llvm-project/openmp/runtime/test/transform/tile/parallel-wsloop-collapse-intfor.cpp
Michael Kruse b0b6c16b47
[Clang][OpenMP][Tile] Allow non-constant tile sizes. (#91345)
Allow non-constants in the `sizes` clause such as
```
#pragma omp tile sizes(a)
for (int i = 0; i < n; ++i)
```
This is permitted since tile was introduced in [OpenMP
5.1](https://www.openmp.org/spec-html/5.1/openmpsu53.html#x78-860002.11.9).

It is possible to sneak-in negative numbers at runtime as in
```
int a = -1;
#pragma omp tile sizes(a)
```
Even though it is not well-formed, it should still result in every loop
iteration to be executed exactly once, an invariant of the tile
construct that we should ensure. `ParseOpenMPExprListClause` is
extracted-out to be reused by the `permutation` clause of the
`interchange` construct. Some care was put into ensuring correct behavior
in template contexts.
2024-05-13 16:10:58 +02:00

101 lines
2.2 KiB
C++

// RUN: %libomp-cxx-compile-and-run | FileCheck %s --match-full-lines
#ifndef HEADER
#define HEADER
#include <cstdlib>
#include <cstdio>
int main() {
printf("do\n");
#pragma omp parallel for collapse(3) num_threads(1)
for (int i = 0; i < 3; ++i)
#pragma omp tile sizes(3, 3)
for (int j = 0; j < 4; ++j)
for (int k = 0; k < 5; ++k)
printf("i=%d j=%d k=%d\n", i, j, k);
printf("done\n");
return EXIT_SUCCESS;
}
#endif /* HEADER */
// CHECK: do
// Full tile
// CHECK-NEXT: i=0 j=0 k=0
// CHECK-NEXT: i=0 j=0 k=1
// CHECK-NEXT: i=0 j=0 k=2
// CHECK-NEXT: i=0 j=1 k=0
// CHECK-NEXT: i=0 j=1 k=1
// CHECK-NEXT: i=0 j=1 k=2
// CHECK-NEXT: i=0 j=2 k=0
// CHECK-NEXT: i=0 j=2 k=1
// CHECK-NEXT: i=0 j=2 k=2
// Partial tile
// CHECK-NEXT: i=0 j=0 k=3
// CHECK-NEXT: i=0 j=0 k=4
// CHECK-NEXT: i=0 j=1 k=3
// CHECK-NEXT: i=0 j=1 k=4
// CHECK-NEXT: i=0 j=2 k=3
// CHECK-NEXT: i=0 j=2 k=4
// Partial tile
// CHECK-NEXT: i=0 j=3 k=0
// CHECK-NEXT: i=0 j=3 k=1
// CHECK-NEXT: i=0 j=3 k=2
// Partial tile
// CHECK-NEXT: i=0 j=3 k=3
// CHECK-NEXT: i=0 j=3 k=4
// Full tile
// CHECK-NEXT: i=1 j=0 k=0
// CHECK-NEXT: i=1 j=0 k=1
// CHECK-NEXT: i=1 j=0 k=2
// CHECK-NEXT: i=1 j=1 k=0
// CHECK-NEXT: i=1 j=1 k=1
// CHECK-NEXT: i=1 j=1 k=2
// CHECK-NEXT: i=1 j=2 k=0
// CHECK-NEXT: i=1 j=2 k=1
// CHECK-NEXT: i=1 j=2 k=2
// Partial tiles
// CHECK-NEXT: i=1 j=0 k=3
// CHECK-NEXT: i=1 j=0 k=4
// CHECK-NEXT: i=1 j=1 k=3
// CHECK-NEXT: i=1 j=1 k=4
// CHECK-NEXT: i=1 j=2 k=3
// CHECK-NEXT: i=1 j=2 k=4
// CHECK-NEXT: i=1 j=3 k=0
// CHECK-NEXT: i=1 j=3 k=1
// CHECK-NEXT: i=1 j=3 k=2
// CHECK-NEXT: i=1 j=3 k=3
// CHECK-NEXT: i=1 j=3 k=4
// Full tile
// CHECK-NEXT: i=2 j=0 k=0
// CHECK-NEXT: i=2 j=0 k=1
// CHECK-NEXT: i=2 j=0 k=2
// CHECK-NEXT: i=2 j=1 k=0
// CHECK-NEXT: i=2 j=1 k=1
// CHECK-NEXT: i=2 j=1 k=2
// CHECK-NEXT: i=2 j=2 k=0
// CHECK-NEXT: i=2 j=2 k=1
// CHECK-NEXT: i=2 j=2 k=2
// Partial tiles
// CHECK-NEXT: i=2 j=0 k=3
// CHECK-NEXT: i=2 j=0 k=4
// CHECK-NEXT: i=2 j=1 k=3
// CHECK-NEXT: i=2 j=1 k=4
// CHECK-NEXT: i=2 j=2 k=3
// CHECK-NEXT: i=2 j=2 k=4
// CHECK-NEXT: i=2 j=3 k=0
// CHECK-NEXT: i=2 j=3 k=1
// CHECK-NEXT: i=2 j=3 k=2
// CHECK-NEXT: i=2 j=3 k=3
// CHECK-NEXT: i=2 j=3 k=4
// CHECK-NEXT: done