llvm-project/llvm/test/Transforms/IndVarSimplify/rewrite-loop-exit-value.ll
Nikita Popov a105877646
[InstCombine] Remove some of the complexity-based canonicalization (#91185)
The idea behind this canonicalization is that it allows us to handle less
patterns, because we know that some will be canonicalized away. This is
indeed very useful to e.g. know that constants are always on the right.

However, this is only useful if the canonicalization is actually
reliable. This is the case for constants, but not for arguments: Moving
these to the right makes it look like the "more complex" expression is
guaranteed to be on the left, but this is not actually the case in
practice. It fails as soon as you replace the argument with another
instruction.

The end result is that it looks like things correctly work in tests,
while they actually don't. We use the "thwart complexity-based
canonicalization" trick to handle this in tests, but it's often a
challenge for new contributors to get this right, and based on the
regressions this PR originally exposed, we clearly don't get this right
in many cases.

For this reason, I think that it's better to remove this complexity
canonicalization. It will make it much easier to write tests for
commuted cases and make sure that they are handled.
2024-08-21 12:02:54 +02:00

303 lines
10 KiB
LLVM

; NOTE: Assertions have been autogenerated by utils/update_test_checks.py
; RUN: opt -passes='loop(indvars),instcombine' -replexitval=always -S < %s | FileCheck %s
;; Test that loop's exit value is rewritten to its initial
;; value from loop preheader
define i32 @test1(ptr %var) {
; CHECK-LABEL: @test1(
; CHECK-NEXT: entry:
; CHECK-NEXT: [[COND:%.*]] = icmp eq ptr [[VAR:%.*]], null
; CHECK-NEXT: br label [[HEADER:%.*]]
; CHECK: header:
; CHECK-NEXT: br i1 [[COND]], label [[LOOP:%.*]], label [[EXIT:%.*]]
; CHECK: loop:
; CHECK-NEXT: br label [[HEADER]]
; CHECK: exit:
; CHECK-NEXT: ret i32 0
;
entry:
%cond = icmp eq ptr %var, null
br label %header
header:
%phi_indvar = phi i32 [0, %entry], [%indvar, %loop]
br i1 %cond, label %loop, label %exit
loop:
%indvar = add i32 %phi_indvar, 1
br label %header
exit:
ret i32 %phi_indvar
}
;; Test that we can not rewrite loop exit value if it's not
;; a phi node (%indvar is an add instruction in this test).
define i32 @test2(ptr %var) {
; CHECK-LABEL: @test2(
; CHECK-NEXT: entry:
; CHECK-NEXT: [[COND:%.*]] = icmp eq ptr [[VAR:%.*]], null
; CHECK-NEXT: br label [[HEADER:%.*]]
; CHECK: header:
; CHECK-NEXT: [[PHI_INDVAR:%.*]] = phi i32 [ 0, [[ENTRY:%.*]] ], [ [[INDVAR:%.*]], [[HEADER]] ]
; CHECK-NEXT: [[INDVAR]] = add i32 [[PHI_INDVAR]], 1
; CHECK-NEXT: br i1 [[COND]], label [[HEADER]], label [[EXIT:%.*]]
; CHECK: exit:
; CHECK-NEXT: ret i32 [[INDVAR]]
;
entry:
%cond = icmp eq ptr %var, null
br label %header
header:
%phi_indvar = phi i32 [0, %entry], [%indvar, %header]
%indvar = add i32 %phi_indvar, 1
br i1 %cond, label %header, label %exit
exit:
ret i32 %indvar
}
;; Test that we can not rewrite loop exit value if the condition
;; is not in loop header.
define i32 @test3(ptr %var) {
; CHECK-LABEL: @test3(
; CHECK-NEXT: entry:
; CHECK-NEXT: [[COND1:%.*]] = icmp eq ptr [[VAR:%.*]], null
; CHECK-NEXT: br label [[HEADER:%.*]]
; CHECK: header:
; CHECK-NEXT: [[PHI_INDVAR:%.*]] = phi i32 [ 0, [[ENTRY:%.*]] ], [ [[INDVAR:%.*]], [[HEADER_BACKEDGE:%.*]] ]
; CHECK-NEXT: [[INDVAR]] = add i32 [[PHI_INDVAR]], 1
; CHECK-NEXT: [[COND2:%.*]] = icmp eq i32 [[INDVAR]], 10
; CHECK-NEXT: br i1 [[COND2]], label [[HEADER_BACKEDGE]], label [[BODY:%.*]]
; CHECK: header.backedge:
; CHECK-NEXT: br label [[HEADER]]
; CHECK: body:
; CHECK-NEXT: br i1 [[COND1]], label [[HEADER_BACKEDGE]], label [[EXIT:%.*]]
; CHECK: exit:
; CHECK-NEXT: ret i32 [[PHI_INDVAR]]
;
entry:
%cond1 = icmp eq ptr %var, null
br label %header
header:
%phi_indvar = phi i32 [0, %entry], [%indvar, %header], [%indvar, %body]
%indvar = add i32 %phi_indvar, 1
%cond2 = icmp eq i32 %indvar, 10
br i1 %cond2, label %header, label %body
body:
br i1 %cond1, label %header, label %exit
exit:
ret i32 %phi_indvar
}
; Multiple exits dominating latch
define i32 @test4(i1 %cond1, i1 %cond2) {
; CHECK-LABEL: @test4(
; CHECK-NEXT: entry:
; CHECK-NEXT: br label [[HEADER:%.*]]
; CHECK: header:
; CHECK-NEXT: br i1 [[COND1:%.*]], label [[LOOP:%.*]], label [[EXIT:%.*]]
; CHECK: loop:
; CHECK-NEXT: br i1 [[COND2:%.*]], label [[HEADER]], label [[EXIT]]
; CHECK: exit:
; CHECK-NEXT: ret i32 0
;
entry:
br label %header
header:
%phi_indvar = phi i32 [0, %entry], [%indvar, %loop]
br i1 %cond1, label %loop, label %exit
loop:
%indvar = add i32 %phi_indvar, 1
br i1 %cond2, label %header, label %exit
exit:
ret i32 %phi_indvar
}
; A conditionally executed exit.
define i32 @test5(ptr %addr, i1 %cond2) {
; CHECK-LABEL: @test5(
; CHECK-NEXT: entry:
; CHECK-NEXT: br label [[HEADER:%.*]]
; CHECK: header:
; CHECK-NEXT: [[PHI_INDVAR:%.*]] = phi i32 [ 0, [[ENTRY:%.*]] ], [ [[INDVAR:%.*]], [[LOOP:%.*]] ]
; CHECK-NEXT: [[COND1:%.*]] = load volatile i1, ptr [[ADDR:%.*]], align 1
; CHECK-NEXT: br i1 [[COND1]], label [[LOOP]], label [[MAYBE:%.*]]
; CHECK: maybe:
; CHECK-NEXT: br i1 [[COND2:%.*]], label [[LOOP]], label [[EXIT:%.*]]
; CHECK: loop:
; CHECK-NEXT: [[INDVAR]] = add i32 [[PHI_INDVAR]], 1
; CHECK-NEXT: br label [[HEADER]]
; CHECK: exit:
; CHECK-NEXT: ret i32 [[PHI_INDVAR]]
;
entry:
br label %header
header:
%phi_indvar = phi i32 [0, %entry], [%indvar, %loop]
%cond1 = load volatile i1, ptr %addr
br i1 %cond1, label %loop, label %maybe
maybe:
br i1 %cond2, label %loop, label %exit
loop:
%indvar = add i32 %phi_indvar, 1
br label %header
exit:
ret i32 %phi_indvar
}
define i16 @pr57336(i16 %end, i16 %m) mustprogress {
; CHECK-LABEL: @pr57336(
; CHECK-NEXT: entry:
; CHECK-NEXT: br label [[FOR_BODY:%.*]]
; CHECK: for.body:
; CHECK-NEXT: [[INC8:%.*]] = phi i16 [ [[INC:%.*]], [[FOR_BODY]] ], [ 0, [[ENTRY:%.*]] ]
; CHECK-NEXT: [[INC]] = add nuw nsw i16 [[INC8]], 1
; CHECK-NEXT: [[MUL:%.*]] = mul nsw i16 [[M:%.*]], [[INC8]]
; CHECK-NEXT: [[CMP_NOT:%.*]] = icmp slt i16 [[END:%.*]], [[MUL]]
; CHECK-NEXT: br i1 [[CMP_NOT]], label [[CRIT_EDGE:%.*]], label [[FOR_BODY]]
; CHECK: crit_edge:
; CHECK-NEXT: [[TMP0:%.*]] = add i16 [[END]], 1
; CHECK-NEXT: [[SMAX:%.*]] = call i16 @llvm.smax.i16(i16 [[TMP0]], i16 0)
; CHECK-NEXT: [[TMP1:%.*]] = icmp ult i16 [[END]], 32767
; CHECK-NEXT: [[UMIN:%.*]] = zext i1 [[TMP1]] to i16
; CHECK-NEXT: [[TMP2:%.*]] = sub nsw i16 [[SMAX]], [[UMIN]]
; CHECK-NEXT: [[UMAX:%.*]] = call i16 @llvm.umax.i16(i16 [[M]], i16 1)
; CHECK-NEXT: [[TMP3:%.*]] = udiv i16 [[TMP2]], [[UMAX]]
; CHECK-NEXT: [[TMP4:%.*]] = add i16 [[TMP3]], [[UMIN]]
; CHECK-NEXT: ret i16 [[TMP4]]
;
entry:
br label %for.body
for.body:
%inc8 = phi i16 [ %inc, %for.body ], [ 0, %entry ]
%inc137 = phi i32 [ %inc1, %for.body ], [ 0, %entry ]
%inc1 = add nsw i32 %inc137, 1
%inc = add nsw i16 %inc8, 1
%mul = mul nsw i16 %m, %inc8
%cmp.not = icmp slt i16 %end, %mul
br i1 %cmp.not, label %crit_edge, label %for.body
crit_edge:
%inc137.lcssa = phi i32 [ %inc137, %for.body ]
%conv = trunc i32 %inc137.lcssa to i16
ret i16 %conv
}
define i32 @vscale_slt_with_vp_umin(ptr nocapture %A, i32 %n) mustprogress vscale_range(2,1024) {
; CHECK-LABEL: @vscale_slt_with_vp_umin(
; CHECK-NEXT: entry:
; CHECK-NEXT: [[VSCALE:%.*]] = call i32 @llvm.vscale.i32()
; CHECK-NEXT: [[VF:%.*]] = shl nuw nsw i32 [[VSCALE]], 2
; CHECK-NEXT: [[CMP4:%.*]] = icmp sgt i32 [[N:%.*]], 0
; CHECK-NEXT: br i1 [[CMP4]], label [[FOR_BODY_PREHEADER:%.*]], label [[EARLY_EXIT:%.*]]
; CHECK: for.body.preheader:
; CHECK-NEXT: br label [[FOR_BODY:%.*]]
; CHECK: early.exit:
; CHECK-NEXT: ret i32 0
; CHECK: for.body:
; CHECK-NEXT: [[I_05:%.*]] = phi i32 [ [[ADD:%.*]], [[FOR_BODY]] ], [ 0, [[FOR_BODY_PREHEADER]] ]
; CHECK-NEXT: [[LEFT:%.*]] = sub nsw i32 [[N]], [[I_05]]
; CHECK-NEXT: [[VF_CAPPED:%.*]] = call i32 @llvm.umin.i32(i32 [[VF]], i32 [[LEFT]])
; CHECK-NEXT: store i32 [[VF_CAPPED]], ptr [[A:%.*]], align 4
; CHECK-NEXT: [[ADD]] = add nuw nsw i32 [[I_05]], [[VF]]
; CHECK-NEXT: [[CMP:%.*]] = icmp slt i32 [[ADD]], [[N]]
; CHECK-NEXT: br i1 [[CMP]], label [[FOR_BODY]], label [[FOR_END:%.*]]
; CHECK: for.end:
; CHECK-NEXT: [[TMP0:%.*]] = add nsw i32 [[N]], -1
; CHECK-NEXT: [[TMP1:%.*]] = udiv i32 [[TMP0]], [[VF]]
; CHECK-NEXT: [[TMP2:%.*]] = mul i32 [[TMP1]], [[VSCALE]]
; CHECK-NEXT: [[TMP3:%.*]] = shl i32 [[TMP2]], 2
; CHECK-NEXT: [[TMP4:%.*]] = sub i32 [[N]], [[TMP3]]
; CHECK-NEXT: [[UMIN:%.*]] = call i32 @llvm.umin.i32(i32 [[VF]], i32 [[TMP4]])
; CHECK-NEXT: ret i32 [[UMIN]]
;
entry:
%vscale = call i32 @llvm.vscale.i32()
%VF = shl nuw nsw i32 %vscale, 2
%cmp4 = icmp sgt i32 %n, 0
br i1 %cmp4, label %for.body, label %early.exit
early.exit:
ret i32 0
for.body:
%i.05 = phi i32 [ %add, %for.body ], [ 0, %entry ]
%arrayidx = getelementptr inbounds i32, ptr %A, i32 %i.05
%left = sub i32 %n, %i.05
%VF.capped = call i32 @llvm.umin.i32(i32 %VF, i32 %left)
store i32 %VF.capped, ptr %A
%add = add nsw i32 %i.05, %VF
%cmp = icmp slt i32 %add, %n
br i1 %cmp, label %for.body, label %for.end
for.end:
ret i32 %VF.capped
}
define i32 @vscale_slt_with_vp_umin2(ptr nocapture %A, i32 %n) mustprogress vscale_range(2,1024) {
; CHECK-LABEL: @vscale_slt_with_vp_umin2(
; CHECK-NEXT: entry:
; CHECK-NEXT: [[VSCALE:%.*]] = call i32 @llvm.vscale.i32()
; CHECK-NEXT: [[VF:%.*]] = shl nuw nsw i32 [[VSCALE]], 2
; CHECK-NEXT: [[CMP4:%.*]] = icmp sgt i32 [[N:%.*]], [[VF]]
; CHECK-NEXT: br i1 [[CMP4]], label [[FOR_BODY_PREHEADER:%.*]], label [[EARLY_EXIT:%.*]]
; CHECK: for.body.preheader:
; CHECK-NEXT: br label [[FOR_BODY:%.*]]
; CHECK: early.exit:
; CHECK-NEXT: ret i32 0
; CHECK: for.body:
; CHECK-NEXT: [[I_05:%.*]] = phi i32 [ [[ADD:%.*]], [[FOR_BODY]] ], [ 0, [[FOR_BODY_PREHEADER]] ]
; CHECK-NEXT: [[LEFT:%.*]] = sub i32 [[N]], [[I_05]]
; CHECK-NEXT: [[VF_CAPPED:%.*]] = call i32 @llvm.umin.i32(i32 [[VF]], i32 [[LEFT]])
; CHECK-NEXT: store i32 [[VF_CAPPED]], ptr [[A:%.*]], align 4
; CHECK-NEXT: [[ADD]] = add nuw nsw i32 [[I_05]], [[VF]]
; CHECK-NEXT: [[CMP:%.*]] = icmp slt i32 [[ADD]], [[N]]
; CHECK-NEXT: br i1 [[CMP]], label [[FOR_BODY]], label [[FOR_END:%.*]]
; CHECK: for.end:
; CHECK-NEXT: [[TMP0:%.*]] = add i32 [[N]], -1
; CHECK-NEXT: [[TMP1:%.*]] = udiv i32 [[TMP0]], [[VF]]
; CHECK-NEXT: [[TMP2:%.*]] = mul i32 [[TMP1]], [[VSCALE]]
; CHECK-NEXT: [[TMP3:%.*]] = shl i32 [[TMP2]], 2
; CHECK-NEXT: [[TMP4:%.*]] = sub i32 [[N]], [[TMP3]]
; CHECK-NEXT: [[UMIN:%.*]] = call i32 @llvm.umin.i32(i32 [[VF]], i32 [[TMP4]])
; CHECK-NEXT: ret i32 [[UMIN]]
;
entry:
%vscale = call i32 @llvm.vscale.i32()
%VF = shl nuw nsw i32 %vscale, 2
%cmp4 = icmp sgt i32 %n, %VF
br i1 %cmp4, label %for.body, label %early.exit
early.exit:
ret i32 0
for.body:
%i.05 = phi i32 [ %add, %for.body ], [ 0, %entry ]
%arrayidx = getelementptr inbounds i32, ptr %A, i32 %i.05
%left = sub i32 %n, %i.05
%VF.capped = call i32 @llvm.umin.i32(i32 %VF, i32 %left)
store i32 %VF.capped, ptr %A
%add = add nsw i32 %i.05, %VF
%cmp = icmp slt i32 %add, %n
br i1 %cmp, label %for.body, label %for.end
for.end:
ret i32 %VF.capped
}