNamedOperand(MI, AMDGPU::OpName::src0_modifiers);
assert(Src && (Src->isReg() || Src->isImm()));
if (!isSameReg(*Src, *getReplacedOperand())) {
// If this is not src0 then it could be src1
Src = TII->getNamedOperand(MI, AMDGPU::OpName::src1);
SrcSel = TII->getNamedOperand(MI, AMDGPU::OpName::src1_sel);
SrcMods = TII->getNamedOperand(MI, AMDGPU::OpName::src1_modifiers);
if (!Src ||
!isSameReg(*Src, *getReplacedOperand())) {
// It's possible this Src is a tied operand for
// UNUSED_PRESERVE, in which case we can either
// abandon the peephole attempt, or if legal we can
// copy the target operand into the tied slot
// if the preserve operation will effectively cause the same
// result by overwriting the rest of the dst.
MachineOperand *Dst = TII->getNamedOperand(MI, AMDGPU::OpName::vdst);
MachineOperand *DstUnused =
TII->getNamedOperand(MI, AMDGPU::OpName::dst_unused);
if (Dst &&
DstUnused->getImm() == AMDGPU::SDWA::DstUnused::UNUSED_PRESERVE) {
// This will work if the tied src is accessing WORD_0, and the dst is
// writing WORD_1. Modifiers don't matter because all the bits that
// would be impacted are being overwritten by the dst.
// Any other case will not work.
SdwaSel DstSel = static_cast<SdwaSel>(
TII->getNamedImmOperand(MI, AMDGPU::OpName::dst_sel));
if (DstSel == AMDGPU::SDWA::SdwaSel::WORD_1 &&
getSrcSel() == AMDGPU::SDWA::SdwaSel::WORD_0) {
IsPreserveSrc = true;
auto DstIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
AMDGPU::OpName::vdst);
auto TiedIdx = MI.findTiedOperandIdx(DstIdx);
Src = &MI.getOperand(TiedIdx);
SrcSel = nullptr;
SrcMods = nullptr;
} else {
// Not legal to convert this src
return false;
}
}
}
assert(Src && Src->isReg());
if ((MI.getOpcode() == AMDGPU::V_FMAC_F16_sdwa ||
MI.getOpcode() == AMDGPU::V_FMAC_F32_sdwa ||
MI.getOpcode() == AMDGPU::V_MAC_F16_sdwa ||
MI.getOpcode() == AMDGPU::V_MAC_F32_sdwa) &&
!isSameReg(*Src, *getReplacedOperand())) {
// In case of v_mac_f16/32_sdwa this pass can try to apply src operand to
// src2. This is not allowed.
return false;
}
assert(isSameReg(*Src, *getReplacedOperand()) &&
(IsPreserveSrc || (SrcSel && SrcMods)));
}
copyRegOperand(*Src, *getTargetOperand());
if (!IsPreserveSrc) {
SdwaSel ExistingSel = static_cast<SdwaSel>(SrcSel->getImm());
SrcSel->setImm(*combineSdwaSel(ExistingSel, getSrcSel()));
SrcMods->setImm(getSrcMods(TII, Src));
}
getTargetOperand()->setIsKill(false);
return true;
}
/// Verify that the SDWA selection operand \p SrcSelOpName of the SDWA
/// instruction \p MI can be combined with the selection \p OpSel.
static bool canCombineOpSel(const MachineInstr &MI, const SIInstrInfo *TII,
AMDGPU::OpName SrcSelOpName, SdwaSel OpSel) {
assert(TII->isSDWA(MI.getOpcode()));
const MachineOperand *SrcSelOp = TII->getNamedOperand(MI, SrcSelOpName);
SdwaSel SrcSel = static_cast<SdwaSel>(SrcSelOp->getImm());
return combineSdwaSel(SrcSel, OpSel).has_value();
}
/// Verify that \p Op is the same register as the operand of the SDWA
/// instruction \p MI named by \p SrcOpName and that the SDWA
/// selection \p SrcSelOpName can be combined with the \p OpSel.
static bool canCombineOpSel(const MachineInstr &MI, const SIInstrInfo *TII,
AMDGPU::OpName SrcOpName,
AMDGPU::OpName SrcSelOpName, MachineOperand *Op,
SdwaSel OpSel) {
assert(TII->isSDWA(MI.getOpcode()));
const MachineOperand *Src = TII->getNamedOperand(MI, SrcOpName);
if (!Src || !isSameReg(*Src, *Op))
return true;
return canCombineOpSel(MI, TII, SrcSelOpName, OpSel);
}
bool SDWASrcOperand::canCombineSelections(const MachineInstr &MI,
const SIInstrInfo *TII) {
if (!TII->isSDWA(MI.getOpcode()))
return true;
using namespace AMDGPU;
return canCombineOpSel(MI, TII, OpName::src0, OpName::src0_sel,
getReplacedOperand(), getSrcSel()) &&
canCombineOpSel(MI, TII, OpName::src1, OpName::src1_sel,
getReplacedOperand(), getSrcSel());
}
MachineInstr *SDWADstOperand::potentialToConvert(const SIInstrInfo *TII,
const GCNSubtarget &ST,
SDWAOperandsMap *PotentialMatches) {
// For SDWA dst operand potential instruction is one that defines register
// that this operand uses
MachineRegisterInfo *MRI = getMRI();
MachineInstr *ParentMI = getParentInst();
MachineOperand *PotentialMO = findSingleRegDef(getReplacedOperand(), MRI);
if (!PotentialMO)
return nullptr;
// Check that ParentMI is the only instruction that uses replaced register
for (MachineInstr &UseInst : MRI->use_nodbg_instructions(PotentialMO->getReg())) {
if (&UseInst != ParentMI)
return nullptr;
}
MachineInstr *Parent = PotentialMO->getParent();
return canCombineSelections(*Parent, TII) ? Parent : nullptr;
}
bool SDWADstOperand::convertToSDWA(MachineInstr &MI, const SIInstrInfo *TII) {
// Replace vdst operand in MI with target operand. Set dst_sel and dst_unused
if ((MI.getOpcode() == AMDGPU::V_FMAC_F16_sdwa ||
MI.getOpcode() == AMDGPU::V_FMAC_F32_sdwa ||
MI.getOpcode() == AMDGPU::V_MAC_F16_sdwa ||
MI.getOpcode() == AMDGPU::V_MAC_F32_sdwa) &&
getDstSel() != AMDGPU::SDWA::DWORD) {
// v_mac_f16/32_sdwa allow dst_sel to be equal only to DWORD
return false;
}
MachineOperand *Operand = TII->getNamedOperand(MI, AMDGPU::OpName::vdst);
assert(Operand &&
Operand->isReg() &&
isSameReg(*Operand, *getReplacedOperand()));
copyRegOperand(*Operand, *getTargetOperand());
MachineOperand *DstSel= TII->getNamedOperand(MI, AMDGPU::OpName::dst_sel);
assert(DstSel);
SdwaSel ExistingSel = static_cast<SdwaSel>(DstSel->getImm());
DstSel->setImm(combineSdwaSel(ExistingSel, getDstSel()).value());
MachineOperand *DstUnused= TII->getNamedOperand(MI, AMDGPU::OpName::dst_unused);
assert(DstUnused);
DstUnused->setImm(getDstUnused());
// Remove original instruction because it would conflict with our new
// instruction by register definition
getParentInst()->eraseFromParent();
return true;
}
bool SDWADstOperand::canCombineSelections(const MachineInstr &MI,
const SIInstrInfo *TII) {
if (!TII->isSDWA(MI.getOpcode()))
return true;
return canCombineOpSel(MI, TII, AMDGPU::OpName::dst_sel, getDstSel());
}
bool SDWADstPreserveOperand::convertToSDWA(MachineInstr &MI,
const SIInstrInfo *TII) {
// MI should be moved right before v_or_b32.
// For this we should clear all kill flags on uses of MI src-operands or else
// we can encounter problem with use of killed operand.
for (MachineOperand &MO : MI.uses()) {
if (!MO.isReg())
continue;
getMRI()->clearKillFlags(MO.getReg());
}
// Move MI before v_or_b32
MI.getParent()->remove(&MI);
getParentInst()->getParent()->insert(getParentInst(), &MI);
// Add Implicit use of preserved register
MachineInstrBuilder MIB(*MI.getMF(), MI);
MIB.addReg(getPreservedOperand()->getReg(),
RegState::ImplicitKill,
getPreservedOperand()->getSubReg());
// Tie dst to implicit use
MI.tieOperands(AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vdst),
MI.getNumOperands() - 1);
// Convert MI as any other SDWADstOperand and remove v_or_b32
return SDWADstOperand::convertToSDWA(MI, TII);
}
bool SDWADstPreserveOperand::canCombineSelections(const MachineInstr &MI,
const SIInstrInfo *TII) {
return SDWADstOperand::canCombineSelections(MI, TII);
}
std::optional<int64_t>
SIPeepholeSDWA::foldToImm(const MachineOperand &Op) const {
if (Op.isImm()) {
return Op.getImm();
}
// If this is not immediate then it can be copy of immediate value, e.g.:
// %1 = S_MOV_B32 255;
if (Op.isReg()) {
for (const MachineOperand &Def : MRI->def_operands(Op.getReg())) {
if (!isSameReg(Op, Def))
continue;
const MachineInstr *DefInst = Def.getParent();
if (!TII->isFoldableCopy(*DefInst))
return std::nullopt;
const MachineOperand &Copied = DefInst->getOperand(1);
if (!Copied.isImm())
return std::nullopt;
return Copied.getImm();
}
}
return std::nullopt;
}
std::unique_ptr<SDWAOperand>
SIPeepholeSDWA::matchSDWAOperand(MachineInstr &MI) {
unsigned Opcode = MI.getOpcode();
switch (Opcode) {
case AMDGPU::V_LSHRREV_B32_e32:
case AMDGPU::V_ASHRREV_I32_e32:
case AMDGPU::V_LSHLREV_B32_e32:
case AMDGPU::V_LSHRREV_B32_e64:
case AMDGPU::V_ASHRREV_I32_e64:
case AMDGPU::V_LSHLREV_B32_e64: {
// from: v_lshrrev_b32_e32 v1, 16/24, v0
// to SDWA src:v0 src_sel:WORD_1/BYTE_3
// from: v_ashrrev_i32_e32 v1, 16/24, v0
// to SDWA src:v0 src_sel:WORD_1/BYTE_3 sext:1
// from: v_lshlrev_b32_e32 v1, 16/24, v0
// to SDWA dst:v1 dst_sel:WORD_1/BYTE_3 dst_unused:UNUSED_PAD
MachineOperand *Src0 = TII->getNamedOperand(MI, AMDGPU::OpName::src0);
auto Imm = foldToImm(*Src0);
if (!Imm)
break;
if (*Imm != 16 && *Imm != 24)
break;
MachineOperand *Src1 = TII->getNamedOperand(MI, AMDGPU::OpName::src1);
MachineOperand *Dst = TII->getNamedOperand(MI, AMDGPU::OpName::vdst);
if (!Src1->isReg() || Src1->getReg().isPhysical() ||
Dst->getReg().isPhysical())
break;
if (Opcode == AMDGPU::V_LSHLREV_B32_e32 ||
Opcode == AMDGPU::V_LSHLREV_B32_e64) {
return std::make_unique<SDWADstOperand>(
Dst, Src1, *Imm == 16 ? WORD_1 : BYTE_3, UNUSED_PAD);
}
return std::make_unique<SDWASrcOperand>(
Src1, Dst, *Imm == 16 ? WORD_1 : BYTE_3, false, false,
Opcode != AMDGPU::V_LSHRREV_B32_e32 &&
Opcode != AMDGPU::V_LSHRREV_B32_e64);
break;
}
case AMDGPU::V_LSHRREV_B16_e32:
case AMDGPU::V_ASHRREV_I16_e32:
case AMDGPU::V_LSHLREV_B16_e32:
case AMDGPU::V_LSHRREV_B16_e64:
case AMDGPU::V_ASHRREV_I16_e64:
case AMDGPU::V_LSHLREV_B16_e64: {
// from: v_lshrrev_b16_e32 v1, 8, v0
// to SDWA src:v0 src_sel:BYTE_1
// from: v_ashrrev_i16_e32 v1, 8, v0
// to SDWA src:v0 src_sel:BYTE_1 sext:1
// from: v_lshlrev_b16_e32 v1, 8, v0
// to SDWA dst:v1 dst_sel:BYTE_1 dst_unused:UNUSED_PAD
MachineOperand *Src0 = TII->getNamedOperand(MI, AMDGPU::OpName::src0);
auto Imm = foldToImm(*Src0);
if (!Imm || *Imm != 8)
break;
MachineOperand *Src1 = TII->getNamedOperand(MI, AMDGPU::OpName::src1);
MachineOperand *Dst = TII->getNamedOperand(MI, AMDGPU::OpName::vdst);
if (!Src1->isReg() || Src1->getReg().isPhysical() ||
Dst->getReg().isPhysical())
break;
if (Opcode == AMDGPU::V_LSHLREV_B16_e32 ||
Opcode == AMDGPU::V_LSHLREV_B16_e64)
return std::make_unique<SDWADstOperand>(Dst, Src1, BYTE_1, UNUSED_PAD);
return std::make_unique<SDWASrcOperand>(
Src1, Dst, BYTE_1, false, false,
Opcode != AMDGPU::V_LSHRREV_B16_e32 &&
Opcode != AMDGPU::V_LSHRREV_B16_e64);
break;
}
case AMDGPU::V_BFE_I32_e64:
case AMDGPU::V_BFE_U32_e64: {
// e.g.:
// from: v_bfe_u32 v1, v0, 8, 8
// to SDWA src:v0 src_sel:BYTE_1
// offset | width | src_sel
// ------------------------
// 0 | 8 | BYTE_0
// 0 | 16 | WORD_0
// 0 | 32 | DWORD ?
// 8 | 8 | BYTE_1
// 16 | 8 | BYTE_2
// 16 | 16 | WORD_1
// 24 | 8 | BYTE_3
MachineOperand *Src1 = TII->getNamedOperand(MI, AMDGPU::OpName::src1);
auto Offset = foldToImm(*Src1);
if (!Offset)
break;
MachineOperand *Src2 = TII->getNamedOperand(MI, AMDGPU::OpName::src2);
auto Width = foldToImm(*Src2);
if (!Width)
break;
SdwaSel SrcSel = DWORD;
if (*Offset == 0 && *Width == 8)
SrcSel = BYTE_0;
else if (*Offset == 0 && *Width == 16)
SrcSel = WORD_0;
else if (*Offset == 0 && *Width == 32)
SrcSel = DWORD;
else if (*Offset == 8 && *Width == 8)
SrcSel = BYTE_1;
else if (*Offset == 16 && *Width == 8)
SrcSel = BYTE_2;
else if (*Offset == 16 && *Width == 16)
SrcSel = WORD_1;
else if (*Offset == 24 && *Width == 8)
SrcSel = BYTE_3;
else
break;
MachineOperand *Src0 = TII->getNamedOperand(MI, AMDGPU::OpName::src0);
MachineOperand *Dst = TII->getNamedOperand(MI, AMDGPU::OpName::vdst);
if (!Src0->isReg() || Src0->getReg().isPhysical() ||
Dst->getReg().isPhysical())
break;
return std::make_unique<SDWASrcOperand>(
Src0, Dst, SrcSel, false, false, Opcode != AMDGPU::V_BFE_U32_e64);
}
case AMDGPU::V_AND_B32_e32:
case AMDGPU::V_AND_B32_e64: {
// e.g.:
// from: v_and_b32_e32 v1, 0x0000ffff/0x000000ff, v0
// to SDWA src:v0 src_sel:WORD_0/BYTE_0
MachineOperand *Src0 = TII->getNamedOperand(MI, AMDGPU::OpName::src0);
MachineOperand *Src1 = TII->getNamedOperand(MI, AMDGPU::OpName::src1);
auto *ValSrc = Src1;
auto Imm = foldToImm(*Src0);
if (!Imm) {
Imm = foldToImm(*Src1);
ValSrc = Src0;
}
if (!Imm || (*Imm != 0x0000ffff && *Imm != 0x000000ff))
break;
MachineOperand *Dst = TII->getNamedOperand(MI, AMDGPU::OpName::vdst);
if (!ValSrc->isReg() || ValSrc->getReg().isPhysical() ||
Dst->getReg().isPhysical())
break;
return std::make_unique<SDWASrcOperand>(
ValSrc, Dst, *Imm == 0x0000ffff ? WORD_0 : BYTE_0);
}
case AMDGPU::V_OR_B32_e32:
case AMDGPU::V_OR_B32_e64: {
// Patterns for dst_unused:UNUSED_PRESERVE.
// e.g., from:
// v_add_f16_sdwa v0, v1, v2 dst_sel:WORD_1 dst_unused:UNUSED_PAD
// src1_sel:WORD_1 src2_sel:WORD1
// v_add_f16_e32 v3, v1, v2
// v_or_b32_e32 v4, v0, v3
// to SDWA preserve dst:v4 dst_sel:WORD_1 dst_unused:UNUSED_PRESERVE preserve:v3
// Check if one of operands of v_or_b32 is SDWA instruction
using CheckRetType =
std::optional<std::pair<MachineOperand *, MachineOperand *>>;
auto CheckOROperandsForSDWA =
[&](const MachineOperand *Op1, const MachineOperand *Op2) -> CheckRetType {
if (!Op1 || !Op1->isReg() || !Op2 || !Op2->isReg())
return CheckRetType(std::nullopt);
MachineOperand *Op1Def = findSingleRegDef(Op1, MRI);
if (!Op1Def)
return CheckRetType(std::nullopt);
MachineInstr *Op1Inst = Op1Def->getParent();
if (!TII->isSDWA(*Op1Inst))
return CheckRetType(std::nullopt);
MachineOperand *Op2Def = findSingleRegDef(Op2, MRI);
if (!Op2Def)
return CheckRetType(std::nullopt);
return CheckRetType(std::pair(Op1Def, Op2Def));
};
MachineOperand *OrSDWA = TII->getNamedOperand(MI, AMDGPU::OpName::src0);
MachineOperand *OrOther = TII->getNamedOperand(MI, AMDGPU::OpName::src1);
assert(OrSDWA && OrOther);
auto Res = CheckOROperandsForSDWA(OrSDWA, OrOther);
if (!Res) {
OrSDWA = TII->getNamedOperand(MI, AMDGPU::OpName::src1);
OrOther = TII->getNamedOperand(MI, AMDGPU::OpName::src0);
assert(OrSDWA && OrOther);
Res = CheckOROperandsForSDWA(OrSDWA, OrOther);
if (!Res)
break;
}
MachineOperand *OrSDWADef = Res->first;
MachineOperand *OrOtherDef = Res->second;
assert(OrSDWADef && OrOtherDef);
MachineInstr *SDWAInst = OrSDWADef->getParent();
MachineInstr *OtherInst = OrOtherDef->getParent();
// Check that OtherInstr is actually bitwise compatible with SDWAInst = their
// destination patterns don't overlap. Compatible instruction can be either
// regular instruction with compatible bitness or SDWA instruction with
// correct dst_sel
// SDWAInst | OtherInst bitness / OtherInst dst_sel
// -----------------------------------------------------
// DWORD | no / no
// WORD_0 | no / BYTE_2/3, WORD_1
// WORD_1 | 8/16-bit instructions / BYTE_0/1, WORD_0
// BYTE_0 | no / BYTE_1/2/3, WORD_1
// BYTE_1 | 8-bit / BYTE_0/2/3, WORD_1
// BYTE_2 | 8/16-bit / BYTE_0/1/3. WORD_0
// BYTE_3 | 8/16/24-bit / BYTE_0/1/2, WORD_0
// E.g. if SDWAInst is v_add_f16_sdwa dst_sel:WORD_1 then v_add_f16 is OK
// but v_add_f32 is not.
// TODO: add support for non-SDWA instructions as OtherInst.
// For now this only works with SDWA instructions. For regular instructions
// there is no way to determine if the instruction writes only 8/16/24-bit
// out of full register size and all registers are at min 32-bit wide.
if (!TII->isSDWA(*OtherInst))
break;
SdwaSel DstSel = static_cast<SdwaSel>(
TII->getNamedImmOperand(*SDWAInst, AMDGPU::OpName::dst_sel));
SdwaSel OtherDstSel = static_cast<SdwaSel>(
TII->getNamedImmOperand(*OtherInst, AMDGPU::OpName::dst_sel));
bool DstSelAgree = false;
switch (DstSel) {
case WORD_0: DstSelAgree = ((OtherDstSel == BYTE_2) ||
(OtherDstSel == BYTE_3) ||
(OtherDstSel == WORD_1));
break;
case WORD_1: DstSelAgree = ((OtherDstSel == BYTE_0) ||
(OtherDstSel == BYTE_1) ||
(OtherDstSel == WORD_0));
break;
case BYTE_0: DstSelAgree = ((OtherDstSel == BYTE_1) ||
(OtherDstSel == BYTE_2) ||
(OtherDstSel == BYTE_3) ||
(OtherDstSel == WORD_1));
break;
case BYTE_1: DstSelAgree = ((OtherDstSel == BYTE_0) ||
(OtherDstSel == BYTE_2) ||
(OtherDstSel == BYTE_3) ||
(OtherDstSel == WORD_1));
break;
case BYTE_2: DstSelAgree = ((OtherDstSel == BYTE_0) ||
(OtherDstSel == BYTE_1) ||
(OtherDstSel == BYTE_3) ||
(OtherDstSel == WORD_0));
break;
case BYTE_3: DstSelAgree = ((OtherDstSel == BYTE_0) ||
(OtherDstSel == BYTE_1) ||
(OtherDstSel == BYTE_2) ||
(OtherDstSel == WORD_0));
break;
default: DstSelAgree = false;
}
if (!DstSelAgree)
break;
// Also OtherInst dst_unused should be UNUSED_PAD
DstUnused OtherDstUnused = static_cast<DstUnused>(
TII->getNamedImmOperand(*OtherInst, AMDGPU::OpName::dst_unused));
if (OtherDstUnused != DstUnused::UNUSED_PAD)
break;
// Create DstPreserveOperand
MachineOperand *OrDst = TII->getNamedOperand(MI, AMDGPU::OpName::vdst);
assert(OrDst && OrDst->isReg());
return std::make_unique<SDWADstPreserveOperand>(
OrDst, OrSDWADef, OrOtherDef, DstSel);
}
}
return std::unique_ptr<SDWAOperand>(nullptr);
}
#if !defined(NDEBUG)
static raw_ostream& operator<<(raw_ostream &OS, const SDWAOperand &Operand) {
Operand.print(OS);
return OS;
}
#endif
void SIPeepholeSDWA::matchSDWAOperands(MachineBasicBlock &MBB) {
for (MachineInstr &MI : MBB) {
if (auto Operand = matchSDWAOperand(MI)) {
LLVM_DEBUG(dbgs() << "Match: " << MI << "To: " << *Operand << '\n');
SDWAOperands[&MI] = std::move(Operand);
++NumSDWAPatternsFound;
}
}
}
// Convert the V_ADD_CO_U32_e64 into V_ADD_CO_U32_e32. This allows
// isConvertibleToSDWA to perform its transformation on V_ADD_CO_U32_e32 into
// V_ADD_CO_U32_sdwa.
//
// We are transforming from a VOP3 into a VOP2 form of the instruction.
// %19:vgpr_32 = V_AND_B32_e32 255,
// killed %16:vgpr_32, implicit $exec
// %47:vgpr_32, %49:sreg_64_xexec = V_ADD_CO_U32_e64
// %26.sub0:vreg_64, %19:vgpr_32, implicit $exec
// %48:vgpr_32, dead %50:sreg_64_xexec = V_ADDC_U32_e64
// %26.sub1:vreg_64, %54:vgpr_32, killed %49:sreg_64_xexec, implicit $exec
//
// becomes
// %47:vgpr_32 = V_ADD_CO_U32_sdwa
// 0, %26.sub0:vreg_64, 0, killed %16:vgpr_32, 0, 6, 0, 6, 0,
// implicit-def $vcc, implicit $exec
// %48:vgpr_32, dead %50:sreg_64_xexec = V_ADDC_U32_e64
// %26.sub1:vreg_64, %54:vgpr_32, killed $vcc, implicit $exec
void SIPeepholeSDWA::pseudoOpConvertToVOP2(MachineInstr &MI,
const GCNSubtarget &ST) const {
int Opc = MI.getOpcode();
assert((Opc == AMDGPU::V_ADD_CO_U32_e64 || Opc == AMDGPU::V_SUB_CO_U32_e64) &&
"Currently only handles V_ADD_CO_U32_e64 or V_SUB_CO_U32_e64");
// Can the candidate MI be shrunk?
if (!TII->canShrink(MI, *MRI))
return;
Opc = AMDGPU::getVOPe32(Opc);
// Find the related ADD instruction.
const MachineOperand *Sdst = TII->getNamedOperand(MI, AMDGPU::OpName::sdst);
if (!Sdst)
return;
MachineOperand *NextOp = findSingleRegUse(Sdst, MRI);
if (!NextOp)
return;
MachineInstr &MISucc = *NextOp->getParent();
// Make sure the carry in/out are subsequently unused.
MachineOperand *CarryIn = TII->getNamedOperand(MISucc, AMDGPU::OpName::src2);
if (!CarryIn)
return;
MachineOperand *CarryOut = TII->getNamedOperand(MISucc, AMDGPU::OpName::sdst);
if (!CarryOut)
return;
if (!MRI->hasOneUse(CarryIn->getReg()) || !MRI->use_empty(CarryOut->getReg()))
return;
// Make sure VCC or its subregs are dead before MI.
MachineBasicBlock &MBB = *MI.getParent();
auto Liveness = MBB.computeRegisterLiveness(TRI, AMDGPU::VCC, MI, 25);
if (Liveness != MachineBasicBlock::LQR_Dead)
return;
// Check if VCC is referenced in range of (MI,MISucc].
for (auto I = std::next(MI.getIterator()), E = MISucc.getIterator();
I != E; ++I) {
if (I->modifiesRegister(AMDGPU::VCC, TRI))
return;
}
// Replace MI with V_{SUB|ADD}_I32_e32
BuildMI(MBB, MI, MI.getDebugLoc(), TII->get(Opc))
.add(*TII->getNamedOperand(MI, AMDGPU::OpName::vdst))
.add(*TII->getNamedOperand(MI, AMDGPU::OpName::src0))
.add(*TII->getNamedOperand(MI, AMDGPU::OpName::src1))
.setMIFlags(MI.getFlags());
MI.eraseFromParent();
// Since the carry output of MI is now VCC, update its use in MISucc.
MISucc.substituteRegister(CarryIn->getReg(), TRI->getVCC(), 0, *TRI);
}
namespace {
bool isConvertibleToSDWA(MachineInstr &MI,
const GCNSubtarget &ST,
const SIInstrInfo* TII) {
// Check if this is already an SDWA instruction
unsigned Opc = MI.getOpcode();
if (TII->isSDWA(Opc))
return true;
// Check if this instruction has opcode that supports SDWA
if (AMDGPU::getSDWAOp(Opc) == -1)
Opc = AMDGPU::getVOPe32(Opc);
if (AMDGPU::getSDWAOp(Opc) == -1)
return false;
if (!ST.hasSDWAOmod() && TII->hasModifiersSet(MI, AMDGPU::OpName::omod))
return false;
if (TII->isVOPC(Opc)) {
if (!ST.hasSDWASdst()) {
const MachineOperand *SDst = TII->getNamedOperand(MI, AMDGPU::OpName::sdst);
if (SDst && (SDst->getReg() != AMDGPU::VCC &&
SDst->getReg() != AMDGPU::VCC_LO))
return false;
}
if (!ST.hasSDWAOutModsVOPC() &&
(TII->hasModifiersSet(MI, AMDGPU::OpName::clamp) ||
TII->hasModifiersSet(MI, AMDGPU::OpName::omod)))
return false;
} else if (TII->getNamedOperand(MI, AMDGPU::OpName::sdst) ||
!TII->getNamedOperand(MI, AMDGPU::OpName::vdst)) {
return false;
}
if (!ST.hasSDWAMac() && (Opc == AMDGPU::V_FMAC_F16_e32 ||
Opc == AMDGPU::V_FMAC_F32_e32 ||
Opc == AMDGPU::V_MAC_F16_e32 ||
Opc == AMDGPU::V_MAC_F32_e32))
return false;
// Check if target supports this SDWA opcode
if (TII->pseudoToMCOpcode(Opc) == -1)
return false;
// FIXME: has SDWA but require handling of implicit VCC use
if (Opc == AMDGPU::V_CNDMASK_B32_e32)
return false;
if (MachineOperand *Src0 = TII->getNamedOperand(MI, AMDGPU::OpName::src0)) {
if (!Src0->isReg() && !Src0->isImm())
return false;
}
if (MachineOperand *Src1 = TII->getNamedOperand(MI, AMDGPU::OpName::src1)) {
if (!Src1->isReg() && !Src1->isImm())
return false;
}
return true;
}
} // namespace
MachineInstr *SIPeepholeSDWA::createSDWAVersion(MachineInstr &MI) {
unsigned Opcode = MI.getOpcode();
assert(!TII->isSDWA(Opcode));
int SDWAOpcode = AMDGPU::getSDWAOp(Opcode);
if (SDWAOpcode == -1)
SDWAOpcode = AMDGPU::getSDWAOp(AMDGPU::getVOPe32(Opcode));
assert(SDWAOpcode != -1);
const MCInstrDesc &SDWADesc = TII->get(SDWAOpcode);
// Create SDWA version of instruction MI and initialize its operands
MachineInstrBuilder SDWAInst =
BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), SDWADesc)
.setMIFlags(MI.getFlags());
// Copy dst, if it is present in original then should also be present in SDWA
MachineOperand *Dst = TII->getNamedOperand(MI, AMDGPU::OpName::vdst);
if (Dst) {
assert(AMDGPU::hasNamedOperand(SDWAOpcode, AMDGPU::OpName::vdst));
SDWAInst.add(*Dst);
} else if ((Dst = TII->getNamedOperand(MI, AMDGPU::OpName::sdst))) {
assert(Dst && AMDGPU::hasNamedOperand(SDWAOpcode, AMDGPU::OpName::sdst));
SDWAInst.add(*Dst);
} else {
assert(AMDGPU::hasNamedOperand(SDWAOpcode, AMDGPU::OpName::sdst));
SDWAInst.addReg(TRI->getVCC(), RegState::Define);
}
// Copy src0, initialize src0_modifiers. All sdwa instructions has src0 and
// src0_modifiers (except for v_nop_sdwa, but it can't get here)
MachineOperand *Src0 = TII->getNamedOperand(MI, AMDGPU::OpName::src0);
assert(Src0 && AMDGPU::hasNamedOperand(SDWAOpcode, AMDGPU::OpName::src0) &&
AMDGPU::hasNamedOperand(SDWAOpcode, AMDGPU::OpName::src0_modifiers));
if (auto *Mod = TII->getNamedOperand(MI, AMDGPU::OpName::src0_modifiers))
SDWAInst.addImm(Mod->getImm());
else
SDWAInst.addImm(0);
SDWAInst.add(*Src0);
// Copy src1 if present, initialize src1_modifiers.
MachineOperand *Src1 = TII->getNamedOperand(MI, AMDGPU::OpName::src1);
if (Src1) {
assert(AMDGPU::hasNamedOperand(SDWAOpcode, AMDGPU::OpName::src1) &&
AMDGPU::hasNamedOperand(SDWAOpcode, AMDGPU::OpName::src1_modifiers));
if (auto *Mod = TII->getNamedOperand(MI, AMDGPU::OpName::src1_modifiers))
SDWAInst.addImm(Mod->getImm());
else
SDWAInst.addImm(0);
SDWAInst.add(*Src1);
}
if (SDWAOpcode == AMDGPU::V_FMAC_F16_sdwa ||
SDWAOpcode == AMDGPU::V_FMAC_F32_sdwa ||
SDWAOpcode == AMDGPU::V_MAC_F16_sdwa ||
SDWAOpcode == AMDGPU::V_MAC_F32_sdwa) {
// v_mac_f16/32 has additional src2 operand tied to vdst
MachineOperand *Src2 = TII->getNamedOperand(MI, AMDGPU::OpName::src2);
assert(Src2);
SDWAInst.add(*Src2);
}
// Copy clamp if present, initialize otherwise
assert(AMDGPU::hasNamedOperand(SDWAOpcode, AMDGPU::OpName::clamp));
MachineOperand *Clamp = TII->getNamedOperand(MI, AMDGPU::OpName::clamp);
if (Clamp) {
SDWAInst.add(*Clamp);
} else {
SDWAInst.addImm(0);
}
// Copy omod if present, initialize otherwise if needed
if (AMDGPU::hasNamedOperand(SDWAOpcode, AMDGPU::OpName::omod)) {
MachineOperand *OMod = TII->getNamedOperand(MI, AMDGPU::OpName::omod);
if (OMod) {
SDWAInst.add(*OMod);
} else {
SDWAInst.addImm(0);
}
}
// Copy dst_sel if present, initialize otherwise if needed
if (AMDGPU::hasNamedOperand(SDWAOpcode, AMDGPU::OpName::dst_sel)) {
MachineOperand *DstSel = TII->getNamedOperand(MI, AMDGPU::OpName::dst_sel);
if (DstSel) {
SDWAInst.add(*DstSel);
} else {
SDWAInst.addImm(AMDGPU::SDWA::SdwaSel::DWORD);
}
}
// Copy dst_unused if present, initialize otherwise if needed
if (AMDGPU::hasNamedOperand(SDWAOpcode, AMDGPU::OpName::dst_unused)) {
MachineOperand *DstUnused = TII->getNamedOperand(MI, AMDGPU::OpName::dst_unused);
if (DstUnused) {
SDWAInst.add(*DstUnused);
} else {
SDWAInst.addImm(AMDGPU::SDWA::DstUnused::UNUSED_PAD);
}
}
// Copy src0_sel if present, initialize otherwise
assert(AMDGPU::hasNamedOperand(SDWAOpcode, AMDGPU::OpName::src0_sel));
MachineOperand *Src0Sel = TII->getNamedOperand(MI, AMDGPU::OpName::src0_sel);
if (Src0Sel) {
SDWAInst.add(*Src0Sel);
} else {
SDWAInst.addImm(AMDGPU::SDWA::SdwaSel::DWORD);
}
// Copy src1_sel if present, initialize otherwise if needed
if (Src1) {
assert(AMDGPU::hasNamedOperand(SDWAOpcode, AMDGPU::OpName::src1_sel));
MachineOperand *Src1Sel = TII->getNamedOperand(MI, AMDGPU::OpName::src1_sel);
if (Src1Sel) {
SDWAInst.add(*Src1Sel);
} else {
SDWAInst.addImm(AMDGPU::SDWA::SdwaSel::DWORD);
}
}
// Check for a preserved register that needs to be copied.
auto *DstUnused = TII->getNamedOperand(MI, AMDGPU::OpName::dst_unused);
if (DstUnused &&
DstUnused->getImm() == AMDGPU::SDWA::DstUnused::UNUSED_PRESERVE) {
// We expect, if we are here, that the instruction was already in it's SDWA form,
// with a tied operand.
assert(Dst && Dst->isTied());
assert(Opcode == static_cast<unsigned int>(SDWAOpcode));
// We also expect a vdst, since sdst can't preserve.
auto PreserveDstIdx = AMDGPU::getNamedOperandIdx(SDWAOpcode, AMDGPU::OpName::vdst);
assert(PreserveDstIdx != -1);
auto TiedIdx = MI.findTiedOperandIdx(PreserveDstIdx);
auto Tied = MI.getOperand(TiedIdx);
SDWAInst.add(Tied);
SDWAInst->tieOperands(PreserveDstIdx, SDWAInst->getNumOperands() - 1);
}
return SDWAInst.getInstr();
}
bool SIPeepholeSDWA::convertToSDWA(MachineInstr &MI,
const SDWAOperandsVector &SDWAOperands) {
LLVM_DEBUG(dbgs() << "Convert instruction:" << MI);
MachineInstr *SDWAInst;
if (TII->isSDWA(MI.getOpcode())) {
// Clone the instruction to allow revoking changes
// made to MI during the processing of the operands
// if the conversion fails.
SDWAInst = MI.getParent()->getParent()->CloneMachineInstr(&MI);
MI.getParent()->insert(MI.getIterator(), SDWAInst);
} else {
SDWAInst = createSDWAVersion(MI);
}
// Apply all sdwa operand patterns.
bool Converted = false;
for (auto &Operand : SDWAOperands) {
LLVM_DEBUG(dbgs() << *SDWAInst << "\nOperand: " << *Operand);
// There should be no intersection between SDWA operands and potential MIs
// e.g.:
// v_and_b32 v0, 0xff, v1 -> src:v1 sel:BYTE_0
// v_and_b32 v2, 0xff, v0 -> src:v0 sel:BYTE_0
// v_add_u32 v3, v4, v2
//
// In that example it is possible that we would fold 2nd instruction into
// 3rd (v_add_u32_sdwa) and then try to fold 1st instruction into 2nd (that
// was already destroyed). So if SDWAOperand is also a potential MI then do
// not apply it.
if (PotentialMatches.count(Operand->getParentInst()) == 0)
Converted |= Operand->convertToSDWA(*SDWAInst, TII);
}
if (!Converted) {
SDWAInst->eraseFromParent();
return false;
}
ConvertedInstructions.push_back(SDWAInst);
for (MachineOperand &MO : SDWAInst->uses()) {
if (!MO.isReg())
continue;
MRI->clearKillFlags(MO.getReg());
}
LLVM_DEBUG(dbgs() << "\nInto:" << *SDWAInst << '\n');
++NumSDWAInstructionsPeepholed;
MI.eraseFromParent();
return true;
}
// If an instruction was converted to SDWA it should not have immediates or SGPR
// operands (allowed one SGPR on GFX9). Copy its scalar operands into VGPRs.
void SIPeepholeSDWA::legalizeScalarOperands(MachineInstr &MI,
const GCNSubtarget &ST) const {
const MCInstrDesc &Desc = TII->get(MI.getOpcode());
unsigned ConstantBusCount = 0;
for (MachineOperand &Op : MI.explicit_uses()) {
if (!Op.isImm() && !(Op.isReg() && !TRI->isVGPR(*MRI, Op.getReg())))
continue;
unsigned I = Op.getOperandNo();
if (Desc.operands()[I].RegClass == -1 ||
!TRI->isVSSuperClass(TRI->getRegClass(Desc.operands()[I].RegClass)))
continue;
if (ST.hasSDWAScalar() && ConstantBusCount == 0 && Op.isReg() &&
TRI->isSGPRReg(*MRI, Op.getReg())) {
++ConstantBusCount;
continue;
}
Register VGPR = MRI->createVirtualRegister(&AMDGPU::VGPR_32RegClass);
auto Copy = BuildMI(*MI.getParent(), MI.getIterator(), MI.getDebugLoc(),
TII->get(AMDGPU::V_MOV_B32_e32), VGPR);
if (Op.isImm())
Copy.addImm(Op.getImm());
else if (Op.isReg())
Copy.addReg(Op.getReg(), Op.isKill() ? RegState::Kill : 0,
Op.getSubReg());
Op.ChangeToRegister(VGPR, false);
}
}
bool SIPeepholeSDWALegacy::runOnMachineFunction(MachineFunction &MF) {
if (skipFunction(MF.getFunction()))
return false;
return SIPeepholeSDWA().run(MF);
}
bool SIPeepholeSDWA::run(MachineFunction &MF) {
const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
if (!ST.hasSDWA())
return false;
MRI = &MF.getRegInfo();
TRI = ST.getRegisterInfo();
TII = ST.getInstrInfo();
// Find all SDWA operands in MF.
bool Ret = false;
for (MachineBasicBlock &MBB : MF) {
bool Changed = false;
do {
// Preprocess the ADD/SUB pairs so they could be SDWA'ed.
// Look for a possible ADD or SUB that resulted from a previously lowered
// V_{ADD|SUB}_U64_PSEUDO. The function pseudoOpConvertToVOP2
// lowers the pair of instructions into e32 form.
matchSDWAOperands(MBB);
for (const auto &OperandPair : SDWAOperands) {
const auto &Operand = OperandPair.second;
MachineInstr *PotentialMI = Operand->potentialToConvert(TII, ST);
if (PotentialMI &&
(PotentialMI->getOpcode() == AMDGPU::V_ADD_CO_U32_e64 ||
PotentialMI->getOpcode() == AMDGPU::V_SUB_CO_U32_e64))
pseudoOpConvertToVOP2(*PotentialMI, ST);
}
SDWAOperands.clear();
// Generate potential match list.
matchSDWAOperands(MBB);
for (const auto &OperandPair : SDWAOperands) {
const auto &Operand = OperandPair.second;
MachineInstr *PotentialMI =
Operand->potentialToConvert(TII, ST, &PotentialMatches);
if (PotentialMI && isConvertibleToSDWA(*PotentialMI, ST, TII))
PotentialMatches[PotentialMI].push_back(Operand.get());
}
for (auto &PotentialPair : PotentialMatches) {
MachineInstr &PotentialMI = *PotentialPair.first;
convertToSDWA(PotentialMI, PotentialPair.second);
}
PotentialMatches.clear();
SDWAOperands.clear();
Changed = !ConvertedInstructions.empty();
if (Changed)
Ret = true;
while (!ConvertedInstructions.empty())
legalizeScalarOperands(*ConvertedInstructions.pop_back_val(), ST);
} while (Changed);
}
return Ret;
}
PreservedAnalyses SIPeepholeSDWAPass::run(MachineFunction &MF,
MachineFunctionAnalysisManager &) {
if (MF.getFunction().hasOptNone() || !SIPeepholeSDWA().run(MF))
return PreservedAnalyses::all();
PreservedAnalyses PA = getMachineFunctionPassPreservedAnalyses();
PA.preserveSet<CFGAnalyses>();
return PA;
}