llvm-project/llvm/test/Analysis/LoopAccessAnalysis/wrapping-pointer-versioning.ll
Florian Hahn a353e258ba
[LAA] Don't require Stride == 1/-1 for inbounds pointer AddRecs nowrap. (#113126)
If we have a pointer AddRec, the maximum increment is
2^(pointer-index-wdith - 1) - 1. This means that if incrementing the
AddRec wraps, the distance between the previously accessed location and
the wrapped location is > 2^(pointer-index-wdith - 1), i.e. if the GEP
for the AddRec is inbounds, this would be poison due to the object being
larger than half the pointer index type space. The poison would be
immediate UB when the memory access gets executed..

Similar reasoning can be applied for decrements.

PR: https://github.com/llvm/llvm-project/pull/113126
2024-11-05 22:45:56 +01:00

283 lines
9.1 KiB
LLVM

; RUN: opt -passes='print<access-info>' -aa-pipeline='basic-aa' -disable-output < %s 2>&1 | FileCheck %s --check-prefix=LAA
target datalayout = "e-m:o-i64:64-f80:128-n8:16:32:64-S128"
; For this loop:
; unsigned index = 0;
; for (int i = 0; i < n; i++) {
; A[2 * index] = A[2 * index] + B[i];
; index++;
; }
;
; SCEV is unable to prove that A[2 * i] does not overflow.
;
; Analyzing the IR does not help us because the GEPs are not
; affine AddRecExprs. However, we can turn them into AddRecExprs
; using SCEV Predicates.
;
; Once we have an affine expression we need to add an additional NUSW
; to check that the pointers don't wrap since the GEPs are not
; inbound.
; LAA-LABEL: f1
; LAA: Memory dependences are safe{{$}}
; LAA: SCEV assumptions:
; LAA-NEXT: {0,+,2}<%for.body> Added Flags: <nusw>
; LAA-NEXT: {%a,+,4}<%for.body> Added Flags: <nusw>
; The expression for %mul_ext as analyzed by SCEV is
; (zext i32 {0,+,2}<%for.body> to i64)
; We have added the nusw flag to turn this expression into the SCEV expression:
; i64 {0,+,2}<%for.body>
; LAA: [PSE] %arrayidxA = getelementptr i16, ptr %a, i64 %mul_ext:
; LAA-NEXT: ((2 * (zext i32 {0,+,2}<%for.body> to i64))<nuw><nsw> + %a)
; LAA-NEXT: --> {%a,+,4}<%for.body>
define void @f1(ptr noalias %a,
ptr noalias %b, i64 %N) {
entry:
br label %for.body
for.body: ; preds = %for.body, %entry
%ind = phi i64 [ 0, %entry ], [ %inc, %for.body ]
%ind1 = phi i32 [ 0, %entry ], [ %inc1, %for.body ]
%mul = mul i32 %ind1, 2
%mul_ext = zext i32 %mul to i64
%arrayidxA = getelementptr i16, ptr %a, i64 %mul_ext
%loadA = load i16, ptr %arrayidxA, align 2
%arrayidxB = getelementptr i16, ptr %b, i64 %ind
%loadB = load i16, ptr %arrayidxB, align 2
%add = mul i16 %loadA, %loadB
store i16 %add, ptr %arrayidxA, align 2
%inc = add nuw nsw i64 %ind, 1
%inc1 = add i32 %ind1, 1
%exitcond = icmp eq i64 %inc, %N
br i1 %exitcond, label %for.end, label %for.body
for.end: ; preds = %for.body
ret void
}
; For this loop:
; unsigned index = n;
; for (int i = 0; i < n; i++) {
; A[2 * index] = A[2 * index] + B[i];
; index--;
; }
;
; the SCEV expression for 2 * index is not an AddRecExpr
; (and implictly not affine). However, we are able to make assumptions
; that will turn the expression into an affine one and continue the
; analysis.
;
; Once we have an affine expression we need to add an additional NUSW
; to check that the pointers don't wrap since the GEPs are not
; inbounds.
;
; This loop has a negative stride for A, and the nusw flag is required in
; order to properly extend the increment from i32 -4 to i64 -4.
; LAA-LABEL: f2
; LAA: Memory dependences are safe{{$}}
; LAA: SCEV assumptions:
; LAA-NEXT: {(2 * (trunc i64 %N to i32)),+,-2}<%for.body> Added Flags: <nusw>
; LAA-NEXT: {((4 * (zext i31 (trunc i64 %N to i31) to i64))<nuw><nsw> + %a),+,-4}<%for.body> Added Flags: <nusw>
; The expression for %mul_ext as analyzed by SCEV is
; (zext i32 {(2 * (trunc i64 %N to i32)),+,-2}<%for.body> to i64)
; We have added the nusw flag to turn this expression into the following SCEV:
; i64 {zext i32 (2 * (trunc i64 %N to i32)) to i64,+,-2}<%for.body>
; LAA: [PSE] %arrayidxA = getelementptr i16, ptr %a, i64 %mul_ext:
; LAA-NEXT: ((2 * (zext i32 {(2 * (trunc i64 %N to i32)),+,-2}<%for.body> to i64))<nuw><nsw> + %a)
; LAA-NEXT: --> {((4 * (zext i31 (trunc i64 %N to i31) to i64))<nuw><nsw> + %a),+,-4}<%for.body>
define void @f2(ptr noalias %a,
ptr noalias %b, i64 %N) {
entry:
%TruncN = trunc i64 %N to i32
br label %for.body
for.body: ; preds = %for.body, %entry
%ind = phi i64 [ 0, %entry ], [ %inc, %for.body ]
%ind1 = phi i32 [ %TruncN, %entry ], [ %dec, %for.body ]
%mul = mul i32 %ind1, 2
%mul_ext = zext i32 %mul to i64
%arrayidxA = getelementptr i16, ptr %a, i64 %mul_ext
%loadA = load i16, ptr %arrayidxA, align 2
%arrayidxB = getelementptr i16, ptr %b, i64 %ind
%loadB = load i16, ptr %arrayidxB, align 2
%add = mul i16 %loadA, %loadB
store i16 %add, ptr %arrayidxA, align 2
%inc = add nuw nsw i64 %ind, 1
%dec = sub i32 %ind1, 1
%exitcond = icmp eq i64 %inc, %N
br i1 %exitcond, label %for.end, label %for.body
for.end: ; preds = %for.body
ret void
}
; We replicate the tests above, but this time sign extend 2 * index instead
; of zero extending it.
; LAA-LABEL: f3
; LAA: Memory dependences are safe{{$}}
; LAA: SCEV assumptions:
; LAA-NEXT: {0,+,2}<%for.body> Added Flags: <nssw>
; LAA-NEXT: {%a,+,4}<%for.body> Added Flags: <nusw>
; The expression for %mul_ext as analyzed by SCEV is
; i64 (sext i32 {0,+,2}<%for.body> to i64)
; We have added the nssw flag to turn this expression into the following SCEV:
; i64 {0,+,2}<%for.body>
; LAA: [PSE] %arrayidxA = getelementptr i16, ptr %a, i64 %mul_ext:
; LAA-NEXT: ((2 * (sext i32 {0,+,2}<%for.body> to i64))<nsw> + %a)
; LAA-NEXT: --> {%a,+,4}<%for.body>
define void @f3(ptr noalias %a,
ptr noalias %b, i64 %N) {
entry:
br label %for.body
for.body: ; preds = %for.body, %entry
%ind = phi i64 [ 0, %entry ], [ %inc, %for.body ]
%ind1 = phi i32 [ 0, %entry ], [ %inc1, %for.body ]
%mul = mul i32 %ind1, 2
%mul_ext = sext i32 %mul to i64
%arrayidxA = getelementptr i16, ptr %a, i64 %mul_ext
%loadA = load i16, ptr %arrayidxA, align 2
%arrayidxB = getelementptr i16, ptr %b, i64 %ind
%loadB = load i16, ptr %arrayidxB, align 2
%add = mul i16 %loadA, %loadB
store i16 %add, ptr %arrayidxA, align 2
%inc = add nuw nsw i64 %ind, 1
%inc1 = add i32 %ind1, 1
%exitcond = icmp eq i64 %inc, %N
br i1 %exitcond, label %for.end, label %for.body
for.end: ; preds = %for.body
ret void
}
; LAA-LABEL: f4
; LAA: Memory dependences are safe{{$}}
; LAA: SCEV assumptions:
; LAA-NEXT: {(2 * (trunc i64 %N to i32)),+,-2}<%for.body> Added Flags: <nssw>
; LAA-NEXT: {((2 * (sext i32 (2 * (trunc i64 %N to i32)) to i64))<nsw> + %a),+,-4}<%for.body> Added Flags: <nusw>
; The expression for %mul_ext as analyzed by SCEV is
; i64 (sext i32 {(2 * (trunc i64 %N to i32)),+,-2}<%for.body> to i64)
; We have added the nssw flag to turn this expression into the following SCEV:
; i64 {sext i32 (2 * (trunc i64 %N to i32)) to i64,+,-2}<%for.body>
; LAA: [PSE] %arrayidxA = getelementptr i16, ptr %a, i64 %mul_ext:
; LAA-NEXT: ((2 * (sext i32 {(2 * (trunc i64 %N to i32)),+,-2}<%for.body> to i64))<nsw> + %a)
; LAA-NEXT: --> {((2 * (sext i32 (2 * (trunc i64 %N to i32)) to i64))<nsw> + %a),+,-4}<%for.body>
define void @f4(ptr noalias %a,
ptr noalias %b, i64 %N) {
entry:
%TruncN = trunc i64 %N to i32
br label %for.body
for.body: ; preds = %for.body, %entry
%ind = phi i64 [ 0, %entry ], [ %inc, %for.body ]
%ind1 = phi i32 [ %TruncN, %entry ], [ %dec, %for.body ]
%mul = mul i32 %ind1, 2
%mul_ext = sext i32 %mul to i64
%arrayidxA = getelementptr i16, ptr %a, i64 %mul_ext
%loadA = load i16, ptr %arrayidxA, align 2
%arrayidxB = getelementptr i16, ptr %b, i64 %ind
%loadB = load i16, ptr %arrayidxB, align 2
%add = mul i16 %loadA, %loadB
store i16 %add, ptr %arrayidxA, align 2
%inc = add nuw nsw i64 %ind, 1
%dec = sub i32 %ind1, 1
%exitcond = icmp eq i64 %inc, %N
br i1 %exitcond, label %for.end, label %for.body
for.end: ; preds = %for.body
ret void
}
; The following function is similar to the one above, but has the GEP
; to pointer %A inbounds. The index %mul doesn't have the nsw flag.
; This means that the SCEV expression for %mul can wrap and we need
; a SCEV predicate to continue analysis.
;
; We can still analyze this by adding the required no wrap SCEV predicates.
; LAA-LABEL: f5
; LAA: Memory dependences are safe{{$}}
; LAA: SCEV assumptions:
; LAA-NEXT: {(2 * (trunc i64 %N to i32)),+,-2}<%for.body> Added Flags: <nssw>
; LAA-EMPTY:
; LAA: [PSE] %arrayidxA = getelementptr inbounds i16, ptr %a, i32 %mul:
; LAA-NEXT: ((2 * (sext i32 {(2 * (trunc i64 %N to i32)),+,-2}<%for.body> to i64))<nsw> + %a)
; LAA-NEXT: --> {((2 * (sext i32 (2 * (trunc i64 %N to i32)) to i64))<nsw> + %a),+,-4}<%for.body>
define void @f5(ptr noalias %a,
ptr noalias %b, i64 %N) {
entry:
%TruncN = trunc i64 %N to i32
br label %for.body
for.body: ; preds = %for.body, %entry
%ind = phi i64 [ 0, %entry ], [ %inc, %for.body ]
%ind1 = phi i32 [ %TruncN, %entry ], [ %dec, %for.body ]
%mul = mul i32 %ind1, 2
%arrayidxA = getelementptr inbounds i16, ptr %a, i32 %mul
%loadA = load i16, ptr %arrayidxA, align 2
%arrayidxB = getelementptr inbounds i16, ptr %b, i64 %ind
%loadB = load i16, ptr %arrayidxB, align 2
%add = mul i16 %loadA, %loadB
store i16 %add, ptr %arrayidxA, align 2
%inc = add nuw nsw i64 %ind, 1
%dec = sub i32 %ind1, 1
%exitcond = icmp eq i64 %inc, %N
br i1 %exitcond, label %for.end, label %for.body
for.end: ; preds = %for.body
ret void
}