Roland McGrath 70c9152f99
[libc] Fix non-calls to cpp::is_complex_type_same (#121257)
Some uses were not actually calls, just references to the name.
2024-12-30 14:35:31 -08:00

422 lines
21 KiB
C++

//===-- FPMatchers.h --------------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_LIBC_TEST_UNITTEST_FPMATCHER_H
#define LLVM_LIBC_TEST_UNITTEST_FPMATCHER_H
#include "src/__support/CPP/array.h"
#include "src/__support/CPP/type_traits.h"
#include "src/__support/CPP/type_traits/is_complex.h"
#include "src/__support/FPUtil/FEnvImpl.h"
#include "src/__support/FPUtil/FPBits.h"
#include "src/__support/FPUtil/fpbits_str.h"
#include "src/__support/macros/config.h"
#include "src/__support/macros/properties/architectures.h"
#include "test/UnitTest/RoundingModeUtils.h"
#include "test/UnitTest/StringUtils.h"
#include "test/UnitTest/Test.h"
#include "hdr/math_macros.h"
using LIBC_NAMESPACE::Sign;
namespace LIBC_NAMESPACE_DECL {
namespace testing {
template <typename T, TestCond Condition> class FPMatcher : public Matcher<T> {
static_assert(cpp::is_floating_point_v<T>,
"FPMatcher can only be used with floating point values.");
static_assert(Condition == TestCond::EQ || Condition == TestCond::NE,
"Unsupported FPMatcher test condition.");
T expected;
T actual;
public:
FPMatcher(T expectedValue) : expected(expectedValue) {}
bool match(T actualValue) {
actual = actualValue;
fputil::FPBits<T> actualBits(actual), expectedBits(expected);
if (Condition == TestCond::EQ)
return (actualBits.is_nan() && expectedBits.is_nan()) ||
(actualBits.uintval() == expectedBits.uintval());
// If condition == TestCond::NE.
if (actualBits.is_nan())
return !expectedBits.is_nan();
return expectedBits.is_nan() ||
(actualBits.uintval() != expectedBits.uintval());
}
void explainError() override {
tlog << "Expected floating point value: "
<< str(fputil::FPBits<T>(expected)) << '\n';
tlog << "Actual floating point value: " << str(fputil::FPBits<T>(actual))
<< '\n';
}
};
template <typename T, TestCond Condition> class CFPMatcher : public Matcher<T> {
static_assert(
cpp::is_complex_v<T>,
"CFPMatcher can only be used with complex floating point values.");
static_assert(Condition == TestCond::EQ || Condition == TestCond::NE,
"Unsupported CFPMatcher test condition.");
T expected;
T actual;
public:
CFPMatcher(T expectedValue) : expected(expectedValue) {}
template <typename CFT> bool matchComplex() {
CFT *actualCmplxPtr = reinterpret_cast<CFT *>(&actual);
CFT *expectedCmplxPtr = reinterpret_cast<CFT *>(&expected);
CFT actualReal = actualCmplxPtr[0];
CFT actualImag = actualCmplxPtr[1];
CFT expectedReal = expectedCmplxPtr[0];
CFT expectedImag = expectedCmplxPtr[1];
fputil::FPBits<CFT> actualRealBits(actualReal),
expectedRealBits(expectedReal);
fputil::FPBits<CFT> actualImagBits(actualImag),
expectedImagBits(expectedImag);
if (Condition == TestCond::EQ)
return ((actualRealBits.is_nan() && expectedRealBits.is_nan()) ||
(actualRealBits.uintval() == expectedRealBits.uintval())) &&
((actualImagBits.is_nan() && expectedImagBits.is_nan()) ||
(actualImagBits.uintval() == expectedImagBits.uintval()));
// If condition == TestCond::NE.
if (actualRealBits.is_nan() && expectedRealBits.is_nan())
return !expectedRealBits.is_nan() && !expectedImagBits.is_nan();
if (actualRealBits.is_nan())
return !expectedRealBits.is_nan();
if (actualImagBits.is_nan())
return !expectedImagBits.is_nan();
return (expectedRealBits.is_nan() ||
actualRealBits.uintval() != expectedRealBits.uintval()) &&
(expectedImagBits.is_nan() ||
actualImagBits.uintval() != expectedImagBits.uintval());
}
template <typename CFT> void explainErrorComplex() {
CFT *actualCmplxPtr = reinterpret_cast<CFT *>(&actual);
CFT *expectedCmplxPtr = reinterpret_cast<CFT *>(&expected);
CFT actualReal = actualCmplxPtr[0];
CFT actualImag = actualCmplxPtr[1];
CFT expectedReal = expectedCmplxPtr[0];
CFT expectedImag = expectedCmplxPtr[1];
tlog << "Expected complex floating point value: "
<< str(fputil::FPBits<CFT>(expectedReal)) + " + " +
str(fputil::FPBits<CFT>(expectedImag)) + "i"
<< '\n';
tlog << "Actual complex floating point value: "
<< str(fputil::FPBits<CFT>(actualReal)) + " + " +
str(fputil::FPBits<CFT>(actualImag)) + "i"
<< '\n';
}
bool match(T actualValue) {
actual = actualValue;
if constexpr (cpp::is_complex_type_same<T, _Complex float>())
return matchComplex<float>();
else if constexpr (cpp::is_complex_type_same<T, _Complex double>())
return matchComplex<double>();
else if constexpr (cpp::is_complex_type_same<T, _Complex long double>())
return matchComplex<long double>();
#ifdef LIBC_TYPES_HAS_CFLOAT16
else if constexpr (cpp::is_complex_type_same<T, cfloat16>())
return matchComplex<float16>();
#endif
#ifdef LIBC_TYPES_HAS_CFLOAT128
else if constexpr (cpp::is_complex_type_same<T, cfloat128>())
return matchComplex<float128>();
#endif
}
void explainError() override {
if constexpr (cpp::is_complex_type_same<T, _Complex float>())
return explainErrorComplex<float>();
else if constexpr (cpp::is_complex_type_same<T, _Complex double>())
return explainErrorComplex<double>();
else if constexpr (cpp::is_complex_type_same<T, _Complex long double>())
return explainErrorComplex<long double>();
#ifdef LIBC_TYPES_HAS_CFLOAT16
else if constexpr (cpp::is_complex_type_same<T, cfloat16>())
return explainErrorComplex<float16>();
#endif
#ifdef LIBC_TYPES_HAS_CFLOAT128
else if constexpr (cpp::is_complex_type_same<T, cfloat128>())
return explainErrorComplex<float128>();
#endif
}
};
template <TestCond C, typename T> FPMatcher<T, C> getMatcher(T expectedValue) {
return FPMatcher<T, C>(expectedValue);
}
template <TestCond C, typename T>
CFPMatcher<T, C> getMatcherComplex(T expectedValue) {
return CFPMatcher<T, C>(expectedValue);
}
template <typename T> struct FPTest : public Test {
using FPBits = LIBC_NAMESPACE::fputil::FPBits<T>;
using StorageType = typename FPBits::StorageType;
static constexpr StorageType STORAGE_MAX =
LIBC_NAMESPACE::cpp::numeric_limits<StorageType>::max();
static constexpr T zero = FPBits::zero(Sign::POS).get_val();
static constexpr T neg_zero = FPBits::zero(Sign::NEG).get_val();
static constexpr T aNaN = FPBits::quiet_nan(Sign::POS).get_val();
static constexpr T neg_aNaN = FPBits::quiet_nan(Sign::NEG).get_val();
static constexpr T sNaN = FPBits::signaling_nan().get_val();
static constexpr T inf = FPBits::inf(Sign::POS).get_val();
static constexpr T neg_inf = FPBits::inf(Sign::NEG).get_val();
static constexpr T min_normal = FPBits::min_normal().get_val();
static constexpr T max_normal = FPBits::max_normal(Sign::POS).get_val();
static constexpr T neg_max_normal = FPBits::max_normal(Sign::NEG).get_val();
static constexpr T min_denormal = FPBits::min_subnormal().get_val();
static constexpr T max_denormal = FPBits::max_subnormal().get_val();
static constexpr int N_ROUNDING_MODES = 4;
static constexpr fputil::testing::RoundingMode ROUNDING_MODES[4] = {
fputil::testing::RoundingMode::Nearest,
fputil::testing::RoundingMode::Upward,
fputil::testing::RoundingMode::Downward,
fputil::testing::RoundingMode::TowardZero,
};
};
// Add facility to test Flush-Denormal-To-Zero (FTZ) and Denormal-As-Zero (DAZ)
// modes.
// These tests to ensure that our implementations will not crash under these
// modes.
#if defined(LIBC_TARGET_ARCH_IS_X86_64) && __has_builtin(__builtin_ia32_stmxcsr)
#define LIBC_TEST_FTZ_DAZ
static constexpr unsigned FTZ = 0x8000; // Flush denormal to zero
static constexpr unsigned DAZ = 0x0040; // Denormal as zero
struct ModifyMXCSR {
ModifyMXCSR(unsigned flags) {
old_mxcsr = __builtin_ia32_stmxcsr();
__builtin_ia32_ldmxcsr(old_mxcsr | flags);
}
~ModifyMXCSR() { __builtin_ia32_ldmxcsr(old_mxcsr); }
private:
unsigned old_mxcsr;
};
#endif
} // namespace testing
} // namespace LIBC_NAMESPACE_DECL
#define DECLARE_SPECIAL_CONSTANTS(T) \
using FPBits = LIBC_NAMESPACE::fputil::FPBits<T>; \
using StorageType = typename FPBits::StorageType; \
\
static constexpr StorageType STORAGE_MAX = \
LIBC_NAMESPACE::cpp::numeric_limits<StorageType>::max(); \
const T zero = FPBits::zero(Sign::POS).get_val(); \
const T neg_zero = FPBits::zero(Sign::NEG).get_val(); \
const T aNaN = FPBits::quiet_nan(Sign::POS).get_val(); \
const T neg_aNaN = FPBits::quiet_nan(Sign::NEG).get_val(); \
const T sNaN = FPBits::signaling_nan(Sign::POS).get_val(); \
const T neg_sNaN = FPBits::signaling_nan(Sign::NEG).get_val(); \
const T inf = FPBits::inf(Sign::POS).get_val(); \
const T neg_inf = FPBits::inf(Sign::NEG).get_val(); \
const T min_normal = FPBits::min_normal().get_val(); \
const T max_normal = FPBits::max_normal(Sign::POS).get_val(); \
const T neg_max_normal = FPBits::max_normal(Sign::NEG).get_val(); \
const T min_denormal = FPBits::min_subnormal(Sign::POS).get_val(); \
const T neg_min_denormal = FPBits::min_subnormal(Sign::NEG).get_val(); \
const T max_denormal = FPBits::max_subnormal().get_val(); \
static constexpr int UNKNOWN_MATH_ROUNDING_DIRECTION = 99; \
static constexpr LIBC_NAMESPACE::cpp::array<int, 6> \
MATH_ROUNDING_DIRECTIONS_INCLUDING_UNKNOWN = { \
FP_INT_UPWARD, FP_INT_DOWNWARD, \
FP_INT_TOWARDZERO, FP_INT_TONEARESTFROMZERO, \
FP_INT_TONEAREST, UNKNOWN_MATH_ROUNDING_DIRECTION, \
};
#define EXPECT_FP_EQ(expected, actual) \
EXPECT_THAT(actual, LIBC_NAMESPACE::testing::getMatcher< \
LIBC_NAMESPACE::testing::TestCond::EQ>(expected))
#define EXPECT_CFP_EQ(expected, actual) \
EXPECT_THAT(actual, LIBC_NAMESPACE::testing::getMatcherComplex< \
LIBC_NAMESPACE::testing::TestCond::EQ>(expected))
#define TEST_FP_EQ(expected, actual) \
LIBC_NAMESPACE::testing::getMatcher<LIBC_NAMESPACE::testing::TestCond::EQ>( \
expected) \
.match(actual)
#define EXPECT_FP_IS_NAN(actual) EXPECT_TRUE((actual) != (actual))
#define ASSERT_FP_EQ(expected, actual) \
ASSERT_THAT(actual, LIBC_NAMESPACE::testing::getMatcher< \
LIBC_NAMESPACE::testing::TestCond::EQ>(expected))
#define EXPECT_FP_NE(expected, actual) \
EXPECT_THAT(actual, LIBC_NAMESPACE::testing::getMatcher< \
LIBC_NAMESPACE::testing::TestCond::NE>(expected))
#define ASSERT_FP_NE(expected, actual) \
ASSERT_THAT(actual, LIBC_NAMESPACE::testing::getMatcher< \
LIBC_NAMESPACE::testing::TestCond::NE>(expected))
#define EXPECT_MATH_ERRNO(expected) \
do { \
if (math_errhandling & MATH_ERRNO) { \
int actual = LIBC_NAMESPACE::libc_errno; \
LIBC_NAMESPACE::libc_errno = 0; \
EXPECT_EQ(actual, expected); \
} \
} while (0)
#define ASSERT_MATH_ERRNO(expected) \
do { \
if (math_errhandling & MATH_ERRNO) { \
int actual = LIBC_NAMESPACE::libc_errno; \
LIBC_NAMESPACE::libc_errno = 0; \
ASSERT_EQ(actual, expected); \
} \
} while (0)
#define EXPECT_FP_EXCEPTION(expected) \
do { \
if (math_errhandling & MATH_ERREXCEPT) { \
EXPECT_EQ( \
LIBC_NAMESPACE::fputil::test_except( \
static_cast<int>(FE_ALL_EXCEPT)) & \
((expected) ? (expected) : static_cast<int>(FE_ALL_EXCEPT)), \
(expected)); \
} \
} while (0)
#define ASSERT_FP_EXCEPTION(expected) \
do { \
if (math_errhandling & MATH_ERREXCEPT) { \
ASSERT_EQ( \
LIBC_NAMESPACE::fputil::test_except( \
static_cast<int>(FE_ALL_EXCEPT)) & \
((expected) ? (expected) : static_cast<int>(FE_ALL_EXCEPT)), \
(expected)); \
} \
} while (0)
#define EXPECT_FP_EQ_WITH_EXCEPTION(expected_val, actual_val, expected_except) \
do { \
LIBC_NAMESPACE::fputil::clear_except(static_cast<int>(FE_ALL_EXCEPT)); \
EXPECT_FP_EQ(expected_val, actual_val); \
EXPECT_FP_EXCEPTION(expected_except); \
} while (0)
#define EXPECT_FP_IS_NAN_WITH_EXCEPTION(actual_val, expected_except) \
do { \
LIBC_NAMESPACE::fputil::clear_except(static_cast<int>(FE_ALL_EXCEPT)); \
EXPECT_FP_IS_NAN(actual_val); \
EXPECT_FP_EXCEPTION(expected_except); \
} while (0)
#define EXPECT_FP_EQ_ALL_ROUNDING(expected, actual) \
do { \
using namespace LIBC_NAMESPACE::fputil::testing; \
ForceRoundingMode __r1(RoundingMode::Nearest); \
if (__r1.success) { \
EXPECT_FP_EQ((expected), (actual)); \
} \
ForceRoundingMode __r2(RoundingMode::Upward); \
if (__r2.success) { \
EXPECT_FP_EQ((expected), (actual)); \
} \
ForceRoundingMode __r3(RoundingMode::Downward); \
if (__r3.success) { \
EXPECT_FP_EQ((expected), (actual)); \
} \
ForceRoundingMode __r4(RoundingMode::TowardZero); \
if (__r4.success) { \
EXPECT_FP_EQ((expected), (actual)); \
} \
} while (0)
#define EXPECT_FP_EQ_ROUNDING_MODE(expected, actual, rounding_mode) \
do { \
using namespace LIBC_NAMESPACE::fputil::testing; \
ForceRoundingMode __r((rounding_mode)); \
if (__r.success) { \
EXPECT_FP_EQ((expected), (actual)); \
} \
} while (0)
#define EXPECT_FP_EQ_ROUNDING_NEAREST(expected, actual) \
EXPECT_FP_EQ_ROUNDING_MODE((expected), (actual), RoundingMode::Nearest)
#define EXPECT_FP_EQ_ROUNDING_UPWARD(expected, actual) \
EXPECT_FP_EQ_ROUNDING_MODE((expected), (actual), RoundingMode::Upward)
#define EXPECT_FP_EQ_ROUNDING_DOWNWARD(expected, actual) \
EXPECT_FP_EQ_ROUNDING_MODE((expected), (actual), RoundingMode::Downward)
#define EXPECT_FP_EQ_ROUNDING_TOWARD_ZERO(expected, actual) \
EXPECT_FP_EQ_ROUNDING_MODE((expected), (actual), RoundingMode::TowardZero)
#define EXPECT_FP_EQ_WITH_EXCEPTION_ROUNDING_MODE( \
expected, actual, expected_except, rounding_mode) \
do { \
using namespace LIBC_NAMESPACE::fputil::testing; \
ForceRoundingMode __r((rounding_mode)); \
if (__r.success) { \
LIBC_NAMESPACE::fputil::clear_except(static_cast<int>(FE_ALL_EXCEPT)); \
EXPECT_FP_EQ((expected), (actual)); \
EXPECT_FP_EXCEPTION(expected_except); \
} \
} while (0)
#define EXPECT_FP_EQ_WITH_EXCEPTION_ROUNDING_NEAREST(expected, actual, \
expected_except) \
EXPECT_FP_EQ_WITH_EXCEPTION_ROUNDING_MODE( \
(expected), (actual), (expected_except), RoundingMode::Nearest)
#define EXPECT_FP_EQ_WITH_EXCEPTION_ROUNDING_UPWARD(expected, actual, \
expected_except) \
EXPECT_FP_EQ_WITH_EXCEPTION_ROUNDING_MODE( \
(expected), (actual), (expected_except), RoundingMode::Upward)
#define EXPECT_FP_EQ_WITH_EXCEPTION_ROUNDING_DOWNWARD(expected, actual, \
expected_except) \
EXPECT_FP_EQ_WITH_EXCEPTION_ROUNDING_MODE( \
(expected), (actual), (expected_except), RoundingMode::Downward)
#define EXPECT_FP_EQ_WITH_EXCEPTION_ROUNDING_TOWARD_ZERO(expected, actual, \
expected_except) \
EXPECT_FP_EQ_WITH_EXCEPTION_ROUNDING_MODE( \
(expected), (actual), (expected_except), RoundingMode::TowardZero)
#define EXPECT_FP_EQ_WITH_EXCEPTION_ALL_ROUNDING(expected, actual, \
expected_except) \
do { \
EXPECT_FP_EQ_WITH_EXCEPTION_ROUNDING_NEAREST((expected), (actual), \
(expected_except)); \
EXPECT_FP_EQ_WITH_EXCEPTION_ROUNDING_UPWARD((expected), (actual), \
(expected_except)); \
EXPECT_FP_EQ_WITH_EXCEPTION_ROUNDING_DOWNWARD((expected), (actual), \
(expected_except)); \
EXPECT_FP_EQ_WITH_EXCEPTION_ROUNDING_TOWARD_ZERO((expected), (actual), \
(expected_except)); \
} while (0)
#endif // LLVM_LIBC_TEST_UNITTEST_FPMATCHER_H