llvm-project/mlir/test/python/ir/array_attributes.py
Peter Hawkins 71a254543d [MLIR:Python] Make DenseElementsAttr.get() only request a buffer format if no explicit type was provided.
Not every NumPy type (e.g., the `ml_dtypes.bfloat16` NumPy extension
type) has a type in the Python buffer protocol, so exporting such a
buffer with `PyBUF_FORMAT` may fail.

However, we don't care about the self-reported type of a buffer if the
user provides an explicit type. In the case that an explicit type is
provided, don't request the format from the buffer protocol, which
allows arrays whose element types are unknown to the buffer protocol to
be passed.

Reviewed By: jpienaar, ftynse

Differential Revision: https://reviews.llvm.org/D155209
2023-07-14 16:08:15 -07:00

420 lines
14 KiB
Python

# RUN: %PYTHON %s | FileCheck %s
# Note that this is separate from ir_attributes.py since it depends on numpy,
# and we may want to disable if not available.
import gc
from mlir.ir import *
import numpy as np
def run(f):
print("\nTEST:", f.__name__)
f()
gc.collect()
assert Context._get_live_count() == 0
return f
################################################################################
# Tests of the array/buffer .get() factory method on unsupported dtype.
################################################################################
@run
def testGetDenseElementsUnsupported():
with Context():
array = np.array([["hello", "goodbye"]])
try:
attr = DenseElementsAttr.get(array)
except ValueError as e:
# CHECK: unimplemented array format conversion from format:
print(e)
# CHECK-LABEL: TEST: testGetDenseElementsUnSupportedTypeOkIfExplicitTypeProvided
@run
def testGetDenseElementsUnSupportedTypeOkIfExplicitTypeProvided():
with Context():
array = np.array([[1, 2, 3], [4, 5, 6]], dtype=np.int64)
# datetime64 specifically isn't important: it's just a 64-bit type that
# doesn't have a format under the Python buffer protocol. A more
# realistic example would be a NumPy extension type like the bfloat16
# type from the ml_dtypes package, which isn't a dependency of this
# test.
attr = DenseElementsAttr.get(array.view(np.datetime64),
type=IntegerType.get_signless(64))
# CHECK: dense<{{\[}}[1, 2, 3], [4, 5, 6]]> : tensor<2x3xi64>
print(attr)
# CHECK: {{\[}}[1 2 3]
# CHECK: {{\[}}4 5 6]]
print(np.array(attr))
################################################################################
# Splats.
################################################################################
# CHECK-LABEL: TEST: testGetDenseElementsSplatInt
@run
def testGetDenseElementsSplatInt():
with Context(), Location.unknown():
t = IntegerType.get_signless(32)
element = IntegerAttr.get(t, 555)
shaped_type = RankedTensorType.get((2, 3, 4), t)
attr = DenseElementsAttr.get_splat(shaped_type, element)
# CHECK: dense<555> : tensor<2x3x4xi32>
print(attr)
# CHECK: is_splat: True
print("is_splat:", attr.is_splat)
# CHECK: splat_value: IntegerAttr(555 : i32)
splat_value = attr.get_splat_value()
print("splat_value:", repr(splat_value))
assert splat_value == element
# CHECK-LABEL: TEST: testGetDenseElementsSplatFloat
@run
def testGetDenseElementsSplatFloat():
with Context(), Location.unknown():
t = F32Type.get()
element = FloatAttr.get(t, 1.2)
shaped_type = RankedTensorType.get((2, 3, 4), t)
attr = DenseElementsAttr.get_splat(shaped_type, element)
# CHECK: dense<1.200000e+00> : tensor<2x3x4xf32>
print(attr)
assert attr.get_splat_value() == element
# CHECK-LABEL: TEST: testGetDenseElementsSplatErrors
@run
def testGetDenseElementsSplatErrors():
with Context(), Location.unknown():
t = F32Type.get()
other_t = F64Type.get()
element = FloatAttr.get(t, 1.2)
other_element = FloatAttr.get(other_t, 1.2)
shaped_type = RankedTensorType.get((2, 3, 4), t)
dynamic_shaped_type = UnrankedTensorType.get(t)
non_shaped_type = t
try:
attr = DenseElementsAttr.get_splat(non_shaped_type, element)
except ValueError as e:
# CHECK: Expected a static ShapedType for the shaped_type parameter: Type(f32)
print(e)
try:
attr = DenseElementsAttr.get_splat(dynamic_shaped_type, element)
except ValueError as e:
# CHECK: Expected a static ShapedType for the shaped_type parameter: Type(tensor<*xf32>)
print(e)
try:
attr = DenseElementsAttr.get_splat(shaped_type, other_element)
except ValueError as e:
# CHECK: Shaped element type and attribute type must be equal: shaped=Type(tensor<2x3x4xf32>), element=Attribute(1.200000e+00 : f64)
print(e)
# CHECK-LABEL: TEST: testRepeatedValuesSplat
@run
def testRepeatedValuesSplat():
with Context():
array = np.array([[1.0, 1.0, 1.0], [1.0, 1.0, 1.0]], dtype=np.float32)
attr = DenseElementsAttr.get(array)
# CHECK: dense<1.000000e+00> : tensor<2x3xf32>
print(attr)
# CHECK: is_splat: True
print("is_splat:", attr.is_splat)
# CHECK{LITERAL}: [[1. 1. 1.]
# CHECK{LITERAL}: [1. 1. 1.]]
print(np.array(attr))
# CHECK-LABEL: TEST: testNonSplat
@run
def testNonSplat():
with Context():
array = np.array([2.0, 1.0, 1.0], dtype=np.float32)
attr = DenseElementsAttr.get(array)
# CHECK: is_splat: False
print("is_splat:", attr.is_splat)
################################################################################
# Tests of the array/buffer .get() factory method, in all of its permutations.
################################################################################
### explicitly provided types
@run
def testGetDenseElementsBF16():
with Context():
array = np.array([[2, 4, 8], [16, 32, 64]], dtype=np.uint16)
attr = DenseElementsAttr.get(array, type=BF16Type.get())
# Note: These values don't mean much since just bit-casting. But they
# shouldn't change.
# CHECK: dense<{{\[}}[1.836710e-40, 3.673420e-40, 7.346840e-40], [1.469370e-39, 2.938740e-39, 5.877470e-39]]> : tensor<2x3xbf16>
print(attr)
@run
def testGetDenseElementsInteger4():
with Context():
array = np.array([[2, 4, 7], [-2, -4, -8]], dtype=np.uint8)
attr = DenseElementsAttr.get(array, type=IntegerType.get_signless(4))
# Note: These values don't mean much since just bit-casting. But they
# shouldn't change.
# CHECK: dense<{{\[}}[2, 4, 7], [-2, -4, -8]]> : tensor<2x3xi4>
print(attr)
@run
def testGetDenseElementsBool():
with Context():
bool_array = np.array([[1, 0, 1], [0, 1, 0]], dtype=np.bool_)
array = np.packbits(bool_array, axis=None, bitorder="little")
attr = DenseElementsAttr.get(
array, type=IntegerType.get_signless(1), shape=bool_array.shape
)
# CHECK: dense<{{\[}}[true, false, true], [false, true, false]]> : tensor<2x3xi1>
print(attr)
@run
def testGetDenseElementsBoolSplat():
with Context():
zero = np.array(0, dtype=np.uint8)
one = np.array(255, dtype=np.uint8)
print(one)
# CHECK: dense<false> : tensor<4x2x5xi1>
print(
DenseElementsAttr.get(
zero, type=IntegerType.get_signless(1), shape=(4, 2, 5)
)
)
# CHECK: dense<true> : tensor<4x2x5xi1>
print(
DenseElementsAttr.get(
one, type=IntegerType.get_signless(1), shape=(4, 2, 5)
)
)
### float and double arrays.
# CHECK-LABEL: TEST: testGetDenseElementsF16
@run
def testGetDenseElementsF16():
with Context():
array = np.array([[2.0, 4.0, 8.0], [16.0, 32.0, 64.0]], dtype=np.float16)
attr = DenseElementsAttr.get(array)
# CHECK: dense<{{\[}}[2.000000e+00, 4.000000e+00, 8.000000e+00], [1.600000e+01, 3.200000e+01, 6.400000e+01]]> : tensor<2x3xf16>
print(attr)
# CHECK: {{\[}}[ 2. 4. 8.]
# CHECK: {{\[}}16. 32. 64.]]
print(np.array(attr))
# CHECK-LABEL: TEST: testGetDenseElementsF32
@run
def testGetDenseElementsF32():
with Context():
array = np.array([[1.1, 2.2, 3.3], [4.4, 5.5, 6.6]], dtype=np.float32)
attr = DenseElementsAttr.get(array)
# CHECK: dense<{{\[}}[1.100000e+00, 2.200000e+00, 3.300000e+00], [4.400000e+00, 5.500000e+00, 6.600000e+00]]> : tensor<2x3xf32>
print(attr)
# CHECK: {{\[}}[1.1 2.2 3.3]
# CHECK: {{\[}}4.4 5.5 6.6]]
print(np.array(attr))
# CHECK-LABEL: TEST: testGetDenseElementsF64
@run
def testGetDenseElementsF64():
with Context():
array = np.array([[1.1, 2.2, 3.3], [4.4, 5.5, 6.6]], dtype=np.float64)
attr = DenseElementsAttr.get(array)
# CHECK: dense<{{\[}}[1.100000e+00, 2.200000e+00, 3.300000e+00], [4.400000e+00, 5.500000e+00, 6.600000e+00]]> : tensor<2x3xf64>
print(attr)
# CHECK: {{\[}}[1.1 2.2 3.3]
# CHECK: {{\[}}4.4 5.5 6.6]]
print(np.array(attr))
### 16 bit integer arrays
# CHECK-LABEL: TEST: testGetDenseElementsI16Signless
@run
def testGetDenseElementsI16Signless():
with Context():
array = np.array([[1, 2, 3], [4, 5, 6]], dtype=np.int16)
attr = DenseElementsAttr.get(array)
# CHECK: dense<{{\[}}[1, 2, 3], [4, 5, 6]]> : tensor<2x3xi16>
print(attr)
# CHECK: {{\[}}[1 2 3]
# CHECK: {{\[}}4 5 6]]
print(np.array(attr))
# CHECK-LABEL: TEST: testGetDenseElementsUI16Signless
@run
def testGetDenseElementsUI16Signless():
with Context():
array = np.array([[1, 2, 3], [4, 5, 6]], dtype=np.uint16)
attr = DenseElementsAttr.get(array)
# CHECK: dense<{{\[}}[1, 2, 3], [4, 5, 6]]> : tensor<2x3xi16>
print(attr)
# CHECK: {{\[}}[1 2 3]
# CHECK: {{\[}}4 5 6]]
print(np.array(attr))
# CHECK-LABEL: TEST: testGetDenseElementsI16
@run
def testGetDenseElementsI16():
with Context():
array = np.array([[1, 2, 3], [4, 5, 6]], dtype=np.int16)
attr = DenseElementsAttr.get(array, signless=False)
# CHECK: dense<{{\[}}[1, 2, 3], [4, 5, 6]]> : tensor<2x3xsi16>
print(attr)
# CHECK: {{\[}}[1 2 3]
# CHECK: {{\[}}4 5 6]]
print(np.array(attr))
# CHECK-LABEL: TEST: testGetDenseElementsUI16
@run
def testGetDenseElementsUI16():
with Context():
array = np.array([[1, 2, 3], [4, 5, 6]], dtype=np.uint16)
attr = DenseElementsAttr.get(array, signless=False)
# CHECK: dense<{{\[}}[1, 2, 3], [4, 5, 6]]> : tensor<2x3xui16>
print(attr)
# CHECK: {{\[}}[1 2 3]
# CHECK: {{\[}}4 5 6]]
print(np.array(attr))
### 32 bit integer arrays
# CHECK-LABEL: TEST: testGetDenseElementsI32Signless
@run
def testGetDenseElementsI32Signless():
with Context():
array = np.array([[1, 2, 3], [4, 5, 6]], dtype=np.int32)
attr = DenseElementsAttr.get(array)
# CHECK: dense<{{\[}}[1, 2, 3], [4, 5, 6]]> : tensor<2x3xi32>
print(attr)
# CHECK: {{\[}}[1 2 3]
# CHECK: {{\[}}4 5 6]]
print(np.array(attr))
# CHECK-LABEL: TEST: testGetDenseElementsUI32Signless
@run
def testGetDenseElementsUI32Signless():
with Context():
array = np.array([[1, 2, 3], [4, 5, 6]], dtype=np.uint32)
attr = DenseElementsAttr.get(array)
# CHECK: dense<{{\[}}[1, 2, 3], [4, 5, 6]]> : tensor<2x3xi32>
print(attr)
# CHECK: {{\[}}[1 2 3]
# CHECK: {{\[}}4 5 6]]
print(np.array(attr))
# CHECK-LABEL: TEST: testGetDenseElementsI32
@run
def testGetDenseElementsI32():
with Context():
array = np.array([[1, 2, 3], [4, 5, 6]], dtype=np.int32)
attr = DenseElementsAttr.get(array, signless=False)
# CHECK: dense<{{\[}}[1, 2, 3], [4, 5, 6]]> : tensor<2x3xsi32>
print(attr)
# CHECK: {{\[}}[1 2 3]
# CHECK: {{\[}}4 5 6]]
print(np.array(attr))
# CHECK-LABEL: TEST: testGetDenseElementsUI32
@run
def testGetDenseElementsUI32():
with Context():
array = np.array([[1, 2, 3], [4, 5, 6]], dtype=np.uint32)
attr = DenseElementsAttr.get(array, signless=False)
# CHECK: dense<{{\[}}[1, 2, 3], [4, 5, 6]]> : tensor<2x3xui32>
print(attr)
# CHECK: {{\[}}[1 2 3]
# CHECK: {{\[}}4 5 6]]
print(np.array(attr))
## 64bit integer arrays
# CHECK-LABEL: TEST: testGetDenseElementsI64Signless
@run
def testGetDenseElementsI64Signless():
with Context():
array = np.array([[1, 2, 3], [4, 5, 6]], dtype=np.int64)
attr = DenseElementsAttr.get(array)
# CHECK: dense<{{\[}}[1, 2, 3], [4, 5, 6]]> : tensor<2x3xi64>
print(attr)
# CHECK: {{\[}}[1 2 3]
# CHECK: {{\[}}4 5 6]]
print(np.array(attr))
# CHECK-LABEL: TEST: testGetDenseElementsUI64Signless
@run
def testGetDenseElementsUI64Signless():
with Context():
array = np.array([[1, 2, 3], [4, 5, 6]], dtype=np.uint64)
attr = DenseElementsAttr.get(array)
# CHECK: dense<{{\[}}[1, 2, 3], [4, 5, 6]]> : tensor<2x3xi64>
print(attr)
# CHECK: {{\[}}[1 2 3]
# CHECK: {{\[}}4 5 6]]
print(np.array(attr))
# CHECK-LABEL: TEST: testGetDenseElementsI64
@run
def testGetDenseElementsI64():
with Context():
array = np.array([[1, 2, 3], [4, 5, 6]], dtype=np.int64)
attr = DenseElementsAttr.get(array, signless=False)
# CHECK: dense<{{\[}}[1, 2, 3], [4, 5, 6]]> : tensor<2x3xsi64>
print(attr)
# CHECK: {{\[}}[1 2 3]
# CHECK: {{\[}}4 5 6]]
print(np.array(attr))
# CHECK-LABEL: TEST: testGetDenseElementsUI64
@run
def testGetDenseElementsUI64():
with Context():
array = np.array([[1, 2, 3], [4, 5, 6]], dtype=np.uint64)
attr = DenseElementsAttr.get(array, signless=False)
# CHECK: dense<{{\[}}[1, 2, 3], [4, 5, 6]]> : tensor<2x3xui64>
print(attr)
# CHECK: {{\[}}[1 2 3]
# CHECK: {{\[}}4 5 6]]
print(np.array(attr))
# CHECK-LABEL: TEST: testGetDenseElementsIndex
@run
def testGetDenseElementsIndex():
with Context(), Location.unknown():
idx_type = IndexType.get()
array = np.array([[1, 2, 3], [4, 5, 6]], dtype=np.int64)
attr = DenseElementsAttr.get(array, type=idx_type)
# CHECK: dense<{{\[}}[1, 2, 3], [4, 5, 6]]> : tensor<2x3xindex>
print(attr)
arr = np.array(attr)
# CHECK: {{\[}}[1 2 3]
# CHECK: {{\[}}4 5 6]]
print(arr)
# CHECK: True
print(arr.dtype == np.int64)