llvm-project/llvm/lib/Target/AMDGPU/AMDGPUSubtarget.cpp
Lucas Ramirez 1b34722302
[AMDGPU] Fix computation of waves/EU maximum (#140921)
This fixes an issue in the waves/EU range calculation wherein, if the
`amdgpu-waves-per-eu` attribute exists and is valid, the entire
attribute may be spuriously and completely ignored if workgroup sizes
and LDS usage restrict the maximum achievable occupancy below the
subtarget maximum. In such cases, we should still honor the requested
minimum number of waves/EU, even if the requested maximum is higher than
the actually achievable maximum (but still within subtarget
specification).

As such, the added unit test `empty_at_least_2_lds_limited`'s waves/EU
range should be [2,4] after this patch, when it is currently [1,4] (i.e,
as if `amdgpu-waves-per-eu` was not specified at all).

Before e377dc4 the default maximum waves/EU was always set to the
subtarget maximum, trivially avoiding the issue.
2025-05-22 02:45:59 +02:00

426 lines
17 KiB
C++

//===-- AMDGPUSubtarget.cpp - AMDGPU Subtarget Information ----------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
/// \file
/// Implements the AMDGPU specific subclass of TargetSubtarget.
//
//===----------------------------------------------------------------------===//
#include "AMDGPUSubtarget.h"
#include "AMDGPUCallLowering.h"
#include "AMDGPUInstructionSelector.h"
#include "AMDGPULegalizerInfo.h"
#include "AMDGPURegisterBankInfo.h"
#include "R600Subtarget.h"
#include "SIMachineFunctionInfo.h"
#include "Utils/AMDGPUBaseInfo.h"
#include "llvm/CodeGen/GlobalISel/InlineAsmLowering.h"
#include "llvm/CodeGen/MachineScheduler.h"
#include "llvm/CodeGen/TargetFrameLowering.h"
#include "llvm/IR/DiagnosticInfo.h"
#include "llvm/IR/IntrinsicsAMDGPU.h"
#include "llvm/IR/IntrinsicsR600.h"
#include "llvm/IR/MDBuilder.h"
#include <algorithm>
using namespace llvm;
#define DEBUG_TYPE "amdgpu-subtarget"
AMDGPUSubtarget::AMDGPUSubtarget(Triple TT) : TargetTriple(std::move(TT)) {}
bool AMDGPUSubtarget::useRealTrue16Insts() const {
return hasTrue16BitInsts() && EnableRealTrue16Insts;
}
// Returns the maximum per-workgroup LDS allocation size (in bytes) that still
// allows the given function to achieve an occupancy of NWaves waves per
// SIMD / EU, taking into account only the function's *maximum* workgroup size.
unsigned
AMDGPUSubtarget::getMaxLocalMemSizeWithWaveCount(unsigned NWaves,
const Function &F) const {
const unsigned WaveSize = getWavefrontSize();
const unsigned WorkGroupSize = getFlatWorkGroupSizes(F).second;
const unsigned WavesPerWorkgroup =
std::max(1u, (WorkGroupSize + WaveSize - 1) / WaveSize);
const unsigned WorkGroupsPerCU =
std::max(1u, (NWaves * getEUsPerCU()) / WavesPerWorkgroup);
return getLocalMemorySize() / WorkGroupsPerCU;
}
std::pair<unsigned, unsigned> AMDGPUSubtarget::getOccupancyWithWorkGroupSizes(
uint32_t LDSBytes, std::pair<unsigned, unsigned> FlatWorkGroupSizes) const {
// FIXME: We should take into account the LDS allocation granularity.
const unsigned MaxWGsLDS = getLocalMemorySize() / std::max(LDSBytes, 1u);
// Queried LDS size may be larger than available on a CU, in which case we
// consider the only achievable occupancy to be 1, in line with what we
// consider the occupancy to be when the number of requested registers in a
// particular bank is higher than the number of available ones in that bank.
if (!MaxWGsLDS)
return {1, 1};
const unsigned WaveSize = getWavefrontSize(), WavesPerEU = getMaxWavesPerEU();
auto PropsFromWGSize = [=](unsigned WGSize)
-> std::tuple<const unsigned, const unsigned, unsigned> {
unsigned WavesPerWG = divideCeil(WGSize, WaveSize);
unsigned WGsPerCU = std::min(getMaxWorkGroupsPerCU(WGSize), MaxWGsLDS);
return {WavesPerWG, WGsPerCU, WavesPerWG * WGsPerCU};
};
// The maximum group size will generally yield the minimum number of
// workgroups, maximum number of waves, and minimum occupancy. The opposite is
// generally true for the minimum group size. LDS or barrier ressource
// limitations can flip those minimums/maximums.
const auto [MinWGSize, MaxWGSize] = FlatWorkGroupSizes;
auto [MinWavesPerWG, MaxWGsPerCU, MaxWavesPerCU] = PropsFromWGSize(MinWGSize);
auto [MaxWavesPerWG, MinWGsPerCU, MinWavesPerCU] = PropsFromWGSize(MaxWGSize);
// It is possible that we end up with flipped minimum and maximum number of
// waves per CU when the number of minimum/maximum concurrent groups on the CU
// is limited by LDS usage or barrier resources.
if (MinWavesPerCU >= MaxWavesPerCU) {
std::swap(MinWavesPerCU, MaxWavesPerCU);
} else {
const unsigned WaveSlotsPerCU = WavesPerEU * getEUsPerCU();
// Look for a potential smaller group size than the maximum which decreases
// the concurrent number of waves on the CU for the same number of
// concurrent workgroups on the CU.
unsigned MinWavesPerCUForWGSize =
divideCeil(WaveSlotsPerCU, MinWGsPerCU + 1) * MinWGsPerCU;
if (MinWavesPerCU > MinWavesPerCUForWGSize) {
unsigned ExcessSlots = MinWavesPerCU - MinWavesPerCUForWGSize;
if (unsigned ExcessSlotsPerWG = ExcessSlots / MinWGsPerCU) {
// There may exist a smaller group size than the maximum that achieves
// the minimum number of waves per CU. This group size is the largest
// possible size that requires MaxWavesPerWG - E waves where E is
// maximized under the following constraints.
// 1. 0 <= E <= ExcessSlotsPerWG
// 2. (MaxWavesPerWG - E) * WaveSize >= MinWGSize
MinWavesPerCU -= MinWGsPerCU * std::min(ExcessSlotsPerWG,
MaxWavesPerWG - MinWavesPerWG);
}
}
// Look for a potential larger group size than the minimum which increases
// the concurrent number of waves on the CU for the same number of
// concurrent workgroups on the CU.
unsigned LeftoverSlots = WaveSlotsPerCU - MaxWGsPerCU * MinWavesPerWG;
if (unsigned LeftoverSlotsPerWG = LeftoverSlots / MaxWGsPerCU) {
// There may exist a larger group size than the minimum that achieves the
// maximum number of waves per CU. This group size is the smallest
// possible size that requires MinWavesPerWG + L waves where L is
// maximized under the following constraints.
// 1. 0 <= L <= LeftoverSlotsPerWG
// 2. (MinWavesPerWG + L - 1) * WaveSize <= MaxWGSize
MaxWavesPerCU += MaxWGsPerCU * std::min(LeftoverSlotsPerWG,
((MaxWGSize - 1) / WaveSize) + 1 -
MinWavesPerWG);
}
}
// Return the minimum/maximum number of waves on any EU, assuming that all
// wavefronts are spread across all EUs as evenly as possible.
return {std::clamp(MinWavesPerCU / getEUsPerCU(), 1U, WavesPerEU),
std::clamp(divideCeil(MaxWavesPerCU, getEUsPerCU()), 1U, WavesPerEU)};
}
std::pair<unsigned, unsigned> AMDGPUSubtarget::getOccupancyWithWorkGroupSizes(
const MachineFunction &MF) const {
const auto *MFI = MF.getInfo<SIMachineFunctionInfo>();
return getOccupancyWithWorkGroupSizes(MFI->getLDSSize(), MF.getFunction());
}
std::pair<unsigned, unsigned>
AMDGPUSubtarget::getDefaultFlatWorkGroupSize(CallingConv::ID CC) const {
switch (CC) {
case CallingConv::AMDGPU_VS:
case CallingConv::AMDGPU_LS:
case CallingConv::AMDGPU_HS:
case CallingConv::AMDGPU_ES:
case CallingConv::AMDGPU_GS:
case CallingConv::AMDGPU_PS:
return std::pair(1, getWavefrontSize());
default:
return std::pair(1u, getMaxFlatWorkGroupSize());
}
}
std::pair<unsigned, unsigned> AMDGPUSubtarget::getFlatWorkGroupSizes(
const Function &F) const {
// Default minimum/maximum flat work group sizes.
std::pair<unsigned, unsigned> Default =
getDefaultFlatWorkGroupSize(F.getCallingConv());
// Requested minimum/maximum flat work group sizes.
std::pair<unsigned, unsigned> Requested = AMDGPU::getIntegerPairAttribute(
F, "amdgpu-flat-work-group-size", Default);
// Make sure requested minimum is less than requested maximum.
if (Requested.first > Requested.second)
return Default;
// Make sure requested values do not violate subtarget's specifications.
if (Requested.first < getMinFlatWorkGroupSize())
return Default;
if (Requested.second > getMaxFlatWorkGroupSize())
return Default;
return Requested;
}
std::pair<unsigned, unsigned> AMDGPUSubtarget::getEffectiveWavesPerEU(
std::pair<unsigned, unsigned> RequestedWavesPerEU,
std::pair<unsigned, unsigned> FlatWorkGroupSizes, unsigned LDSBytes) const {
// Default minimum/maximum number of waves per EU. The range of flat workgroup
// sizes limits the achievable maximum, and we aim to support enough waves per
// EU so that we can concurrently execute all waves of a single workgroup of
// maximum size on a CU.
std::pair<unsigned, unsigned> Default = {
getWavesPerEUForWorkGroup(FlatWorkGroupSizes.second),
getOccupancyWithWorkGroupSizes(LDSBytes, FlatWorkGroupSizes).second};
Default.first = std::min(Default.first, Default.second);
// Make sure requested minimum is within the default range and lower than the
// requested maximum. The latter must not violate target specification.
if (RequestedWavesPerEU.first < Default.first ||
RequestedWavesPerEU.first > Default.second ||
RequestedWavesPerEU.first > RequestedWavesPerEU.second ||
RequestedWavesPerEU.second > getMaxWavesPerEU())
return Default;
// We cannot exceed maximum occupancy implied by flat workgroup size and LDS.
RequestedWavesPerEU.second =
std::min(RequestedWavesPerEU.second, Default.second);
return RequestedWavesPerEU;
}
std::pair<unsigned, unsigned>
AMDGPUSubtarget::getWavesPerEU(const Function &F) const {
// Default/requested minimum/maximum flat work group sizes.
std::pair<unsigned, unsigned> FlatWorkGroupSizes = getFlatWorkGroupSizes(F);
// Minimum number of bytes allocated in the LDS.
unsigned LDSBytes = AMDGPU::getIntegerPairAttribute(F, "amdgpu-lds-size",
{0, UINT32_MAX}, true)
.first;
return getWavesPerEU(FlatWorkGroupSizes, LDSBytes, F);
}
std::pair<unsigned, unsigned> AMDGPUSubtarget::getWavesPerEU(
const Function &F, std::pair<unsigned, unsigned> FlatWorkGroupSizes) const {
// Minimum number of bytes allocated in the LDS.
unsigned LDSBytes = AMDGPU::getIntegerPairAttribute(F, "amdgpu-lds-size",
{0, UINT32_MAX}, true)
.first;
return getWavesPerEU(FlatWorkGroupSizes, LDSBytes, F);
}
std::pair<unsigned, unsigned>
AMDGPUSubtarget::getWavesPerEU(std::pair<unsigned, unsigned> FlatWorkGroupSizes,
unsigned LDSBytes, const Function &F) const {
// Default minimum/maximum number of waves per execution unit.
std::pair<unsigned, unsigned> Default(1, getMaxWavesPerEU());
// Requested minimum/maximum number of waves per execution unit.
std::pair<unsigned, unsigned> Requested =
AMDGPU::getIntegerPairAttribute(F, "amdgpu-waves-per-eu", Default, true);
return getEffectiveWavesPerEU(Requested, FlatWorkGroupSizes, LDSBytes);
}
static unsigned getReqdWorkGroupSize(const Function &Kernel, unsigned Dim) {
auto *Node = Kernel.getMetadata("reqd_work_group_size");
if (Node && Node->getNumOperands() == 3)
return mdconst::extract<ConstantInt>(Node->getOperand(Dim))->getZExtValue();
return std::numeric_limits<unsigned>::max();
}
bool AMDGPUSubtarget::isMesaKernel(const Function &F) const {
return isMesa3DOS() && !AMDGPU::isShader(F.getCallingConv());
}
unsigned AMDGPUSubtarget::getMaxWorkitemID(const Function &Kernel,
unsigned Dimension) const {
unsigned ReqdSize = getReqdWorkGroupSize(Kernel, Dimension);
if (ReqdSize != std::numeric_limits<unsigned>::max())
return ReqdSize - 1;
return getFlatWorkGroupSizes(Kernel).second - 1;
}
bool AMDGPUSubtarget::isSingleLaneExecution(const Function &Func) const {
for (int I = 0; I < 3; ++I) {
if (getMaxWorkitemID(Func, I) > 0)
return false;
}
return true;
}
bool AMDGPUSubtarget::makeLIDRangeMetadata(Instruction *I) const {
Function *Kernel = I->getParent()->getParent();
unsigned MinSize = 0;
unsigned MaxSize = getFlatWorkGroupSizes(*Kernel).second;
bool IdQuery = false;
// If reqd_work_group_size is present it narrows value down.
if (auto *CI = dyn_cast<CallInst>(I)) {
const Function *F = CI->getCalledFunction();
if (F) {
unsigned Dim = UINT_MAX;
switch (F->getIntrinsicID()) {
case Intrinsic::amdgcn_workitem_id_x:
case Intrinsic::r600_read_tidig_x:
IdQuery = true;
[[fallthrough]];
case Intrinsic::r600_read_local_size_x:
Dim = 0;
break;
case Intrinsic::amdgcn_workitem_id_y:
case Intrinsic::r600_read_tidig_y:
IdQuery = true;
[[fallthrough]];
case Intrinsic::r600_read_local_size_y:
Dim = 1;
break;
case Intrinsic::amdgcn_workitem_id_z:
case Intrinsic::r600_read_tidig_z:
IdQuery = true;
[[fallthrough]];
case Intrinsic::r600_read_local_size_z:
Dim = 2;
break;
default:
break;
}
if (Dim <= 3) {
unsigned ReqdSize = getReqdWorkGroupSize(*Kernel, Dim);
if (ReqdSize != std::numeric_limits<unsigned>::max())
MinSize = MaxSize = ReqdSize;
}
}
}
if (!MaxSize)
return false;
// Range metadata is [Lo, Hi). For ID query we need to pass max size
// as Hi. For size query we need to pass Hi + 1.
if (IdQuery)
MinSize = 0;
else
++MaxSize;
APInt Lower{32, MinSize};
APInt Upper{32, MaxSize};
if (auto *CI = dyn_cast<CallBase>(I)) {
ConstantRange Range(Lower, Upper);
CI->addRangeRetAttr(Range);
} else {
MDBuilder MDB(I->getContext());
MDNode *MaxWorkGroupSizeRange = MDB.createRange(Lower, Upper);
I->setMetadata(LLVMContext::MD_range, MaxWorkGroupSizeRange);
}
return true;
}
unsigned AMDGPUSubtarget::getImplicitArgNumBytes(const Function &F) const {
assert(AMDGPU::isKernel(F.getCallingConv()));
// We don't allocate the segment if we know the implicit arguments weren't
// used, even if the ABI implies we need them.
if (F.hasFnAttribute("amdgpu-no-implicitarg-ptr"))
return 0;
if (isMesaKernel(F))
return 16;
// Assume all implicit inputs are used by default
const Module *M = F.getParent();
unsigned NBytes =
AMDGPU::getAMDHSACodeObjectVersion(*M) >= AMDGPU::AMDHSA_COV5 ? 256 : 56;
return F.getFnAttributeAsParsedInteger("amdgpu-implicitarg-num-bytes",
NBytes);
}
uint64_t AMDGPUSubtarget::getExplicitKernArgSize(const Function &F,
Align &MaxAlign) const {
assert(F.getCallingConv() == CallingConv::AMDGPU_KERNEL ||
F.getCallingConv() == CallingConv::SPIR_KERNEL);
const DataLayout &DL = F.getDataLayout();
uint64_t ExplicitArgBytes = 0;
MaxAlign = Align(1);
for (const Argument &Arg : F.args()) {
if (Arg.hasAttribute("amdgpu-hidden-argument"))
continue;
const bool IsByRef = Arg.hasByRefAttr();
Type *ArgTy = IsByRef ? Arg.getParamByRefType() : Arg.getType();
Align Alignment = DL.getValueOrABITypeAlignment(
IsByRef ? Arg.getParamAlign() : std::nullopt, ArgTy);
uint64_t AllocSize = DL.getTypeAllocSize(ArgTy);
ExplicitArgBytes = alignTo(ExplicitArgBytes, Alignment) + AllocSize;
MaxAlign = std::max(MaxAlign, Alignment);
}
return ExplicitArgBytes;
}
unsigned AMDGPUSubtarget::getKernArgSegmentSize(const Function &F,
Align &MaxAlign) const {
if (F.getCallingConv() != CallingConv::AMDGPU_KERNEL &&
F.getCallingConv() != CallingConv::SPIR_KERNEL)
return 0;
uint64_t ExplicitArgBytes = getExplicitKernArgSize(F, MaxAlign);
unsigned ExplicitOffset = getExplicitKernelArgOffset();
uint64_t TotalSize = ExplicitOffset + ExplicitArgBytes;
unsigned ImplicitBytes = getImplicitArgNumBytes(F);
if (ImplicitBytes != 0) {
const Align Alignment = getAlignmentForImplicitArgPtr();
TotalSize = alignTo(ExplicitArgBytes, Alignment) + ImplicitBytes;
MaxAlign = std::max(MaxAlign, Alignment);
}
// Being able to dereference past the end is useful for emitting scalar loads.
return alignTo(TotalSize, 4);
}
AMDGPUDwarfFlavour AMDGPUSubtarget::getAMDGPUDwarfFlavour() const {
return getWavefrontSize() == 32 ? AMDGPUDwarfFlavour::Wave32
: AMDGPUDwarfFlavour::Wave64;
}
const AMDGPUSubtarget &AMDGPUSubtarget::get(const MachineFunction &MF) {
if (MF.getTarget().getTargetTriple().isAMDGCN())
return static_cast<const AMDGPUSubtarget&>(MF.getSubtarget<GCNSubtarget>());
return static_cast<const AMDGPUSubtarget &>(MF.getSubtarget<R600Subtarget>());
}
const AMDGPUSubtarget &AMDGPUSubtarget::get(const TargetMachine &TM, const Function &F) {
if (TM.getTargetTriple().isAMDGCN())
return static_cast<const AMDGPUSubtarget&>(TM.getSubtarget<GCNSubtarget>(F));
return static_cast<const AMDGPUSubtarget &>(
TM.getSubtarget<R600Subtarget>(F));
}
// FIXME: This has no reason to be in subtarget
SmallVector<unsigned>
AMDGPUSubtarget::getMaxNumWorkGroups(const Function &F) const {
return AMDGPU::getIntegerVecAttribute(F, "amdgpu-max-num-workgroups", 3,
std::numeric_limits<uint32_t>::max());
}