llvm-project/llvm/lib/Transforms/Vectorize/LoopVectorizationPlanner.h
Florian Hahn 6ef829941b
Recommit "[VPlan] Replace disjoint or with add instead of dropping disjoint. (#83821)"
Recommit with a fix for the use-after-free causing the revert.
This reverts the revert commit f872043e055f4163c3c4b1b86ca0354490174987.

Original commit message:

Dropping disjoint from an OR may yield incorrect results, as some
analysis may have converted it to an Add implicitly (e.g. SCEV used for
dependence analysis). Instead, replace it with an equivalent Add.

This is possible as all users of the disjoint OR only access lanes where
the operands are disjoint or poison otherwise.

Note that replacing all disjoint ORs with ADDs instead of dropping the
flags is not strictly necessary. It is only needed for disjoint ORs that
SCEV treated as ADDs, but those are not tracked.

There are other places that may drop poison-generating flags; those
likely need similar treatment.

Fixes https://github.com/llvm/llvm-project/issues/81872

PR: https://github.com/llvm/llvm-project/pull/83821
2024-03-27 19:11:18 +00:00

456 lines
17 KiB
C++

//===- LoopVectorizationPlanner.h - Planner for LoopVectorization ---------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
///
/// \file
/// This file provides a LoopVectorizationPlanner class.
/// InnerLoopVectorizer vectorizes loops which contain only one basic
/// LoopVectorizationPlanner - drives the vectorization process after having
/// passed Legality checks.
/// The planner builds and optimizes the Vectorization Plans which record the
/// decisions how to vectorize the given loop. In particular, represent the
/// control-flow of the vectorized version, the replication of instructions that
/// are to be scalarized, and interleave access groups.
///
/// Also provides a VPlan-based builder utility analogous to IRBuilder.
/// It provides an instruction-level API for generating VPInstructions while
/// abstracting away the Recipe manipulation details.
//===----------------------------------------------------------------------===//
#ifndef LLVM_TRANSFORMS_VECTORIZE_LOOPVECTORIZATIONPLANNER_H
#define LLVM_TRANSFORMS_VECTORIZE_LOOPVECTORIZATIONPLANNER_H
#include "VPlan.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/Support/InstructionCost.h"
namespace llvm {
class LoopInfo;
class DominatorTree;
class LoopVectorizationLegality;
class LoopVectorizationCostModel;
class PredicatedScalarEvolution;
class LoopVectorizeHints;
class OptimizationRemarkEmitter;
class TargetTransformInfo;
class TargetLibraryInfo;
class VPRecipeBuilder;
/// VPlan-based builder utility analogous to IRBuilder.
class VPBuilder {
VPBasicBlock *BB = nullptr;
VPBasicBlock::iterator InsertPt = VPBasicBlock::iterator();
/// Insert \p VPI in BB at InsertPt if BB is set.
VPInstruction *tryInsertInstruction(VPInstruction *VPI) {
if (BB)
BB->insert(VPI, InsertPt);
return VPI;
}
VPInstruction *createInstruction(unsigned Opcode,
ArrayRef<VPValue *> Operands, DebugLoc DL,
const Twine &Name = "") {
return tryInsertInstruction(new VPInstruction(Opcode, Operands, DL, Name));
}
VPInstruction *createInstruction(unsigned Opcode,
std::initializer_list<VPValue *> Operands,
DebugLoc DL, const Twine &Name = "") {
return createInstruction(Opcode, ArrayRef<VPValue *>(Operands), DL, Name);
}
public:
VPBuilder() = default;
VPBuilder(VPBasicBlock *InsertBB) { setInsertPoint(InsertBB); }
VPBuilder(VPRecipeBase *InsertPt) {
setInsertPoint(InsertPt->getParent(), InsertPt->getIterator());
}
/// Clear the insertion point: created instructions will not be inserted into
/// a block.
void clearInsertionPoint() {
BB = nullptr;
InsertPt = VPBasicBlock::iterator();
}
VPBasicBlock *getInsertBlock() const { return BB; }
VPBasicBlock::iterator getInsertPoint() const { return InsertPt; }
/// Create a VPBuilder to insert after \p R.
static VPBuilder getToInsertAfter(VPRecipeBase *R) {
VPBuilder B;
B.setInsertPoint(R->getParent(), std::next(R->getIterator()));
return B;
}
/// InsertPoint - A saved insertion point.
class VPInsertPoint {
VPBasicBlock *Block = nullptr;
VPBasicBlock::iterator Point;
public:
/// Creates a new insertion point which doesn't point to anything.
VPInsertPoint() = default;
/// Creates a new insertion point at the given location.
VPInsertPoint(VPBasicBlock *InsertBlock, VPBasicBlock::iterator InsertPoint)
: Block(InsertBlock), Point(InsertPoint) {}
/// Returns true if this insert point is set.
bool isSet() const { return Block != nullptr; }
VPBasicBlock *getBlock() const { return Block; }
VPBasicBlock::iterator getPoint() const { return Point; }
};
/// Sets the current insert point to a previously-saved location.
void restoreIP(VPInsertPoint IP) {
if (IP.isSet())
setInsertPoint(IP.getBlock(), IP.getPoint());
else
clearInsertionPoint();
}
/// This specifies that created VPInstructions should be appended to the end
/// of the specified block.
void setInsertPoint(VPBasicBlock *TheBB) {
assert(TheBB && "Attempting to set a null insert point");
BB = TheBB;
InsertPt = BB->end();
}
/// This specifies that created instructions should be inserted at the
/// specified point.
void setInsertPoint(VPBasicBlock *TheBB, VPBasicBlock::iterator IP) {
BB = TheBB;
InsertPt = IP;
}
/// This specifies that created instructions should be inserted at the
/// specified point.
void setInsertPoint(VPRecipeBase *IP) {
BB = IP->getParent();
InsertPt = IP->getIterator();
}
/// Create an N-ary operation with \p Opcode, \p Operands and set \p Inst as
/// its underlying Instruction.
VPInstruction *createNaryOp(unsigned Opcode, ArrayRef<VPValue *> Operands,
Instruction *Inst = nullptr,
const Twine &Name = "") {
DebugLoc DL;
if (Inst)
DL = Inst->getDebugLoc();
VPInstruction *NewVPInst = createInstruction(Opcode, Operands, DL, Name);
NewVPInst->setUnderlyingValue(Inst);
return NewVPInst;
}
VPInstruction *createNaryOp(unsigned Opcode, ArrayRef<VPValue *> Operands,
DebugLoc DL, const Twine &Name = "") {
return createInstruction(Opcode, Operands, DL, Name);
}
VPInstruction *createOverflowingOp(unsigned Opcode,
std::initializer_list<VPValue *> Operands,
VPRecipeWithIRFlags::WrapFlagsTy WrapFlags,
DebugLoc DL = {}, const Twine &Name = "") {
return tryInsertInstruction(
new VPInstruction(Opcode, Operands, WrapFlags, DL, Name));
}
VPValue *createNot(VPValue *Operand, DebugLoc DL = {},
const Twine &Name = "") {
return createInstruction(VPInstruction::Not, {Operand}, DL, Name);
}
VPValue *createAnd(VPValue *LHS, VPValue *RHS, DebugLoc DL = {},
const Twine &Name = "") {
return createInstruction(Instruction::BinaryOps::And, {LHS, RHS}, DL, Name);
}
VPValue *createOr(VPValue *LHS, VPValue *RHS, DebugLoc DL = {},
const Twine &Name = "") {
return createInstruction(Instruction::BinaryOps::Or, {LHS, RHS}, DL, Name);
}
VPValue *createSelect(VPValue *Cond, VPValue *TrueVal, VPValue *FalseVal,
DebugLoc DL = {}, const Twine &Name = "",
std::optional<FastMathFlags> FMFs = std::nullopt) {
auto *Select =
FMFs ? new VPInstruction(Instruction::Select, {Cond, TrueVal, FalseVal},
*FMFs, DL, Name)
: new VPInstruction(Instruction::Select, {Cond, TrueVal, FalseVal},
DL, Name);
return tryInsertInstruction(Select);
}
/// Create a new ICmp VPInstruction with predicate \p Pred and operands \p A
/// and \p B.
/// TODO: add createFCmp when needed.
VPValue *createICmp(CmpInst::Predicate Pred, VPValue *A, VPValue *B,
DebugLoc DL = {}, const Twine &Name = "");
//===--------------------------------------------------------------------===//
// RAII helpers.
//===--------------------------------------------------------------------===//
/// RAII object that stores the current insertion point and restores it when
/// the object is destroyed.
class InsertPointGuard {
VPBuilder &Builder;
VPBasicBlock *Block;
VPBasicBlock::iterator Point;
public:
InsertPointGuard(VPBuilder &B)
: Builder(B), Block(B.getInsertBlock()), Point(B.getInsertPoint()) {}
InsertPointGuard(const InsertPointGuard &) = delete;
InsertPointGuard &operator=(const InsertPointGuard &) = delete;
~InsertPointGuard() { Builder.restoreIP(VPInsertPoint(Block, Point)); }
};
};
/// TODO: The following VectorizationFactor was pulled out of
/// LoopVectorizationCostModel class. LV also deals with
/// VectorizerParams::VectorizationFactor and VectorizationCostTy.
/// We need to streamline them.
/// Information about vectorization costs.
struct VectorizationFactor {
/// Vector width with best cost.
ElementCount Width;
/// Cost of the loop with that width.
InstructionCost Cost;
/// Cost of the scalar loop.
InstructionCost ScalarCost;
/// The minimum trip count required to make vectorization profitable, e.g. due
/// to runtime checks.
ElementCount MinProfitableTripCount;
VectorizationFactor(ElementCount Width, InstructionCost Cost,
InstructionCost ScalarCost)
: Width(Width), Cost(Cost), ScalarCost(ScalarCost) {}
/// Width 1 means no vectorization, cost 0 means uncomputed cost.
static VectorizationFactor Disabled() {
return {ElementCount::getFixed(1), 0, 0};
}
bool operator==(const VectorizationFactor &rhs) const {
return Width == rhs.Width && Cost == rhs.Cost;
}
bool operator!=(const VectorizationFactor &rhs) const {
return !(*this == rhs);
}
};
/// ElementCountComparator creates a total ordering for ElementCount
/// for the purposes of using it in a set structure.
struct ElementCountComparator {
bool operator()(const ElementCount &LHS, const ElementCount &RHS) const {
return std::make_tuple(LHS.isScalable(), LHS.getKnownMinValue()) <
std::make_tuple(RHS.isScalable(), RHS.getKnownMinValue());
}
};
using ElementCountSet = SmallSet<ElementCount, 16, ElementCountComparator>;
/// A class that represents two vectorization factors (initialized with 0 by
/// default). One for fixed-width vectorization and one for scalable
/// vectorization. This can be used by the vectorizer to choose from a range of
/// fixed and/or scalable VFs in order to find the most cost-effective VF to
/// vectorize with.
struct FixedScalableVFPair {
ElementCount FixedVF;
ElementCount ScalableVF;
FixedScalableVFPair()
: FixedVF(ElementCount::getFixed(0)),
ScalableVF(ElementCount::getScalable(0)) {}
FixedScalableVFPair(const ElementCount &Max) : FixedScalableVFPair() {
*(Max.isScalable() ? &ScalableVF : &FixedVF) = Max;
}
FixedScalableVFPair(const ElementCount &FixedVF,
const ElementCount &ScalableVF)
: FixedVF(FixedVF), ScalableVF(ScalableVF) {
assert(!FixedVF.isScalable() && ScalableVF.isScalable() &&
"Invalid scalable properties");
}
static FixedScalableVFPair getNone() { return FixedScalableVFPair(); }
/// \return true if either fixed- or scalable VF is non-zero.
explicit operator bool() const { return FixedVF || ScalableVF; }
/// \return true if either fixed- or scalable VF is a valid vector VF.
bool hasVector() const { return FixedVF.isVector() || ScalableVF.isVector(); }
};
/// Planner drives the vectorization process after having passed
/// Legality checks.
class LoopVectorizationPlanner {
/// The loop that we evaluate.
Loop *OrigLoop;
/// Loop Info analysis.
LoopInfo *LI;
/// The dominator tree.
DominatorTree *DT;
/// Target Library Info.
const TargetLibraryInfo *TLI;
/// Target Transform Info.
const TargetTransformInfo &TTI;
/// The legality analysis.
LoopVectorizationLegality *Legal;
/// The profitability analysis.
LoopVectorizationCostModel &CM;
/// The interleaved access analysis.
InterleavedAccessInfo &IAI;
PredicatedScalarEvolution &PSE;
const LoopVectorizeHints &Hints;
OptimizationRemarkEmitter *ORE;
SmallVector<VPlanPtr, 4> VPlans;
/// Profitable vector factors.
SmallVector<VectorizationFactor, 8> ProfitableVFs;
/// A builder used to construct the current plan.
VPBuilder Builder;
public:
LoopVectorizationPlanner(
Loop *L, LoopInfo *LI, DominatorTree *DT, const TargetLibraryInfo *TLI,
const TargetTransformInfo &TTI, LoopVectorizationLegality *Legal,
LoopVectorizationCostModel &CM, InterleavedAccessInfo &IAI,
PredicatedScalarEvolution &PSE, const LoopVectorizeHints &Hints,
OptimizationRemarkEmitter *ORE)
: OrigLoop(L), LI(LI), DT(DT), TLI(TLI), TTI(TTI), Legal(Legal), CM(CM),
IAI(IAI), PSE(PSE), Hints(Hints), ORE(ORE) {}
/// Plan how to best vectorize, return the best VF and its cost, or
/// std::nullopt if vectorization and interleaving should be avoided up front.
std::optional<VectorizationFactor> plan(ElementCount UserVF, unsigned UserIC);
/// Use the VPlan-native path to plan how to best vectorize, return the best
/// VF and its cost.
VectorizationFactor planInVPlanNativePath(ElementCount UserVF);
/// Return the best VPlan for \p VF.
VPlan &getBestPlanFor(ElementCount VF) const;
/// Generate the IR code for the vectorized loop captured in VPlan \p BestPlan
/// according to the best selected \p VF and \p UF.
///
/// TODO: \p IsEpilogueVectorization is needed to avoid issues due to epilogue
/// vectorization re-using plans for both the main and epilogue vector loops.
/// It should be removed once the re-use issue has been fixed.
/// \p ExpandedSCEVs is passed during execution of the plan for epilogue loop
/// to re-use expansion results generated during main plan execution.
///
/// Returns a mapping of SCEVs to their expanded IR values and a mapping for
/// the reduction resume values. Note that this is a temporary workaround
/// needed due to the current epilogue handling.
std::pair<DenseMap<const SCEV *, Value *>,
DenseMap<const RecurrenceDescriptor *, Value *>>
executePlan(ElementCount VF, unsigned UF, VPlan &BestPlan,
InnerLoopVectorizer &LB, DominatorTree *DT,
bool IsEpilogueVectorization,
const DenseMap<const SCEV *, Value *> *ExpandedSCEVs = nullptr);
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
void printPlans(raw_ostream &O);
#endif
/// Look through the existing plans and return true if we have one with
/// vectorization factor \p VF.
bool hasPlanWithVF(ElementCount VF) const {
return any_of(VPlans,
[&](const VPlanPtr &Plan) { return Plan->hasVF(VF); });
}
/// Test a \p Predicate on a \p Range of VF's. Return the value of applying
/// \p Predicate on Range.Start, possibly decreasing Range.End such that the
/// returned value holds for the entire \p Range.
static bool
getDecisionAndClampRange(const std::function<bool(ElementCount)> &Predicate,
VFRange &Range);
/// \return The most profitable vectorization factor and the cost of that VF
/// for vectorizing the epilogue. Returns VectorizationFactor::Disabled if
/// epilogue vectorization is not supported for the loop.
VectorizationFactor
selectEpilogueVectorizationFactor(const ElementCount MaxVF, unsigned IC);
protected:
/// Build VPlans for power-of-2 VF's between \p MinVF and \p MaxVF inclusive,
/// according to the information gathered by Legal when it checked if it is
/// legal to vectorize the loop.
void buildVPlans(ElementCount MinVF, ElementCount MaxVF);
private:
/// Build a VPlan according to the information gathered by Legal. \return a
/// VPlan for vectorization factors \p Range.Start and up to \p Range.End
/// exclusive, possibly decreasing \p Range.End.
VPlanPtr buildVPlan(VFRange &Range);
/// Build a VPlan using VPRecipes according to the information gather by
/// Legal. This method is only used for the legacy inner loop vectorizer.
/// \p Range's largest included VF is restricted to the maximum VF the
/// returned VPlan is valid for. If no VPlan can be built for the input range,
/// set the largest included VF to the maximum VF for which no plan could be
/// built.
VPlanPtr tryToBuildVPlanWithVPRecipes(VFRange &Range);
/// Build VPlans for power-of-2 VF's between \p MinVF and \p MaxVF inclusive,
/// according to the information gathered by Legal when it checked if it is
/// legal to vectorize the loop. This method creates VPlans using VPRecipes.
void buildVPlansWithVPRecipes(ElementCount MinVF, ElementCount MaxVF);
// Adjust the recipes for reductions. For in-loop reductions the chain of
// instructions leading from the loop exit instr to the phi need to be
// converted to reductions, with one operand being vector and the other being
// the scalar reduction chain. For other reductions, a select is introduced
// between the phi and live-out recipes when folding the tail.
void adjustRecipesForReductions(VPBasicBlock *LatchVPBB, VPlanPtr &Plan,
VPRecipeBuilder &RecipeBuilder,
ElementCount MinVF);
/// \return The most profitable vectorization factor and the cost of that VF.
/// This method checks every VF in \p CandidateVFs.
VectorizationFactor
selectVectorizationFactor(const ElementCountSet &CandidateVFs);
/// Returns true if the per-lane cost of VectorizationFactor A is lower than
/// that of B.
bool isMoreProfitable(const VectorizationFactor &A,
const VectorizationFactor &B) const;
/// Determines if we have the infrastructure to vectorize the loop and its
/// epilogue, assuming the main loop is vectorized by \p VF.
bool isCandidateForEpilogueVectorization(const ElementCount VF) const;
};
} // namespace llvm
#endif // LLVM_TRANSFORMS_VECTORIZE_LOOPVECTORIZATIONPLANNER_H