llvm-project/lldb/source/Plugins/Process/Linux/NativeProcessLinux.cpp
Pavel Labath 7326c01aaa [linux] Remove all traces of signalfd(2)
Summary:
Signalfd is not used in the code anymore, and given that the same functionality can be achieved
with the new MainLoop class, it's unlikely we will need it in the future. Remove all traces of
it.

Reviewers: tberghammer, ovyalov

Subscribers: tberghammer, danalbert, srhines, lldb-commits

Differential Revision: http://reviews.llvm.org/D17510

llvm-svn: 261631
2016-02-23 12:26:08 +00:00

3189 lines
110 KiB
C++

//===-- NativeProcessLinux.cpp -------------------------------- -*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "NativeProcessLinux.h"
// C Includes
#include <errno.h>
#include <string.h>
#include <stdint.h>
#include <unistd.h>
// C++ Includes
#include <fstream>
#include <mutex>
#include <sstream>
#include <string>
#include <unordered_map>
// Other libraries and framework includes
#include "lldb/Core/EmulateInstruction.h"
#include "lldb/Core/Error.h"
#include "lldb/Core/Module.h"
#include "lldb/Core/ModuleSpec.h"
#include "lldb/Core/RegisterValue.h"
#include "lldb/Core/State.h"
#include "lldb/Host/common/NativeBreakpoint.h"
#include "lldb/Host/common/NativeRegisterContext.h"
#include "lldb/Host/Host.h"
#include "lldb/Host/ThreadLauncher.h"
#include "lldb/Target/Platform.h"
#include "lldb/Target/Process.h"
#include "lldb/Target/ProcessLaunchInfo.h"
#include "lldb/Target/Target.h"
#include "lldb/Utility/LLDBAssert.h"
#include "lldb/Utility/PseudoTerminal.h"
#include "lldb/Utility/StringExtractor.h"
#include "Plugins/Process/POSIX/ProcessPOSIXLog.h"
#include "NativeThreadLinux.h"
#include "ProcFileReader.h"
#include "Procfs.h"
// System includes - They have to be included after framework includes because they define some
// macros which collide with variable names in other modules
#include <linux/unistd.h>
#include <sys/socket.h>
#include <sys/syscall.h>
#include <sys/types.h>
#include <sys/user.h>
#include <sys/wait.h>
#include "lldb/Host/linux/Personality.h"
#include "lldb/Host/linux/Ptrace.h"
#include "lldb/Host/linux/Uio.h"
#include "lldb/Host/android/Android.h"
#define LLDB_PERSONALITY_GET_CURRENT_SETTINGS 0xffffffff
// Support hardware breakpoints in case it has not been defined
#ifndef TRAP_HWBKPT
#define TRAP_HWBKPT 4
#endif
using namespace lldb;
using namespace lldb_private;
using namespace lldb_private::process_linux;
using namespace llvm;
// Private bits we only need internally.
static bool ProcessVmReadvSupported()
{
static bool is_supported;
static std::once_flag flag;
std::call_once(flag, [] {
Log *log(GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
uint32_t source = 0x47424742;
uint32_t dest = 0;
struct iovec local, remote;
remote.iov_base = &source;
local.iov_base = &dest;
remote.iov_len = local.iov_len = sizeof source;
// We shall try if cross-process-memory reads work by attempting to read a value from our own process.
ssize_t res = process_vm_readv(getpid(), &local, 1, &remote, 1, 0);
is_supported = (res == sizeof(source) && source == dest);
if (log)
{
if (is_supported)
log->Printf("%s: Detected kernel support for process_vm_readv syscall. Fast memory reads enabled.",
__FUNCTION__);
else
log->Printf("%s: syscall process_vm_readv failed (error: %s). Fast memory reads disabled.",
__FUNCTION__, strerror(errno));
}
});
return is_supported;
}
namespace
{
Error
ResolveProcessArchitecture (lldb::pid_t pid, Platform &platform, ArchSpec &arch)
{
// Grab process info for the running process.
ProcessInstanceInfo process_info;
if (!platform.GetProcessInfo (pid, process_info))
return Error("failed to get process info");
// Resolve the executable module.
ModuleSP exe_module_sp;
ModuleSpec exe_module_spec(process_info.GetExecutableFile(), process_info.GetArchitecture());
FileSpecList executable_search_paths (Target::GetDefaultExecutableSearchPaths ());
Error error = platform.ResolveExecutable(
exe_module_spec,
exe_module_sp,
executable_search_paths.GetSize () ? &executable_search_paths : NULL);
if (!error.Success ())
return error;
// Check if we've got our architecture from the exe_module.
arch = exe_module_sp->GetArchitecture ();
if (arch.IsValid ())
return Error();
else
return Error("failed to retrieve a valid architecture from the exe module");
}
void
DisplayBytes (StreamString &s, void *bytes, uint32_t count)
{
uint8_t *ptr = (uint8_t *)bytes;
const uint32_t loop_count = std::min<uint32_t>(DEBUG_PTRACE_MAXBYTES, count);
for(uint32_t i=0; i<loop_count; i++)
{
s.Printf ("[%x]", *ptr);
ptr++;
}
}
void
PtraceDisplayBytes(int &req, void *data, size_t data_size)
{
StreamString buf;
Log *verbose_log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (
POSIX_LOG_PTRACE | POSIX_LOG_VERBOSE));
if (verbose_log)
{
switch(req)
{
case PTRACE_POKETEXT:
{
DisplayBytes(buf, &data, 8);
verbose_log->Printf("PTRACE_POKETEXT %s", buf.GetData());
break;
}
case PTRACE_POKEDATA:
{
DisplayBytes(buf, &data, 8);
verbose_log->Printf("PTRACE_POKEDATA %s", buf.GetData());
break;
}
case PTRACE_POKEUSER:
{
DisplayBytes(buf, &data, 8);
verbose_log->Printf("PTRACE_POKEUSER %s", buf.GetData());
break;
}
case PTRACE_SETREGS:
{
DisplayBytes(buf, data, data_size);
verbose_log->Printf("PTRACE_SETREGS %s", buf.GetData());
break;
}
case PTRACE_SETFPREGS:
{
DisplayBytes(buf, data, data_size);
verbose_log->Printf("PTRACE_SETFPREGS %s", buf.GetData());
break;
}
case PTRACE_SETSIGINFO:
{
DisplayBytes(buf, data, sizeof(siginfo_t));
verbose_log->Printf("PTRACE_SETSIGINFO %s", buf.GetData());
break;
}
case PTRACE_SETREGSET:
{
// Extract iov_base from data, which is a pointer to the struct IOVEC
DisplayBytes(buf, *(void **)data, data_size);
verbose_log->Printf("PTRACE_SETREGSET %s", buf.GetData());
break;
}
default:
{
}
}
}
}
static constexpr unsigned k_ptrace_word_size = sizeof(void*);
static_assert(sizeof(long) >= k_ptrace_word_size, "Size of long must be larger than ptrace word size");
} // end of anonymous namespace
// Simple helper function to ensure flags are enabled on the given file
// descriptor.
static Error
EnsureFDFlags(int fd, int flags)
{
Error error;
int status = fcntl(fd, F_GETFL);
if (status == -1)
{
error.SetErrorToErrno();
return error;
}
if (fcntl(fd, F_SETFL, status | flags) == -1)
{
error.SetErrorToErrno();
return error;
}
return error;
}
NativeProcessLinux::LaunchArgs::LaunchArgs(Module *module,
char const **argv,
char const **envp,
const FileSpec &stdin_file_spec,
const FileSpec &stdout_file_spec,
const FileSpec &stderr_file_spec,
const FileSpec &working_dir,
const ProcessLaunchInfo &launch_info)
: m_module(module),
m_argv(argv),
m_envp(envp),
m_stdin_file_spec(stdin_file_spec),
m_stdout_file_spec(stdout_file_spec),
m_stderr_file_spec(stderr_file_spec),
m_working_dir(working_dir),
m_launch_info(launch_info)
{
}
NativeProcessLinux::LaunchArgs::~LaunchArgs()
{ }
// -----------------------------------------------------------------------------
// Public Static Methods
// -----------------------------------------------------------------------------
Error
NativeProcessProtocol::Launch (
ProcessLaunchInfo &launch_info,
NativeProcessProtocol::NativeDelegate &native_delegate,
MainLoop &mainloop,
NativeProcessProtocolSP &native_process_sp)
{
Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
lldb::ModuleSP exe_module_sp;
PlatformSP platform_sp (Platform::GetHostPlatform ());
Error error = platform_sp->ResolveExecutable(
ModuleSpec(launch_info.GetExecutableFile(), launch_info.GetArchitecture()),
exe_module_sp,
nullptr);
if (! error.Success())
return error;
// Verify the working directory is valid if one was specified.
FileSpec working_dir{launch_info.GetWorkingDirectory()};
if (working_dir &&
(!working_dir.ResolvePath() ||
working_dir.GetFileType() != FileSpec::eFileTypeDirectory))
{
error.SetErrorStringWithFormat ("No such file or directory: %s",
working_dir.GetCString());
return error;
}
const FileAction *file_action;
// Default of empty will mean to use existing open file descriptors.
FileSpec stdin_file_spec{};
FileSpec stdout_file_spec{};
FileSpec stderr_file_spec{};
file_action = launch_info.GetFileActionForFD (STDIN_FILENO);
if (file_action)
stdin_file_spec = file_action->GetFileSpec();
file_action = launch_info.GetFileActionForFD (STDOUT_FILENO);
if (file_action)
stdout_file_spec = file_action->GetFileSpec();
file_action = launch_info.GetFileActionForFD (STDERR_FILENO);
if (file_action)
stderr_file_spec = file_action->GetFileSpec();
if (log)
{
if (stdin_file_spec)
log->Printf ("NativeProcessLinux::%s setting STDIN to '%s'",
__FUNCTION__, stdin_file_spec.GetCString());
else
log->Printf ("NativeProcessLinux::%s leaving STDIN as is", __FUNCTION__);
if (stdout_file_spec)
log->Printf ("NativeProcessLinux::%s setting STDOUT to '%s'",
__FUNCTION__, stdout_file_spec.GetCString());
else
log->Printf ("NativeProcessLinux::%s leaving STDOUT as is", __FUNCTION__);
if (stderr_file_spec)
log->Printf ("NativeProcessLinux::%s setting STDERR to '%s'",
__FUNCTION__, stderr_file_spec.GetCString());
else
log->Printf ("NativeProcessLinux::%s leaving STDERR as is", __FUNCTION__);
}
// Create the NativeProcessLinux in launch mode.
native_process_sp.reset (new NativeProcessLinux ());
if (log)
{
int i = 0;
for (const char **args = launch_info.GetArguments ().GetConstArgumentVector (); *args; ++args, ++i)
{
log->Printf ("NativeProcessLinux::%s arg %d: \"%s\"", __FUNCTION__, i, *args ? *args : "nullptr");
++i;
}
}
if (!native_process_sp->RegisterNativeDelegate (native_delegate))
{
native_process_sp.reset ();
error.SetErrorStringWithFormat ("failed to register the native delegate");
return error;
}
std::static_pointer_cast<NativeProcessLinux> (native_process_sp)->LaunchInferior (
mainloop,
exe_module_sp.get(),
launch_info.GetArguments ().GetConstArgumentVector (),
launch_info.GetEnvironmentEntries ().GetConstArgumentVector (),
stdin_file_spec,
stdout_file_spec,
stderr_file_spec,
working_dir,
launch_info,
error);
if (error.Fail ())
{
native_process_sp.reset ();
if (log)
log->Printf ("NativeProcessLinux::%s failed to launch process: %s", __FUNCTION__, error.AsCString ());
return error;
}
launch_info.SetProcessID (native_process_sp->GetID ());
return error;
}
Error
NativeProcessProtocol::Attach (
lldb::pid_t pid,
NativeProcessProtocol::NativeDelegate &native_delegate,
MainLoop &mainloop,
NativeProcessProtocolSP &native_process_sp)
{
Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
if (log && log->GetMask ().Test (POSIX_LOG_VERBOSE))
log->Printf ("NativeProcessLinux::%s(pid = %" PRIi64 ")", __FUNCTION__, pid);
// Grab the current platform architecture. This should be Linux,
// since this code is only intended to run on a Linux host.
PlatformSP platform_sp (Platform::GetHostPlatform ());
if (!platform_sp)
return Error("failed to get a valid default platform");
// Retrieve the architecture for the running process.
ArchSpec process_arch;
Error error = ResolveProcessArchitecture (pid, *platform_sp.get (), process_arch);
if (!error.Success ())
return error;
std::shared_ptr<NativeProcessLinux> native_process_linux_sp (new NativeProcessLinux ());
if (!native_process_linux_sp->RegisterNativeDelegate (native_delegate))
{
error.SetErrorStringWithFormat ("failed to register the native delegate");
return error;
}
native_process_linux_sp->AttachToInferior (mainloop, pid, error);
if (!error.Success ())
return error;
native_process_sp = native_process_linux_sp;
return error;
}
// -----------------------------------------------------------------------------
// Public Instance Methods
// -----------------------------------------------------------------------------
NativeProcessLinux::NativeProcessLinux () :
NativeProcessProtocol (LLDB_INVALID_PROCESS_ID),
m_arch (),
m_supports_mem_region (eLazyBoolCalculate),
m_mem_region_cache (),
m_mem_region_cache_mutex(),
m_pending_notification_tid(LLDB_INVALID_THREAD_ID)
{
}
void
NativeProcessLinux::LaunchInferior (
MainLoop &mainloop,
Module *module,
const char *argv[],
const char *envp[],
const FileSpec &stdin_file_spec,
const FileSpec &stdout_file_spec,
const FileSpec &stderr_file_spec,
const FileSpec &working_dir,
const ProcessLaunchInfo &launch_info,
Error &error)
{
m_sigchld_handle = mainloop.RegisterSignal(SIGCHLD,
[this] (MainLoopBase &) { SigchldHandler(); }, error);
if (! m_sigchld_handle)
return;
if (module)
m_arch = module->GetArchitecture ();
SetState (eStateLaunching);
std::unique_ptr<LaunchArgs> args(
new LaunchArgs(module, argv, envp,
stdin_file_spec,
stdout_file_spec,
stderr_file_spec,
working_dir,
launch_info));
Launch(args.get(), error);
}
void
NativeProcessLinux::AttachToInferior (MainLoop &mainloop, lldb::pid_t pid, Error &error)
{
Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
if (log)
log->Printf ("NativeProcessLinux::%s (pid = %" PRIi64 ")", __FUNCTION__, pid);
m_sigchld_handle = mainloop.RegisterSignal(SIGCHLD,
[this] (MainLoopBase &) { SigchldHandler(); }, error);
if (! m_sigchld_handle)
return;
// We can use the Host for everything except the ResolveExecutable portion.
PlatformSP platform_sp = Platform::GetHostPlatform ();
if (!platform_sp)
{
if (log)
log->Printf ("NativeProcessLinux::%s (pid = %" PRIi64 "): no default platform set", __FUNCTION__, pid);
error.SetErrorString ("no default platform available");
return;
}
// Gather info about the process.
ProcessInstanceInfo process_info;
if (!platform_sp->GetProcessInfo (pid, process_info))
{
if (log)
log->Printf ("NativeProcessLinux::%s (pid = %" PRIi64 "): failed to get process info", __FUNCTION__, pid);
error.SetErrorString ("failed to get process info");
return;
}
// Resolve the executable module
ModuleSP exe_module_sp;
FileSpecList executable_search_paths (Target::GetDefaultExecutableSearchPaths());
ModuleSpec exe_module_spec(process_info.GetExecutableFile(), process_info.GetArchitecture());
error = platform_sp->ResolveExecutable(exe_module_spec, exe_module_sp,
executable_search_paths.GetSize() ? &executable_search_paths : NULL);
if (!error.Success())
return;
// Set the architecture to the exe architecture.
m_arch = exe_module_sp->GetArchitecture();
if (log)
log->Printf ("NativeProcessLinux::%s (pid = %" PRIi64 ") detected architecture %s", __FUNCTION__, pid, m_arch.GetArchitectureName ());
m_pid = pid;
SetState(eStateAttaching);
Attach(pid, error);
}
::pid_t
NativeProcessLinux::Launch(LaunchArgs *args, Error &error)
{
assert (args && "null args");
const char **argv = args->m_argv;
const char **envp = args->m_envp;
const FileSpec working_dir = args->m_working_dir;
lldb_utility::PseudoTerminal terminal;
const size_t err_len = 1024;
char err_str[err_len];
lldb::pid_t pid;
// Propagate the environment if one is not supplied.
if (envp == NULL || envp[0] == NULL)
envp = const_cast<const char **>(environ);
if ((pid = terminal.Fork(err_str, err_len)) == static_cast<lldb::pid_t> (-1))
{
error.SetErrorToGenericError();
error.SetErrorStringWithFormat("Process fork failed: %s", err_str);
return -1;
}
// Recognized child exit status codes.
enum {
ePtraceFailed = 1,
eDupStdinFailed,
eDupStdoutFailed,
eDupStderrFailed,
eChdirFailed,
eExecFailed,
eSetGidFailed,
eSetSigMaskFailed
};
// Child process.
if (pid == 0)
{
// First, make sure we disable all logging. If we are logging to stdout, our logs can be
// mistaken for inferior output.
Log::DisableAllLogChannels(nullptr);
// FIXME consider opening a pipe between parent/child and have this forked child
// send log info to parent re: launch status.
// Start tracing this child that is about to exec.
error = PtraceWrapper(PTRACE_TRACEME, 0);
if (error.Fail())
exit(ePtraceFailed);
// terminal has already dupped the tty descriptors to stdin/out/err.
// This closes original fd from which they were copied (and avoids
// leaking descriptors to the debugged process.
terminal.CloseSlaveFileDescriptor();
// Do not inherit setgid powers.
if (setgid(getgid()) != 0)
exit(eSetGidFailed);
// Attempt to have our own process group.
if (setpgid(0, 0) != 0)
{
// FIXME log that this failed. This is common.
// Don't allow this to prevent an inferior exec.
}
// Dup file descriptors if needed.
if (args->m_stdin_file_spec)
if (!DupDescriptor(args->m_stdin_file_spec, STDIN_FILENO, O_RDONLY))
exit(eDupStdinFailed);
if (args->m_stdout_file_spec)
if (!DupDescriptor(args->m_stdout_file_spec, STDOUT_FILENO, O_WRONLY | O_CREAT | O_TRUNC))
exit(eDupStdoutFailed);
if (args->m_stderr_file_spec)
if (!DupDescriptor(args->m_stderr_file_spec, STDERR_FILENO, O_WRONLY | O_CREAT | O_TRUNC))
exit(eDupStderrFailed);
// Close everything besides stdin, stdout, and stderr that has no file
// action to avoid leaking
for (int fd = 3; fd < sysconf(_SC_OPEN_MAX); ++fd)
if (!args->m_launch_info.GetFileActionForFD(fd))
close(fd);
// Change working directory
if (working_dir && 0 != ::chdir(working_dir.GetCString()))
exit(eChdirFailed);
// Disable ASLR if requested.
if (args->m_launch_info.GetFlags ().Test (lldb::eLaunchFlagDisableASLR))
{
const int old_personality = personality (LLDB_PERSONALITY_GET_CURRENT_SETTINGS);
if (old_personality == -1)
{
// Can't retrieve Linux personality. Cannot disable ASLR.
}
else
{
const int new_personality = personality (ADDR_NO_RANDOMIZE | old_personality);
if (new_personality == -1)
{
// Disabling ASLR failed.
}
else
{
// Disabling ASLR succeeded.
}
}
}
// Clear the signal mask to prevent the child from being affected by
// any masking done by the parent.
sigset_t set;
if (sigemptyset(&set) != 0 || pthread_sigmask(SIG_SETMASK, &set, nullptr) != 0)
exit(eSetSigMaskFailed);
// Execute. We should never return...
execve(argv[0],
const_cast<char *const *>(argv),
const_cast<char *const *>(envp));
// ...unless exec fails. In which case we definitely need to end the child here.
exit(eExecFailed);
}
//
// This is the parent code here.
//
Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
// Wait for the child process to trap on its call to execve.
::pid_t wpid;
int status;
if ((wpid = waitpid(pid, &status, 0)) < 0)
{
error.SetErrorToErrno();
if (log)
log->Printf ("NativeProcessLinux::%s waitpid for inferior failed with %s",
__FUNCTION__, error.AsCString ());
// Mark the inferior as invalid.
// FIXME this could really use a new state - eStateLaunchFailure. For now, using eStateInvalid.
SetState (StateType::eStateInvalid);
return -1;
}
else if (WIFEXITED(status))
{
// open, dup or execve likely failed for some reason.
error.SetErrorToGenericError();
switch (WEXITSTATUS(status))
{
case ePtraceFailed:
error.SetErrorString("Child ptrace failed.");
break;
case eDupStdinFailed:
error.SetErrorString("Child open stdin failed.");
break;
case eDupStdoutFailed:
error.SetErrorString("Child open stdout failed.");
break;
case eDupStderrFailed:
error.SetErrorString("Child open stderr failed.");
break;
case eChdirFailed:
error.SetErrorString("Child failed to set working directory.");
break;
case eExecFailed:
error.SetErrorString("Child exec failed.");
break;
case eSetGidFailed:
error.SetErrorString("Child setgid failed.");
break;
case eSetSigMaskFailed:
error.SetErrorString("Child failed to set signal mask.");
break;
default:
error.SetErrorString("Child returned unknown exit status.");
break;
}
if (log)
{
log->Printf ("NativeProcessLinux::%s inferior exited with status %d before issuing a STOP",
__FUNCTION__,
WEXITSTATUS(status));
}
// Mark the inferior as invalid.
// FIXME this could really use a new state - eStateLaunchFailure. For now, using eStateInvalid.
SetState (StateType::eStateInvalid);
return -1;
}
assert(WIFSTOPPED(status) && (wpid == static_cast< ::pid_t> (pid)) &&
"Could not sync with inferior process.");
if (log)
log->Printf ("NativeProcessLinux::%s inferior started, now in stopped state", __FUNCTION__);
error = SetDefaultPtraceOpts(pid);
if (error.Fail())
{
if (log)
log->Printf ("NativeProcessLinux::%s inferior failed to set default ptrace options: %s",
__FUNCTION__, error.AsCString ());
// Mark the inferior as invalid.
// FIXME this could really use a new state - eStateLaunchFailure. For now, using eStateInvalid.
SetState (StateType::eStateInvalid);
return -1;
}
// Release the master terminal descriptor and pass it off to the
// NativeProcessLinux instance. Similarly stash the inferior pid.
m_terminal_fd = terminal.ReleaseMasterFileDescriptor();
m_pid = pid;
// Set the terminal fd to be in non blocking mode (it simplifies the
// implementation of ProcessLinux::GetSTDOUT to have a non-blocking
// descriptor to read from).
error = EnsureFDFlags(m_terminal_fd, O_NONBLOCK);
if (error.Fail())
{
if (log)
log->Printf ("NativeProcessLinux::%s inferior EnsureFDFlags failed for ensuring terminal O_NONBLOCK setting: %s",
__FUNCTION__, error.AsCString ());
// Mark the inferior as invalid.
// FIXME this could really use a new state - eStateLaunchFailure. For now, using eStateInvalid.
SetState (StateType::eStateInvalid);
return -1;
}
if (log)
log->Printf ("NativeProcessLinux::%s() adding pid = %" PRIu64, __FUNCTION__, pid);
NativeThreadLinuxSP thread_sp = AddThread(pid);
assert (thread_sp && "AddThread() returned a nullptr thread");
thread_sp->SetStoppedBySignal(SIGSTOP);
ThreadWasCreated(*thread_sp);
// Let our process instance know the thread has stopped.
SetCurrentThreadID (thread_sp->GetID ());
SetState (StateType::eStateStopped);
if (log)
{
if (error.Success ())
{
log->Printf ("NativeProcessLinux::%s inferior launching succeeded", __FUNCTION__);
}
else
{
log->Printf ("NativeProcessLinux::%s inferior launching failed: %s",
__FUNCTION__, error.AsCString ());
return -1;
}
}
return pid;
}
::pid_t
NativeProcessLinux::Attach(lldb::pid_t pid, Error &error)
{
Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
// Use a map to keep track of the threads which we have attached/need to attach.
Host::TidMap tids_to_attach;
if (pid <= 1)
{
error.SetErrorToGenericError();
error.SetErrorString("Attaching to process 1 is not allowed.");
return -1;
}
while (Host::FindProcessThreads(pid, tids_to_attach))
{
for (Host::TidMap::iterator it = tids_to_attach.begin();
it != tids_to_attach.end();)
{
if (it->second == false)
{
lldb::tid_t tid = it->first;
// Attach to the requested process.
// An attach will cause the thread to stop with a SIGSTOP.
error = PtraceWrapper(PTRACE_ATTACH, tid);
if (error.Fail())
{
// No such thread. The thread may have exited.
// More error handling may be needed.
if (error.GetError() == ESRCH)
{
it = tids_to_attach.erase(it);
continue;
}
else
return -1;
}
int status;
// Need to use __WALL otherwise we receive an error with errno=ECHLD
// At this point we should have a thread stopped if waitpid succeeds.
if ((status = waitpid(tid, NULL, __WALL)) < 0)
{
// No such thread. The thread may have exited.
// More error handling may be needed.
if (errno == ESRCH)
{
it = tids_to_attach.erase(it);
continue;
}
else
{
error.SetErrorToErrno();
return -1;
}
}
error = SetDefaultPtraceOpts(tid);
if (error.Fail())
return -1;
if (log)
log->Printf ("NativeProcessLinux::%s() adding tid = %" PRIu64, __FUNCTION__, tid);
it->second = true;
// Create the thread, mark it as stopped.
NativeThreadLinuxSP thread_sp (AddThread(static_cast<lldb::tid_t>(tid)));
assert (thread_sp && "AddThread() returned a nullptr");
// This will notify this is a new thread and tell the system it is stopped.
thread_sp->SetStoppedBySignal(SIGSTOP);
ThreadWasCreated(*thread_sp);
SetCurrentThreadID (thread_sp->GetID ());
}
// move the loop forward
++it;
}
}
if (tids_to_attach.size() > 0)
{
m_pid = pid;
// Let our process instance know the thread has stopped.
SetState (StateType::eStateStopped);
}
else
{
error.SetErrorToGenericError();
error.SetErrorString("No such process.");
return -1;
}
return pid;
}
Error
NativeProcessLinux::SetDefaultPtraceOpts(lldb::pid_t pid)
{
long ptrace_opts = 0;
// Have the child raise an event on exit. This is used to keep the child in
// limbo until it is destroyed.
ptrace_opts |= PTRACE_O_TRACEEXIT;
// Have the tracer trace threads which spawn in the inferior process.
// TODO: if we want to support tracing the inferiors' child, add the
// appropriate ptrace flags here (PTRACE_O_TRACEFORK, PTRACE_O_TRACEVFORK)
ptrace_opts |= PTRACE_O_TRACECLONE;
// Have the tracer notify us before execve returns
// (needed to disable legacy SIGTRAP generation)
ptrace_opts |= PTRACE_O_TRACEEXEC;
return PtraceWrapper(PTRACE_SETOPTIONS, pid, nullptr, (void*)ptrace_opts);
}
static ExitType convert_pid_status_to_exit_type (int status)
{
if (WIFEXITED (status))
return ExitType::eExitTypeExit;
else if (WIFSIGNALED (status))
return ExitType::eExitTypeSignal;
else if (WIFSTOPPED (status))
return ExitType::eExitTypeStop;
else
{
// We don't know what this is.
return ExitType::eExitTypeInvalid;
}
}
static int convert_pid_status_to_return_code (int status)
{
if (WIFEXITED (status))
return WEXITSTATUS (status);
else if (WIFSIGNALED (status))
return WTERMSIG (status);
else if (WIFSTOPPED (status))
return WSTOPSIG (status);
else
{
// We don't know what this is.
return ExitType::eExitTypeInvalid;
}
}
// Handles all waitpid events from the inferior process.
void
NativeProcessLinux::MonitorCallback(lldb::pid_t pid,
bool exited,
int signal,
int status)
{
Log *log (GetLogIfAnyCategoriesSet (LIBLLDB_LOG_PROCESS));
// Certain activities differ based on whether the pid is the tid of the main thread.
const bool is_main_thread = (pid == GetID ());
// Handle when the thread exits.
if (exited)
{
if (log)
log->Printf ("NativeProcessLinux::%s() got exit signal(%d) , tid = %" PRIu64 " (%s main thread)", __FUNCTION__, signal, pid, is_main_thread ? "is" : "is not");
// This is a thread that exited. Ensure we're not tracking it anymore.
const bool thread_found = StopTrackingThread (pid);
if (is_main_thread)
{
// We only set the exit status and notify the delegate if we haven't already set the process
// state to an exited state. We normally should have received a SIGTRAP | (PTRACE_EVENT_EXIT << 8)
// for the main thread.
const bool already_notified = (GetState() == StateType::eStateExited) || (GetState () == StateType::eStateCrashed);
if (!already_notified)
{
if (log)
log->Printf ("NativeProcessLinux::%s() tid = %" PRIu64 " handling main thread exit (%s), expected exit state already set but state was %s instead, setting exit state now", __FUNCTION__, pid, thread_found ? "stopped tracking thread metadata" : "thread metadata not found", StateAsCString (GetState ()));
// The main thread exited. We're done monitoring. Report to delegate.
SetExitStatus (convert_pid_status_to_exit_type (status), convert_pid_status_to_return_code (status), nullptr, true);
// Notify delegate that our process has exited.
SetState (StateType::eStateExited, true);
}
else
{
if (log)
log->Printf ("NativeProcessLinux::%s() tid = %" PRIu64 " main thread now exited (%s)", __FUNCTION__, pid, thread_found ? "stopped tracking thread metadata" : "thread metadata not found");
}
}
else
{
// Do we want to report to the delegate in this case? I think not. If this was an orderly
// thread exit, we would already have received the SIGTRAP | (PTRACE_EVENT_EXIT << 8) signal,
// and we would have done an all-stop then.
if (log)
log->Printf ("NativeProcessLinux::%s() tid = %" PRIu64 " handling non-main thread exit (%s)", __FUNCTION__, pid, thread_found ? "stopped tracking thread metadata" : "thread metadata not found");
}
return;
}
siginfo_t info;
const auto info_err = GetSignalInfo(pid, &info);
auto thread_sp = GetThreadByID(pid);
if (! thread_sp)
{
// Normally, the only situation when we cannot find the thread is if we have just
// received a new thread notification. This is indicated by GetSignalInfo() returning
// si_code == SI_USER and si_pid == 0
if (log)
log->Printf("NativeProcessLinux::%s received notification about an unknown tid %" PRIu64 ".", __FUNCTION__, pid);
if (info_err.Fail())
{
if (log)
log->Printf("NativeProcessLinux::%s (tid %" PRIu64 ") GetSignalInfo failed (%s). Ingoring this notification.", __FUNCTION__, pid, info_err.AsCString());
return;
}
if (log && (info.si_code != SI_USER || info.si_pid != 0))
log->Printf("NativeProcessLinux::%s (tid %" PRIu64 ") unexpected signal info (si_code: %d, si_pid: %d). Treating as a new thread notification anyway.", __FUNCTION__, pid, info.si_code, info.si_pid);
auto thread_sp = AddThread(pid);
// Resume the newly created thread.
ResumeThread(*thread_sp, eStateRunning, LLDB_INVALID_SIGNAL_NUMBER);
ThreadWasCreated(*thread_sp);
return;
}
// Get details on the signal raised.
if (info_err.Success())
{
// We have retrieved the signal info. Dispatch appropriately.
if (info.si_signo == SIGTRAP)
MonitorSIGTRAP(info, *thread_sp);
else
MonitorSignal(info, *thread_sp, exited);
}
else
{
if (info_err.GetError() == EINVAL)
{
// This is a group stop reception for this tid.
// We can reach here if we reinject SIGSTOP, SIGSTP, SIGTTIN or SIGTTOU into the
// tracee, triggering the group-stop mechanism. Normally receiving these would stop
// the process, pending a SIGCONT. Simulating this state in a debugger is hard and is
// generally not needed (one use case is debugging background task being managed by a
// shell). For general use, it is sufficient to stop the process in a signal-delivery
// stop which happens before the group stop. This done by MonitorSignal and works
// correctly for all signals.
if (log)
log->Printf("NativeProcessLinux::%s received a group stop for pid %" PRIu64 " tid %" PRIu64 ". Transparent handling of group stops not supported, resuming the thread.", __FUNCTION__, GetID (), pid);
ResumeThread(*thread_sp, thread_sp->GetState(), LLDB_INVALID_SIGNAL_NUMBER);
}
else
{
// ptrace(GETSIGINFO) failed (but not due to group-stop).
// A return value of ESRCH means the thread/process is no longer on the system,
// so it was killed somehow outside of our control. Either way, we can't do anything
// with it anymore.
// Stop tracking the metadata for the thread since it's entirely off the system now.
const bool thread_found = StopTrackingThread (pid);
if (log)
log->Printf ("NativeProcessLinux::%s GetSignalInfo failed: %s, tid = %" PRIu64 ", signal = %d, status = %d (%s, %s, %s)",
__FUNCTION__, info_err.AsCString(), pid, signal, status, info_err.GetError() == ESRCH ? "thread/process killed" : "unknown reason", is_main_thread ? "is main thread" : "is not main thread", thread_found ? "thread metadata removed" : "thread metadata not found");
if (is_main_thread)
{
// Notify the delegate - our process is not available but appears to have been killed outside
// our control. Is eStateExited the right exit state in this case?
SetExitStatus (convert_pid_status_to_exit_type (status), convert_pid_status_to_return_code (status), nullptr, true);
SetState (StateType::eStateExited, true);
}
else
{
// This thread was pulled out from underneath us. Anything to do here? Do we want to do an all stop?
if (log)
log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " tid %" PRIu64 " non-main thread exit occurred, didn't tell delegate anything since thread disappeared out from underneath us", __FUNCTION__, GetID (), pid);
}
}
}
}
void
NativeProcessLinux::WaitForNewThread(::pid_t tid)
{
Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
NativeThreadLinuxSP new_thread_sp = GetThreadByID(tid);
if (new_thread_sp)
{
// We are already tracking the thread - we got the event on the new thread (see
// MonitorSignal) before this one. We are done.
return;
}
// The thread is not tracked yet, let's wait for it to appear.
int status = -1;
::pid_t wait_pid;
do
{
if (log)
log->Printf ("NativeProcessLinux::%s() received thread creation event for tid %" PRIu32 ". tid not tracked yet, waiting for thread to appear...", __FUNCTION__, tid);
wait_pid = waitpid(tid, &status, __WALL);
}
while (wait_pid == -1 && errno == EINTR);
// Since we are waiting on a specific tid, this must be the creation event. But let's do
// some checks just in case.
if (wait_pid != tid) {
if (log)
log->Printf ("NativeProcessLinux::%s() waiting for tid %" PRIu32 " failed. Assuming the thread has disappeared in the meantime", __FUNCTION__, tid);
// The only way I know of this could happen is if the whole process was
// SIGKILLed in the mean time. In any case, we can't do anything about that now.
return;
}
if (WIFEXITED(status))
{
if (log)
log->Printf ("NativeProcessLinux::%s() waiting for tid %" PRIu32 " returned an 'exited' event. Not tracking the thread.", __FUNCTION__, tid);
// Also a very improbable event.
return;
}
siginfo_t info;
Error error = GetSignalInfo(tid, &info);
if (error.Fail())
{
if (log)
log->Printf ("NativeProcessLinux::%s() GetSignalInfo for tid %" PRIu32 " failed. Assuming the thread has disappeared in the meantime.", __FUNCTION__, tid);
return;
}
if (((info.si_pid != 0) || (info.si_code != SI_USER)) && log)
{
// We should be getting a thread creation signal here, but we received something
// else. There isn't much we can do about it now, so we will just log that. Since the
// thread is alive and we are receiving events from it, we shall pretend that it was
// created properly.
log->Printf ("NativeProcessLinux::%s() GetSignalInfo for tid %" PRIu32 " received unexpected signal with code %d from pid %d.", __FUNCTION__, tid, info.si_code, info.si_pid);
}
if (log)
log->Printf ("NativeProcessLinux::%s() pid = %" PRIu64 ": tracking new thread tid %" PRIu32,
__FUNCTION__, GetID (), tid);
new_thread_sp = AddThread(tid);
ResumeThread(*new_thread_sp, eStateRunning, LLDB_INVALID_SIGNAL_NUMBER);
ThreadWasCreated(*new_thread_sp);
}
void
NativeProcessLinux::MonitorSIGTRAP(const siginfo_t &info, NativeThreadLinux &thread)
{
Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
const bool is_main_thread = (thread.GetID() == GetID ());
assert(info.si_signo == SIGTRAP && "Unexpected child signal!");
Mutex::Locker locker (m_threads_mutex);
switch (info.si_code)
{
// TODO: these two cases are required if we want to support tracing of the inferiors' children. We'd need this to debug a monitor.
// case (SIGTRAP | (PTRACE_EVENT_FORK << 8)):
// case (SIGTRAP | (PTRACE_EVENT_VFORK << 8)):
case (SIGTRAP | (PTRACE_EVENT_CLONE << 8)):
{
// This is the notification on the parent thread which informs us of new thread
// creation.
// We don't want to do anything with the parent thread so we just resume it. In case we
// want to implement "break on thread creation" functionality, we would need to stop
// here.
unsigned long event_message = 0;
if (GetEventMessage(thread.GetID(), &event_message).Fail())
{
if (log)
log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " received thread creation event but GetEventMessage failed so we don't know the new tid", __FUNCTION__, thread.GetID());
} else
WaitForNewThread(event_message);
ResumeThread(thread, thread.GetState(), LLDB_INVALID_SIGNAL_NUMBER);
break;
}
case (SIGTRAP | (PTRACE_EVENT_EXEC << 8)):
{
NativeThreadLinuxSP main_thread_sp;
if (log)
log->Printf ("NativeProcessLinux::%s() received exec event, code = %d", __FUNCTION__, info.si_code ^ SIGTRAP);
// Exec clears any pending notifications.
m_pending_notification_tid = LLDB_INVALID_THREAD_ID;
// Remove all but the main thread here. Linux fork creates a new process which only copies the main thread. Mutexes are in undefined state.
if (log)
log->Printf ("NativeProcessLinux::%s exec received, stop tracking all but main thread", __FUNCTION__);
for (auto thread_sp : m_threads)
{
const bool is_main_thread = thread_sp && thread_sp->GetID () == GetID ();
if (is_main_thread)
{
main_thread_sp = std::static_pointer_cast<NativeThreadLinux>(thread_sp);
if (log)
log->Printf ("NativeProcessLinux::%s found main thread with tid %" PRIu64 ", keeping", __FUNCTION__, main_thread_sp->GetID ());
}
else
{
if (log)
log->Printf ("NativeProcessLinux::%s discarding non-main-thread tid %" PRIu64 " due to exec", __FUNCTION__, thread_sp->GetID ());
}
}
m_threads.clear ();
if (main_thread_sp)
{
m_threads.push_back (main_thread_sp);
SetCurrentThreadID (main_thread_sp->GetID ());
main_thread_sp->SetStoppedByExec();
}
else
{
SetCurrentThreadID (LLDB_INVALID_THREAD_ID);
if (log)
log->Printf ("NativeProcessLinux::%s pid %" PRIu64 "no main thread found, discarded all threads, we're in a no-thread state!", __FUNCTION__, GetID ());
}
// Tell coordinator about about the "new" (since exec) stopped main thread.
ThreadWasCreated(*main_thread_sp);
// Let our delegate know we have just exec'd.
NotifyDidExec ();
// If we have a main thread, indicate we are stopped.
assert (main_thread_sp && "exec called during ptraced process but no main thread metadata tracked");
// Let the process know we're stopped.
StopRunningThreads(main_thread_sp->GetID());
break;
}
case (SIGTRAP | (PTRACE_EVENT_EXIT << 8)):
{
// The inferior process or one of its threads is about to exit.
// We don't want to do anything with the thread so we just resume it. In case we
// want to implement "break on thread exit" functionality, we would need to stop
// here.
unsigned long data = 0;
if (GetEventMessage(thread.GetID(), &data).Fail())
data = -1;
if (log)
{
log->Printf ("NativeProcessLinux::%s() received PTRACE_EVENT_EXIT, data = %lx (WIFEXITED=%s,WIFSIGNALED=%s), pid = %" PRIu64 " (%s)",
__FUNCTION__,
data, WIFEXITED (data) ? "true" : "false", WIFSIGNALED (data) ? "true" : "false",
thread.GetID(),
is_main_thread ? "is main thread" : "not main thread");
}
if (is_main_thread)
{
SetExitStatus (convert_pid_status_to_exit_type (data), convert_pid_status_to_return_code (data), nullptr, true);
}
StateType state = thread.GetState();
if (! StateIsRunningState(state))
{
// Due to a kernel bug, we may sometimes get this stop after the inferior gets a
// SIGKILL. This confuses our state tracking logic in ResumeThread(), since normally,
// we should not be receiving any ptrace events while the inferior is stopped. This
// makes sure that the inferior is resumed and exits normally.
state = eStateRunning;
}
ResumeThread(thread, state, LLDB_INVALID_SIGNAL_NUMBER);
break;
}
case 0:
case TRAP_TRACE: // We receive this on single stepping.
case TRAP_HWBKPT: // We receive this on watchpoint hit
{
// If a watchpoint was hit, report it
uint32_t wp_index;
Error error = thread.GetRegisterContext()->GetWatchpointHitIndex(wp_index, (uintptr_t)info.si_addr);
if (error.Fail() && log)
log->Printf("NativeProcessLinux::%s() "
"received error while checking for watchpoint hits, "
"pid = %" PRIu64 " error = %s",
__FUNCTION__, thread.GetID(), error.AsCString());
if (wp_index != LLDB_INVALID_INDEX32)
{
MonitorWatchpoint(thread, wp_index);
break;
}
// Otherwise, report step over
MonitorTrace(thread);
break;
}
case SI_KERNEL:
#if defined __mips__
// For mips there is no special signal for watchpoint
// So we check for watchpoint in kernel trap
{
// If a watchpoint was hit, report it
uint32_t wp_index;
Error error = thread.GetRegisterContext()->GetWatchpointHitIndex(wp_index, LLDB_INVALID_ADDRESS);
if (error.Fail() && log)
log->Printf("NativeProcessLinux::%s() "
"received error while checking for watchpoint hits, "
"pid = %" PRIu64 " error = %s",
__FUNCTION__, thread.GetID(), error.AsCString());
if (wp_index != LLDB_INVALID_INDEX32)
{
MonitorWatchpoint(thread, wp_index);
break;
}
}
// NO BREAK
#endif
case TRAP_BRKPT:
MonitorBreakpoint(thread);
break;
case SIGTRAP:
case (SIGTRAP | 0x80):
if (log)
log->Printf ("NativeProcessLinux::%s() received unknown SIGTRAP system call stop event, pid %" PRIu64 "tid %" PRIu64 ", resuming", __FUNCTION__, GetID (), thread.GetID());
// Ignore these signals until we know more about them.
ResumeThread(thread, thread.GetState(), LLDB_INVALID_SIGNAL_NUMBER);
break;
default:
assert(false && "Unexpected SIGTRAP code!");
if (log)
log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 "tid %" PRIu64 " received unhandled SIGTRAP code: 0x%d",
__FUNCTION__, GetID(), thread.GetID(), info.si_code);
break;
}
}
void
NativeProcessLinux::MonitorTrace(NativeThreadLinux &thread)
{
Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
if (log)
log->Printf("NativeProcessLinux::%s() received trace event, pid = %" PRIu64 " (single stepping)",
__FUNCTION__, thread.GetID());
// This thread is currently stopped.
thread.SetStoppedByTrace();
StopRunningThreads(thread.GetID());
}
void
NativeProcessLinux::MonitorBreakpoint(NativeThreadLinux &thread)
{
Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_BREAKPOINTS));
if (log)
log->Printf("NativeProcessLinux::%s() received breakpoint event, pid = %" PRIu64,
__FUNCTION__, thread.GetID());
// Mark the thread as stopped at breakpoint.
thread.SetStoppedByBreakpoint();
Error error = FixupBreakpointPCAsNeeded(thread);
if (error.Fail())
if (log)
log->Printf("NativeProcessLinux::%s() pid = %" PRIu64 " fixup: %s",
__FUNCTION__, thread.GetID(), error.AsCString());
if (m_threads_stepping_with_breakpoint.find(thread.GetID()) != m_threads_stepping_with_breakpoint.end())
thread.SetStoppedByTrace();
StopRunningThreads(thread.GetID());
}
void
NativeProcessLinux::MonitorWatchpoint(NativeThreadLinux &thread, uint32_t wp_index)
{
Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_WATCHPOINTS));
if (log)
log->Printf("NativeProcessLinux::%s() received watchpoint event, "
"pid = %" PRIu64 ", wp_index = %" PRIu32,
__FUNCTION__, thread.GetID(), wp_index);
// Mark the thread as stopped at watchpoint.
// The address is at (lldb::addr_t)info->si_addr if we need it.
thread.SetStoppedByWatchpoint(wp_index);
// We need to tell all other running threads before we notify the delegate about this stop.
StopRunningThreads(thread.GetID());
}
void
NativeProcessLinux::MonitorSignal(const siginfo_t &info, NativeThreadLinux &thread, bool exited)
{
const int signo = info.si_signo;
const bool is_from_llgs = info.si_pid == getpid ();
Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
// POSIX says that process behaviour is undefined after it ignores a SIGFPE,
// SIGILL, SIGSEGV, or SIGBUS *unless* that signal was generated by a
// kill(2) or raise(3). Similarly for tgkill(2) on Linux.
//
// IOW, user generated signals never generate what we consider to be a
// "crash".
//
// Similarly, ACK signals generated by this monitor.
Mutex::Locker locker (m_threads_mutex);
// Handle the signal.
if (info.si_code == SI_TKILL || info.si_code == SI_USER)
{
if (log)
log->Printf ("NativeProcessLinux::%s() received signal %s (%d) with code %s, (siginfo pid = %d (%s), waitpid pid = %" PRIu64 ")",
__FUNCTION__,
Host::GetSignalAsCString(signo),
signo,
(info.si_code == SI_TKILL ? "SI_TKILL" : "SI_USER"),
info.si_pid,
is_from_llgs ? "from llgs" : "not from llgs",
thread.GetID());
}
// Check for thread stop notification.
if (is_from_llgs && (info.si_code == SI_TKILL) && (signo == SIGSTOP))
{
// This is a tgkill()-based stop.
if (log)
log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " tid %" PRIu64 ", thread stopped",
__FUNCTION__,
GetID (),
thread.GetID());
// Check that we're not already marked with a stop reason.
// Note this thread really shouldn't already be marked as stopped - if we were, that would imply that
// the kernel signaled us with the thread stopping which we handled and marked as stopped,
// and that, without an intervening resume, we received another stop. It is more likely
// that we are missing the marking of a run state somewhere if we find that the thread was
// marked as stopped.
const StateType thread_state = thread.GetState();
if (!StateIsStoppedState (thread_state, false))
{
// An inferior thread has stopped because of a SIGSTOP we have sent it.
// Generally, these are not important stops and we don't want to report them as
// they are just used to stop other threads when one thread (the one with the
// *real* stop reason) hits a breakpoint (watchpoint, etc...). However, in the
// case of an asynchronous Interrupt(), this *is* the real stop reason, so we
// leave the signal intact if this is the thread that was chosen as the
// triggering thread.
if (m_pending_notification_tid != LLDB_INVALID_THREAD_ID)
{
if (m_pending_notification_tid == thread.GetID())
thread.SetStoppedBySignal(SIGSTOP, &info);
else
thread.SetStoppedWithNoReason();
SetCurrentThreadID (thread.GetID ());
SignalIfAllThreadsStopped();
}
else
{
// We can end up here if stop was initiated by LLGS but by this time a
// thread stop has occurred - maybe initiated by another event.
Error error = ResumeThread(thread, thread.GetState(), 0);
if (error.Fail() && log)
{
log->Printf("NativeProcessLinux::%s failed to resume thread tid %" PRIu64 ": %s",
__FUNCTION__, thread.GetID(), error.AsCString());
}
}
}
else
{
if (log)
{
// Retrieve the signal name if the thread was stopped by a signal.
int stop_signo = 0;
const bool stopped_by_signal = thread.IsStopped(&stop_signo);
const char *signal_name = stopped_by_signal ? Host::GetSignalAsCString(stop_signo) : "<not stopped by signal>";
if (!signal_name)
signal_name = "<no-signal-name>";
log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " tid %" PRIu64 ", thread was already marked as a stopped state (state=%s, signal=%d (%s)), leaving stop signal as is",
__FUNCTION__,
GetID (),
thread.GetID(),
StateAsCString (thread_state),
stop_signo,
signal_name);
}
SignalIfAllThreadsStopped();
}
// Done handling.
return;
}
if (log)
log->Printf ("NativeProcessLinux::%s() received signal %s", __FUNCTION__, Host::GetSignalAsCString(signo));
// This thread is stopped.
thread.SetStoppedBySignal(signo, &info);
// Send a stop to the debugger after we get all other threads to stop.
StopRunningThreads(thread.GetID());
}
namespace {
struct EmulatorBaton
{
NativeProcessLinux* m_process;
NativeRegisterContext* m_reg_context;
// eRegisterKindDWARF -> RegsiterValue
std::unordered_map<uint32_t, RegisterValue> m_register_values;
EmulatorBaton(NativeProcessLinux* process, NativeRegisterContext* reg_context) :
m_process(process), m_reg_context(reg_context) {}
};
} // anonymous namespace
static size_t
ReadMemoryCallback (EmulateInstruction *instruction,
void *baton,
const EmulateInstruction::Context &context,
lldb::addr_t addr,
void *dst,
size_t length)
{
EmulatorBaton* emulator_baton = static_cast<EmulatorBaton*>(baton);
size_t bytes_read;
emulator_baton->m_process->ReadMemory(addr, dst, length, bytes_read);
return bytes_read;
}
static bool
ReadRegisterCallback (EmulateInstruction *instruction,
void *baton,
const RegisterInfo *reg_info,
RegisterValue &reg_value)
{
EmulatorBaton* emulator_baton = static_cast<EmulatorBaton*>(baton);
auto it = emulator_baton->m_register_values.find(reg_info->kinds[eRegisterKindDWARF]);
if (it != emulator_baton->m_register_values.end())
{
reg_value = it->second;
return true;
}
// The emulator only fill in the dwarf regsiter numbers (and in some case
// the generic register numbers). Get the full register info from the
// register context based on the dwarf register numbers.
const RegisterInfo* full_reg_info = emulator_baton->m_reg_context->GetRegisterInfo(
eRegisterKindDWARF, reg_info->kinds[eRegisterKindDWARF]);
Error error = emulator_baton->m_reg_context->ReadRegister(full_reg_info, reg_value);
if (error.Success())
return true;
return false;
}
static bool
WriteRegisterCallback (EmulateInstruction *instruction,
void *baton,
const EmulateInstruction::Context &context,
const RegisterInfo *reg_info,
const RegisterValue &reg_value)
{
EmulatorBaton* emulator_baton = static_cast<EmulatorBaton*>(baton);
emulator_baton->m_register_values[reg_info->kinds[eRegisterKindDWARF]] = reg_value;
return true;
}
static size_t
WriteMemoryCallback (EmulateInstruction *instruction,
void *baton,
const EmulateInstruction::Context &context,
lldb::addr_t addr,
const void *dst,
size_t length)
{
return length;
}
static lldb::addr_t
ReadFlags (NativeRegisterContext* regsiter_context)
{
const RegisterInfo* flags_info = regsiter_context->GetRegisterInfo(
eRegisterKindGeneric, LLDB_REGNUM_GENERIC_FLAGS);
return regsiter_context->ReadRegisterAsUnsigned(flags_info, LLDB_INVALID_ADDRESS);
}
Error
NativeProcessLinux::SetupSoftwareSingleStepping(NativeThreadLinux &thread)
{
Error error;
NativeRegisterContextSP register_context_sp = thread.GetRegisterContext();
std::unique_ptr<EmulateInstruction> emulator_ap(
EmulateInstruction::FindPlugin(m_arch, eInstructionTypePCModifying, nullptr));
if (emulator_ap == nullptr)
return Error("Instruction emulator not found!");
EmulatorBaton baton(this, register_context_sp.get());
emulator_ap->SetBaton(&baton);
emulator_ap->SetReadMemCallback(&ReadMemoryCallback);
emulator_ap->SetReadRegCallback(&ReadRegisterCallback);
emulator_ap->SetWriteMemCallback(&WriteMemoryCallback);
emulator_ap->SetWriteRegCallback(&WriteRegisterCallback);
if (!emulator_ap->ReadInstruction())
return Error("Read instruction failed!");
bool emulation_result = emulator_ap->EvaluateInstruction(eEmulateInstructionOptionAutoAdvancePC);
const RegisterInfo* reg_info_pc = register_context_sp->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_PC);
const RegisterInfo* reg_info_flags = register_context_sp->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_FLAGS);
auto pc_it = baton.m_register_values.find(reg_info_pc->kinds[eRegisterKindDWARF]);
auto flags_it = baton.m_register_values.find(reg_info_flags->kinds[eRegisterKindDWARF]);
lldb::addr_t next_pc;
lldb::addr_t next_flags;
if (emulation_result)
{
assert(pc_it != baton.m_register_values.end() && "Emulation was successfull but PC wasn't updated");
next_pc = pc_it->second.GetAsUInt64();
if (flags_it != baton.m_register_values.end())
next_flags = flags_it->second.GetAsUInt64();
else
next_flags = ReadFlags (register_context_sp.get());
}
else if (pc_it == baton.m_register_values.end())
{
// Emulate instruction failed and it haven't changed PC. Advance PC
// with the size of the current opcode because the emulation of all
// PC modifying instruction should be successful. The failure most
// likely caused by a not supported instruction which don't modify PC.
next_pc = register_context_sp->GetPC() + emulator_ap->GetOpcode().GetByteSize();
next_flags = ReadFlags (register_context_sp.get());
}
else
{
// The instruction emulation failed after it modified the PC. It is an
// unknown error where we can't continue because the next instruction is
// modifying the PC but we don't know how.
return Error ("Instruction emulation failed unexpectedly.");
}
if (m_arch.GetMachine() == llvm::Triple::arm)
{
if (next_flags & 0x20)
{
// Thumb mode
error = SetSoftwareBreakpoint(next_pc, 2);
}
else
{
// Arm mode
error = SetSoftwareBreakpoint(next_pc, 4);
}
}
else if (m_arch.GetMachine() == llvm::Triple::mips64
|| m_arch.GetMachine() == llvm::Triple::mips64el
|| m_arch.GetMachine() == llvm::Triple::mips
|| m_arch.GetMachine() == llvm::Triple::mipsel)
error = SetSoftwareBreakpoint(next_pc, 4);
else
{
// No size hint is given for the next breakpoint
error = SetSoftwareBreakpoint(next_pc, 0);
}
if (error.Fail())
return error;
m_threads_stepping_with_breakpoint.insert({thread.GetID(), next_pc});
return Error();
}
bool
NativeProcessLinux::SupportHardwareSingleStepping() const
{
if (m_arch.GetMachine() == llvm::Triple::arm
|| m_arch.GetMachine() == llvm::Triple::mips64 || m_arch.GetMachine() == llvm::Triple::mips64el
|| m_arch.GetMachine() == llvm::Triple::mips || m_arch.GetMachine() == llvm::Triple::mipsel)
return false;
return true;
}
Error
NativeProcessLinux::Resume (const ResumeActionList &resume_actions)
{
Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_THREAD));
if (log)
log->Printf ("NativeProcessLinux::%s called: pid %" PRIu64, __FUNCTION__, GetID ());
bool software_single_step = !SupportHardwareSingleStepping();
Mutex::Locker locker (m_threads_mutex);
if (software_single_step)
{
for (auto thread_sp : m_threads)
{
assert (thread_sp && "thread list should not contain NULL threads");
const ResumeAction *const action = resume_actions.GetActionForThread (thread_sp->GetID (), true);
if (action == nullptr)
continue;
if (action->state == eStateStepping)
{
Error error = SetupSoftwareSingleStepping(static_cast<NativeThreadLinux &>(*thread_sp));
if (error.Fail())
return error;
}
}
}
for (auto thread_sp : m_threads)
{
assert (thread_sp && "thread list should not contain NULL threads");
const ResumeAction *const action = resume_actions.GetActionForThread (thread_sp->GetID (), true);
if (action == nullptr)
{
if (log)
log->Printf ("NativeProcessLinux::%s no action specified for pid %" PRIu64 " tid %" PRIu64,
__FUNCTION__, GetID (), thread_sp->GetID ());
continue;
}
if (log)
{
log->Printf ("NativeProcessLinux::%s processing resume action state %s for pid %" PRIu64 " tid %" PRIu64,
__FUNCTION__, StateAsCString (action->state), GetID (), thread_sp->GetID ());
}
switch (action->state)
{
case eStateRunning:
case eStateStepping:
{
// Run the thread, possibly feeding it the signal.
const int signo = action->signal;
ResumeThread(static_cast<NativeThreadLinux &>(*thread_sp), action->state, signo);
break;
}
case eStateSuspended:
case eStateStopped:
lldbassert(0 && "Unexpected state");
default:
return Error ("NativeProcessLinux::%s (): unexpected state %s specified for pid %" PRIu64 ", tid %" PRIu64,
__FUNCTION__, StateAsCString (action->state), GetID (), thread_sp->GetID ());
}
}
return Error();
}
Error
NativeProcessLinux::Halt ()
{
Error error;
if (kill (GetID (), SIGSTOP) != 0)
error.SetErrorToErrno ();
return error;
}
Error
NativeProcessLinux::Detach ()
{
Error error;
// Stop monitoring the inferior.
m_sigchld_handle.reset();
// Tell ptrace to detach from the process.
if (GetID () == LLDB_INVALID_PROCESS_ID)
return error;
for (auto thread_sp : m_threads)
{
Error e = Detach(thread_sp->GetID());
if (e.Fail())
error = e; // Save the error, but still attempt to detach from other threads.
}
return error;
}
Error
NativeProcessLinux::Signal (int signo)
{
Error error;
Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
if (log)
log->Printf ("NativeProcessLinux::%s: sending signal %d (%s) to pid %" PRIu64,
__FUNCTION__, signo, Host::GetSignalAsCString(signo), GetID());
if (kill(GetID(), signo))
error.SetErrorToErrno();
return error;
}
Error
NativeProcessLinux::Interrupt ()
{
// Pick a running thread (or if none, a not-dead stopped thread) as
// the chosen thread that will be the stop-reason thread.
Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
NativeThreadProtocolSP running_thread_sp;
NativeThreadProtocolSP stopped_thread_sp;
if (log)
log->Printf ("NativeProcessLinux::%s selecting running thread for interrupt target", __FUNCTION__);
Mutex::Locker locker (m_threads_mutex);
for (auto thread_sp : m_threads)
{
// The thread shouldn't be null but lets just cover that here.
if (!thread_sp)
continue;
// If we have a running or stepping thread, we'll call that the
// target of the interrupt.
const auto thread_state = thread_sp->GetState ();
if (thread_state == eStateRunning ||
thread_state == eStateStepping)
{
running_thread_sp = thread_sp;
break;
}
else if (!stopped_thread_sp && StateIsStoppedState (thread_state, true))
{
// Remember the first non-dead stopped thread. We'll use that as a backup if there are no running threads.
stopped_thread_sp = thread_sp;
}
}
if (!running_thread_sp && !stopped_thread_sp)
{
Error error("found no running/stepping or live stopped threads as target for interrupt");
if (log)
log->Printf ("NativeProcessLinux::%s skipping due to error: %s", __FUNCTION__, error.AsCString ());
return error;
}
NativeThreadProtocolSP deferred_signal_thread_sp = running_thread_sp ? running_thread_sp : stopped_thread_sp;
if (log)
log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " %s tid %" PRIu64 " chosen for interrupt target",
__FUNCTION__,
GetID (),
running_thread_sp ? "running" : "stopped",
deferred_signal_thread_sp->GetID ());
StopRunningThreads(deferred_signal_thread_sp->GetID());
return Error();
}
Error
NativeProcessLinux::Kill ()
{
Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
if (log)
log->Printf ("NativeProcessLinux::%s called for PID %" PRIu64, __FUNCTION__, GetID ());
Error error;
switch (m_state)
{
case StateType::eStateInvalid:
case StateType::eStateExited:
case StateType::eStateCrashed:
case StateType::eStateDetached:
case StateType::eStateUnloaded:
// Nothing to do - the process is already dead.
if (log)
log->Printf ("NativeProcessLinux::%s ignored for PID %" PRIu64 " due to current state: %s", __FUNCTION__, GetID (), StateAsCString (m_state));
return error;
case StateType::eStateConnected:
case StateType::eStateAttaching:
case StateType::eStateLaunching:
case StateType::eStateStopped:
case StateType::eStateRunning:
case StateType::eStateStepping:
case StateType::eStateSuspended:
// We can try to kill a process in these states.
break;
}
if (kill (GetID (), SIGKILL) != 0)
{
error.SetErrorToErrno ();
return error;
}
return error;
}
static Error
ParseMemoryRegionInfoFromProcMapsLine (const std::string &maps_line, MemoryRegionInfo &memory_region_info)
{
memory_region_info.Clear();
StringExtractor line_extractor (maps_line.c_str ());
// Format: {address_start_hex}-{address_end_hex} perms offset dev inode pathname
// perms: rwxp (letter is present if set, '-' if not, final character is p=private, s=shared).
// Parse out the starting address
lldb::addr_t start_address = line_extractor.GetHexMaxU64 (false, 0);
// Parse out hyphen separating start and end address from range.
if (!line_extractor.GetBytesLeft () || (line_extractor.GetChar () != '-'))
return Error ("malformed /proc/{pid}/maps entry, missing dash between address range");
// Parse out the ending address
lldb::addr_t end_address = line_extractor.GetHexMaxU64 (false, start_address);
// Parse out the space after the address.
if (!line_extractor.GetBytesLeft () || (line_extractor.GetChar () != ' '))
return Error ("malformed /proc/{pid}/maps entry, missing space after range");
// Save the range.
memory_region_info.GetRange ().SetRangeBase (start_address);
memory_region_info.GetRange ().SetRangeEnd (end_address);
// Parse out each permission entry.
if (line_extractor.GetBytesLeft () < 4)
return Error ("malformed /proc/{pid}/maps entry, missing some portion of permissions");
// Handle read permission.
const char read_perm_char = line_extractor.GetChar ();
if (read_perm_char == 'r')
memory_region_info.SetReadable (MemoryRegionInfo::OptionalBool::eYes);
else
{
assert ( (read_perm_char == '-') && "unexpected /proc/{pid}/maps read permission char" );
memory_region_info.SetReadable (MemoryRegionInfo::OptionalBool::eNo);
}
// Handle write permission.
const char write_perm_char = line_extractor.GetChar ();
if (write_perm_char == 'w')
memory_region_info.SetWritable (MemoryRegionInfo::OptionalBool::eYes);
else
{
assert ( (write_perm_char == '-') && "unexpected /proc/{pid}/maps write permission char" );
memory_region_info.SetWritable (MemoryRegionInfo::OptionalBool::eNo);
}
// Handle execute permission.
const char exec_perm_char = line_extractor.GetChar ();
if (exec_perm_char == 'x')
memory_region_info.SetExecutable (MemoryRegionInfo::OptionalBool::eYes);
else
{
assert ( (exec_perm_char == '-') && "unexpected /proc/{pid}/maps exec permission char" );
memory_region_info.SetExecutable (MemoryRegionInfo::OptionalBool::eNo);
}
return Error ();
}
Error
NativeProcessLinux::GetMemoryRegionInfo (lldb::addr_t load_addr, MemoryRegionInfo &range_info)
{
// FIXME review that the final memory region returned extends to the end of the virtual address space,
// with no perms if it is not mapped.
// Use an approach that reads memory regions from /proc/{pid}/maps.
// Assume proc maps entries are in ascending order.
// FIXME assert if we find differently.
Mutex::Locker locker (m_mem_region_cache_mutex);
Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
Error error;
if (m_supports_mem_region == LazyBool::eLazyBoolNo)
{
// We're done.
error.SetErrorString ("unsupported");
return error;
}
// If our cache is empty, pull the latest. There should always be at least one memory region
// if memory region handling is supported.
if (m_mem_region_cache.empty ())
{
error = ProcFileReader::ProcessLineByLine (GetID (), "maps",
[&] (const std::string &line) -> bool
{
MemoryRegionInfo info;
const Error parse_error = ParseMemoryRegionInfoFromProcMapsLine (line, info);
if (parse_error.Success ())
{
m_mem_region_cache.push_back (info);
return true;
}
else
{
if (log)
log->Printf ("NativeProcessLinux::%s failed to parse proc maps line '%s': %s", __FUNCTION__, line.c_str (), error.AsCString ());
return false;
}
});
// If we had an error, we'll mark unsupported.
if (error.Fail ())
{
m_supports_mem_region = LazyBool::eLazyBoolNo;
return error;
}
else if (m_mem_region_cache.empty ())
{
// No entries after attempting to read them. This shouldn't happen if /proc/{pid}/maps
// is supported. Assume we don't support map entries via procfs.
if (log)
log->Printf ("NativeProcessLinux::%s failed to find any procfs maps entries, assuming no support for memory region metadata retrieval", __FUNCTION__);
m_supports_mem_region = LazyBool::eLazyBoolNo;
error.SetErrorString ("not supported");
return error;
}
if (log)
log->Printf ("NativeProcessLinux::%s read %" PRIu64 " memory region entries from /proc/%" PRIu64 "/maps", __FUNCTION__, static_cast<uint64_t> (m_mem_region_cache.size ()), GetID ());
// We support memory retrieval, remember that.
m_supports_mem_region = LazyBool::eLazyBoolYes;
}
else
{
if (log)
log->Printf ("NativeProcessLinux::%s reusing %" PRIu64 " cached memory region entries", __FUNCTION__, static_cast<uint64_t> (m_mem_region_cache.size ()));
}
lldb::addr_t prev_base_address = 0;
// FIXME start by finding the last region that is <= target address using binary search. Data is sorted.
// There can be a ton of regions on pthreads apps with lots of threads.
for (auto it = m_mem_region_cache.begin(); it != m_mem_region_cache.end (); ++it)
{
MemoryRegionInfo &proc_entry_info = *it;
// Sanity check assumption that /proc/{pid}/maps entries are ascending.
assert ((proc_entry_info.GetRange ().GetRangeBase () >= prev_base_address) && "descending /proc/pid/maps entries detected, unexpected");
prev_base_address = proc_entry_info.GetRange ().GetRangeBase ();
// If the target address comes before this entry, indicate distance to next region.
if (load_addr < proc_entry_info.GetRange ().GetRangeBase ())
{
range_info.GetRange ().SetRangeBase (load_addr);
range_info.GetRange ().SetByteSize (proc_entry_info.GetRange ().GetRangeBase () - load_addr);
range_info.SetReadable (MemoryRegionInfo::OptionalBool::eNo);
range_info.SetWritable (MemoryRegionInfo::OptionalBool::eNo);
range_info.SetExecutable (MemoryRegionInfo::OptionalBool::eNo);
return error;
}
else if (proc_entry_info.GetRange ().Contains (load_addr))
{
// The target address is within the memory region we're processing here.
range_info = proc_entry_info;
return error;
}
// The target memory address comes somewhere after the region we just parsed.
}
// If we made it here, we didn't find an entry that contained the given address. Return the
// load_addr as start and the amount of bytes betwwen load address and the end of the memory as
// size.
range_info.GetRange ().SetRangeBase (load_addr);
switch (m_arch.GetAddressByteSize())
{
case 4:
range_info.GetRange ().SetByteSize (0x100000000ull - load_addr);
break;
case 8:
range_info.GetRange ().SetByteSize (0ull - load_addr);
break;
default:
assert(false && "Unrecognized data byte size");
break;
}
range_info.SetReadable (MemoryRegionInfo::OptionalBool::eNo);
range_info.SetWritable (MemoryRegionInfo::OptionalBool::eNo);
range_info.SetExecutable (MemoryRegionInfo::OptionalBool::eNo);
return error;
}
void
NativeProcessLinux::DoStopIDBumped (uint32_t newBumpId)
{
Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
if (log)
log->Printf ("NativeProcessLinux::%s(newBumpId=%" PRIu32 ") called", __FUNCTION__, newBumpId);
{
Mutex::Locker locker (m_mem_region_cache_mutex);
if (log)
log->Printf ("NativeProcessLinux::%s clearing %" PRIu64 " entries from the cache", __FUNCTION__, static_cast<uint64_t> (m_mem_region_cache.size ()));
m_mem_region_cache.clear ();
}
}
Error
NativeProcessLinux::AllocateMemory(size_t size, uint32_t permissions, lldb::addr_t &addr)
{
// FIXME implementing this requires the equivalent of
// InferiorCallPOSIX::InferiorCallMmap, which depends on
// functional ThreadPlans working with Native*Protocol.
#if 1
return Error ("not implemented yet");
#else
addr = LLDB_INVALID_ADDRESS;
unsigned prot = 0;
if (permissions & lldb::ePermissionsReadable)
prot |= eMmapProtRead;
if (permissions & lldb::ePermissionsWritable)
prot |= eMmapProtWrite;
if (permissions & lldb::ePermissionsExecutable)
prot |= eMmapProtExec;
// TODO implement this directly in NativeProcessLinux
// (and lift to NativeProcessPOSIX if/when that class is
// refactored out).
if (InferiorCallMmap(this, addr, 0, size, prot,
eMmapFlagsAnon | eMmapFlagsPrivate, -1, 0)) {
m_addr_to_mmap_size[addr] = size;
return Error ();
} else {
addr = LLDB_INVALID_ADDRESS;
return Error("unable to allocate %" PRIu64 " bytes of memory with permissions %s", size, GetPermissionsAsCString (permissions));
}
#endif
}
Error
NativeProcessLinux::DeallocateMemory (lldb::addr_t addr)
{
// FIXME see comments in AllocateMemory - required lower-level
// bits not in place yet (ThreadPlans)
return Error ("not implemented");
}
lldb::addr_t
NativeProcessLinux::GetSharedLibraryInfoAddress ()
{
#if 1
// punt on this for now
return LLDB_INVALID_ADDRESS;
#else
// Return the image info address for the exe module
#if 1
Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
ModuleSP module_sp;
Error error = GetExeModuleSP (module_sp);
if (error.Fail ())
{
if (log)
log->Warning ("NativeProcessLinux::%s failed to retrieve exe module: %s", __FUNCTION__, error.AsCString ());
return LLDB_INVALID_ADDRESS;
}
if (module_sp == nullptr)
{
if (log)
log->Warning ("NativeProcessLinux::%s exe module returned was NULL", __FUNCTION__);
return LLDB_INVALID_ADDRESS;
}
ObjectFileSP object_file_sp = module_sp->GetObjectFile ();
if (object_file_sp == nullptr)
{
if (log)
log->Warning ("NativeProcessLinux::%s exe module returned a NULL object file", __FUNCTION__);
return LLDB_INVALID_ADDRESS;
}
return obj_file_sp->GetImageInfoAddress();
#else
Target *target = &GetTarget();
ObjectFile *obj_file = target->GetExecutableModule()->GetObjectFile();
Address addr = obj_file->GetImageInfoAddress(target);
if (addr.IsValid())
return addr.GetLoadAddress(target);
return LLDB_INVALID_ADDRESS;
#endif
#endif // punt on this for now
}
size_t
NativeProcessLinux::UpdateThreads ()
{
// The NativeProcessLinux monitoring threads are always up to date
// with respect to thread state and they keep the thread list
// populated properly. All this method needs to do is return the
// thread count.
Mutex::Locker locker (m_threads_mutex);
return m_threads.size ();
}
bool
NativeProcessLinux::GetArchitecture (ArchSpec &arch) const
{
arch = m_arch;
return true;
}
Error
NativeProcessLinux::GetSoftwareBreakpointPCOffset(uint32_t &actual_opcode_size)
{
// FIXME put this behind a breakpoint protocol class that can be
// set per architecture. Need ARM, MIPS support here.
static const uint8_t g_i386_opcode [] = { 0xCC };
switch (m_arch.GetMachine ())
{
case llvm::Triple::x86:
case llvm::Triple::x86_64:
actual_opcode_size = static_cast<uint32_t> (sizeof(g_i386_opcode));
return Error ();
case llvm::Triple::arm:
case llvm::Triple::aarch64:
case llvm::Triple::mips64:
case llvm::Triple::mips64el:
case llvm::Triple::mips:
case llvm::Triple::mipsel:
// On these architectures the PC don't get updated for breakpoint hits
actual_opcode_size = 0;
return Error ();
default:
assert(false && "CPU type not supported!");
return Error ("CPU type not supported");
}
}
Error
NativeProcessLinux::SetBreakpoint (lldb::addr_t addr, uint32_t size, bool hardware)
{
if (hardware)
return Error ("NativeProcessLinux does not support hardware breakpoints");
else
return SetSoftwareBreakpoint (addr, size);
}
Error
NativeProcessLinux::GetSoftwareBreakpointTrapOpcode (size_t trap_opcode_size_hint,
size_t &actual_opcode_size,
const uint8_t *&trap_opcode_bytes)
{
// FIXME put this behind a breakpoint protocol class that can be set per
// architecture. Need MIPS support here.
static const uint8_t g_aarch64_opcode[] = { 0x00, 0x00, 0x20, 0xd4 };
// The ARM reference recommends the use of 0xe7fddefe and 0xdefe but the
// linux kernel does otherwise.
static const uint8_t g_arm_breakpoint_opcode[] = { 0xf0, 0x01, 0xf0, 0xe7 };
static const uint8_t g_i386_opcode [] = { 0xCC };
static const uint8_t g_mips64_opcode[] = { 0x00, 0x00, 0x00, 0x0d };
static const uint8_t g_mips64el_opcode[] = { 0x0d, 0x00, 0x00, 0x00 };
static const uint8_t g_thumb_breakpoint_opcode[] = { 0x01, 0xde };
switch (m_arch.GetMachine ())
{
case llvm::Triple::aarch64:
trap_opcode_bytes = g_aarch64_opcode;
actual_opcode_size = sizeof(g_aarch64_opcode);
return Error ();
case llvm::Triple::arm:
switch (trap_opcode_size_hint)
{
case 2:
trap_opcode_bytes = g_thumb_breakpoint_opcode;
actual_opcode_size = sizeof(g_thumb_breakpoint_opcode);
return Error ();
case 4:
trap_opcode_bytes = g_arm_breakpoint_opcode;
actual_opcode_size = sizeof(g_arm_breakpoint_opcode);
return Error ();
default:
assert(false && "Unrecognised trap opcode size hint!");
return Error ("Unrecognised trap opcode size hint!");
}
case llvm::Triple::x86:
case llvm::Triple::x86_64:
trap_opcode_bytes = g_i386_opcode;
actual_opcode_size = sizeof(g_i386_opcode);
return Error ();
case llvm::Triple::mips:
case llvm::Triple::mips64:
trap_opcode_bytes = g_mips64_opcode;
actual_opcode_size = sizeof(g_mips64_opcode);
return Error ();
case llvm::Triple::mipsel:
case llvm::Triple::mips64el:
trap_opcode_bytes = g_mips64el_opcode;
actual_opcode_size = sizeof(g_mips64el_opcode);
return Error ();
default:
assert(false && "CPU type not supported!");
return Error ("CPU type not supported");
}
}
#if 0
ProcessMessage::CrashReason
NativeProcessLinux::GetCrashReasonForSIGSEGV(const siginfo_t *info)
{
ProcessMessage::CrashReason reason;
assert(info->si_signo == SIGSEGV);
reason = ProcessMessage::eInvalidCrashReason;
switch (info->si_code)
{
default:
assert(false && "unexpected si_code for SIGSEGV");
break;
case SI_KERNEL:
// Linux will occasionally send spurious SI_KERNEL codes.
// (this is poorly documented in sigaction)
// One way to get this is via unaligned SIMD loads.
reason = ProcessMessage::eInvalidAddress; // for lack of anything better
break;
case SEGV_MAPERR:
reason = ProcessMessage::eInvalidAddress;
break;
case SEGV_ACCERR:
reason = ProcessMessage::ePrivilegedAddress;
break;
}
return reason;
}
#endif
#if 0
ProcessMessage::CrashReason
NativeProcessLinux::GetCrashReasonForSIGILL(const siginfo_t *info)
{
ProcessMessage::CrashReason reason;
assert(info->si_signo == SIGILL);
reason = ProcessMessage::eInvalidCrashReason;
switch (info->si_code)
{
default:
assert(false && "unexpected si_code for SIGILL");
break;
case ILL_ILLOPC:
reason = ProcessMessage::eIllegalOpcode;
break;
case ILL_ILLOPN:
reason = ProcessMessage::eIllegalOperand;
break;
case ILL_ILLADR:
reason = ProcessMessage::eIllegalAddressingMode;
break;
case ILL_ILLTRP:
reason = ProcessMessage::eIllegalTrap;
break;
case ILL_PRVOPC:
reason = ProcessMessage::ePrivilegedOpcode;
break;
case ILL_PRVREG:
reason = ProcessMessage::ePrivilegedRegister;
break;
case ILL_COPROC:
reason = ProcessMessage::eCoprocessorError;
break;
case ILL_BADSTK:
reason = ProcessMessage::eInternalStackError;
break;
}
return reason;
}
#endif
#if 0
ProcessMessage::CrashReason
NativeProcessLinux::GetCrashReasonForSIGFPE(const siginfo_t *info)
{
ProcessMessage::CrashReason reason;
assert(info->si_signo == SIGFPE);
reason = ProcessMessage::eInvalidCrashReason;
switch (info->si_code)
{
default:
assert(false && "unexpected si_code for SIGFPE");
break;
case FPE_INTDIV:
reason = ProcessMessage::eIntegerDivideByZero;
break;
case FPE_INTOVF:
reason = ProcessMessage::eIntegerOverflow;
break;
case FPE_FLTDIV:
reason = ProcessMessage::eFloatDivideByZero;
break;
case FPE_FLTOVF:
reason = ProcessMessage::eFloatOverflow;
break;
case FPE_FLTUND:
reason = ProcessMessage::eFloatUnderflow;
break;
case FPE_FLTRES:
reason = ProcessMessage::eFloatInexactResult;
break;
case FPE_FLTINV:
reason = ProcessMessage::eFloatInvalidOperation;
break;
case FPE_FLTSUB:
reason = ProcessMessage::eFloatSubscriptRange;
break;
}
return reason;
}
#endif
#if 0
ProcessMessage::CrashReason
NativeProcessLinux::GetCrashReasonForSIGBUS(const siginfo_t *info)
{
ProcessMessage::CrashReason reason;
assert(info->si_signo == SIGBUS);
reason = ProcessMessage::eInvalidCrashReason;
switch (info->si_code)
{
default:
assert(false && "unexpected si_code for SIGBUS");
break;
case BUS_ADRALN:
reason = ProcessMessage::eIllegalAlignment;
break;
case BUS_ADRERR:
reason = ProcessMessage::eIllegalAddress;
break;
case BUS_OBJERR:
reason = ProcessMessage::eHardwareError;
break;
}
return reason;
}
#endif
Error
NativeProcessLinux::ReadMemory (lldb::addr_t addr, void *buf, size_t size, size_t &bytes_read)
{
if (ProcessVmReadvSupported()) {
// The process_vm_readv path is about 50 times faster than ptrace api. We want to use
// this syscall if it is supported.
const ::pid_t pid = GetID();
struct iovec local_iov, remote_iov;
local_iov.iov_base = buf;
local_iov.iov_len = size;
remote_iov.iov_base = reinterpret_cast<void *>(addr);
remote_iov.iov_len = size;
bytes_read = process_vm_readv(pid, &local_iov, 1, &remote_iov, 1, 0);
const bool success = bytes_read == size;
Log *log(GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
if (log)
log->Printf ("NativeProcessLinux::%s using process_vm_readv to read %zd bytes from inferior address 0x%" PRIx64": %s",
__FUNCTION__, size, addr, success ? "Success" : strerror(errno));
if (success)
return Error();
// else
// the call failed for some reason, let's retry the read using ptrace api.
}
unsigned char *dst = static_cast<unsigned char*>(buf);
size_t remainder;
long data;
Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_ALL));
if (log)
ProcessPOSIXLog::IncNestLevel();
if (log && ProcessPOSIXLog::AtTopNestLevel() && log->GetMask().Test(POSIX_LOG_MEMORY))
log->Printf ("NativeProcessLinux::%s(%p, %p, %zd, _)", __FUNCTION__, (void*)addr, buf, size);
for (bytes_read = 0; bytes_read < size; bytes_read += remainder)
{
Error error = NativeProcessLinux::PtraceWrapper(PTRACE_PEEKDATA, GetID(), (void*)addr, nullptr, 0, &data);
if (error.Fail())
{
if (log)
ProcessPOSIXLog::DecNestLevel();
return error;
}
remainder = size - bytes_read;
remainder = remainder > k_ptrace_word_size ? k_ptrace_word_size : remainder;
// Copy the data into our buffer
memcpy(dst, &data, remainder);
if (log && ProcessPOSIXLog::AtTopNestLevel() &&
(log->GetMask().Test(POSIX_LOG_MEMORY_DATA_LONG) ||
(log->GetMask().Test(POSIX_LOG_MEMORY_DATA_SHORT) &&
size <= POSIX_LOG_MEMORY_SHORT_BYTES)))
{
uintptr_t print_dst = 0;
// Format bytes from data by moving into print_dst for log output
for (unsigned i = 0; i < remainder; ++i)
print_dst |= (((data >> i*8) & 0xFF) << i*8);
log->Printf ("NativeProcessLinux::%s() [0x%" PRIx64 "]:0x%" PRIx64 " (0x%" PRIx64 ")",
__FUNCTION__, addr, uint64_t(print_dst), uint64_t(data));
}
addr += k_ptrace_word_size;
dst += k_ptrace_word_size;
}
if (log)
ProcessPOSIXLog::DecNestLevel();
return Error();
}
Error
NativeProcessLinux::ReadMemoryWithoutTrap(lldb::addr_t addr, void *buf, size_t size, size_t &bytes_read)
{
Error error = ReadMemory(addr, buf, size, bytes_read);
if (error.Fail()) return error;
return m_breakpoint_list.RemoveTrapsFromBuffer(addr, buf, size);
}
Error
NativeProcessLinux::WriteMemory(lldb::addr_t addr, const void *buf, size_t size, size_t &bytes_written)
{
const unsigned char *src = static_cast<const unsigned char*>(buf);
size_t remainder;
Error error;
Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_ALL));
if (log)
ProcessPOSIXLog::IncNestLevel();
if (log && ProcessPOSIXLog::AtTopNestLevel() && log->GetMask().Test(POSIX_LOG_MEMORY))
log->Printf ("NativeProcessLinux::%s(0x%" PRIx64 ", %p, %zu)", __FUNCTION__, addr, buf, size);
for (bytes_written = 0; bytes_written < size; bytes_written += remainder)
{
remainder = size - bytes_written;
remainder = remainder > k_ptrace_word_size ? k_ptrace_word_size : remainder;
if (remainder == k_ptrace_word_size)
{
unsigned long data = 0;
memcpy(&data, src, k_ptrace_word_size);
if (log && ProcessPOSIXLog::AtTopNestLevel() &&
(log->GetMask().Test(POSIX_LOG_MEMORY_DATA_LONG) ||
(log->GetMask().Test(POSIX_LOG_MEMORY_DATA_SHORT) &&
size <= POSIX_LOG_MEMORY_SHORT_BYTES)))
log->Printf ("NativeProcessLinux::%s() [%p]:0x%lx (0x%lx)", __FUNCTION__,
(void*)addr, *(const unsigned long*)src, data);
error = NativeProcessLinux::PtraceWrapper(PTRACE_POKEDATA, GetID(), (void*)addr, (void*)data);
if (error.Fail())
{
if (log)
ProcessPOSIXLog::DecNestLevel();
return error;
}
}
else
{
unsigned char buff[8];
size_t bytes_read;
error = ReadMemory(addr, buff, k_ptrace_word_size, bytes_read);
if (error.Fail())
{
if (log)
ProcessPOSIXLog::DecNestLevel();
return error;
}
memcpy(buff, src, remainder);
size_t bytes_written_rec;
error = WriteMemory(addr, buff, k_ptrace_word_size, bytes_written_rec);
if (error.Fail())
{
if (log)
ProcessPOSIXLog::DecNestLevel();
return error;
}
if (log && ProcessPOSIXLog::AtTopNestLevel() &&
(log->GetMask().Test(POSIX_LOG_MEMORY_DATA_LONG) ||
(log->GetMask().Test(POSIX_LOG_MEMORY_DATA_SHORT) &&
size <= POSIX_LOG_MEMORY_SHORT_BYTES)))
log->Printf ("NativeProcessLinux::%s() [%p]:0x%lx (0x%lx)", __FUNCTION__,
(void*)addr, *(const unsigned long*)src, *(unsigned long*)buff);
}
addr += k_ptrace_word_size;
src += k_ptrace_word_size;
}
if (log)
ProcessPOSIXLog::DecNestLevel();
return error;
}
Error
NativeProcessLinux::Resume (lldb::tid_t tid, uint32_t signo)
{
Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
if (log)
log->Printf ("NativeProcessLinux::%s() resuming thread = %" PRIu64 " with signal %s", __FUNCTION__, tid,
Host::GetSignalAsCString(signo));
intptr_t data = 0;
if (signo != LLDB_INVALID_SIGNAL_NUMBER)
data = signo;
Error error = PtraceWrapper(PTRACE_CONT, tid, nullptr, (void*)data);
if (log)
log->Printf ("NativeProcessLinux::%s() resuming thread = %" PRIu64 " result = %s", __FUNCTION__, tid, error.Success() ? "true" : "false");
return error;
}
Error
NativeProcessLinux::SingleStep(lldb::tid_t tid, uint32_t signo)
{
intptr_t data = 0;
if (signo != LLDB_INVALID_SIGNAL_NUMBER)
data = signo;
// If hardware single-stepping is not supported, we just do a continue. The breakpoint on the
// next instruction has been setup in NativeProcessLinux::Resume.
return PtraceWrapper(SupportHardwareSingleStepping() ? PTRACE_SINGLESTEP : PTRACE_CONT,
tid, nullptr, (void*)data);
}
Error
NativeProcessLinux::GetSignalInfo(lldb::tid_t tid, void *siginfo)
{
return PtraceWrapper(PTRACE_GETSIGINFO, tid, nullptr, siginfo);
}
Error
NativeProcessLinux::GetEventMessage(lldb::tid_t tid, unsigned long *message)
{
return PtraceWrapper(PTRACE_GETEVENTMSG, tid, nullptr, message);
}
Error
NativeProcessLinux::Detach(lldb::tid_t tid)
{
if (tid == LLDB_INVALID_THREAD_ID)
return Error();
return PtraceWrapper(PTRACE_DETACH, tid);
}
bool
NativeProcessLinux::DupDescriptor(const FileSpec &file_spec, int fd, int flags)
{
int target_fd = open(file_spec.GetCString(), flags, 0666);
if (target_fd == -1)
return false;
if (dup2(target_fd, fd) == -1)
return false;
return (close(target_fd) == -1) ? false : true;
}
bool
NativeProcessLinux::HasThreadNoLock (lldb::tid_t thread_id)
{
for (auto thread_sp : m_threads)
{
assert (thread_sp && "thread list should not contain NULL threads");
if (thread_sp->GetID () == thread_id)
{
// We have this thread.
return true;
}
}
// We don't have this thread.
return false;
}
bool
NativeProcessLinux::StopTrackingThread (lldb::tid_t thread_id)
{
Log *const log = GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD);
if (log)
log->Printf("NativeProcessLinux::%s (tid: %" PRIu64 ")", __FUNCTION__, thread_id);
bool found = false;
Mutex::Locker locker (m_threads_mutex);
for (auto it = m_threads.begin (); it != m_threads.end (); ++it)
{
if (*it && ((*it)->GetID () == thread_id))
{
m_threads.erase (it);
found = true;
break;
}
}
SignalIfAllThreadsStopped();
return found;
}
NativeThreadLinuxSP
NativeProcessLinux::AddThread (lldb::tid_t thread_id)
{
Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD));
Mutex::Locker locker (m_threads_mutex);
if (log)
{
log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " adding thread with tid %" PRIu64,
__FUNCTION__,
GetID (),
thread_id);
}
assert (!HasThreadNoLock (thread_id) && "attempted to add a thread by id that already exists");
// If this is the first thread, save it as the current thread
if (m_threads.empty ())
SetCurrentThreadID (thread_id);
auto thread_sp = std::make_shared<NativeThreadLinux>(this, thread_id);
m_threads.push_back (thread_sp);
return thread_sp;
}
Error
NativeProcessLinux::FixupBreakpointPCAsNeeded(NativeThreadLinux &thread)
{
Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_BREAKPOINTS));
Error error;
// Find out the size of a breakpoint (might depend on where we are in the code).
NativeRegisterContextSP context_sp = thread.GetRegisterContext();
if (!context_sp)
{
error.SetErrorString ("cannot get a NativeRegisterContext for the thread");
if (log)
log->Printf ("NativeProcessLinux::%s failed: %s", __FUNCTION__, error.AsCString ());
return error;
}
uint32_t breakpoint_size = 0;
error = GetSoftwareBreakpointPCOffset(breakpoint_size);
if (error.Fail ())
{
if (log)
log->Printf ("NativeProcessLinux::%s GetBreakpointSize() failed: %s", __FUNCTION__, error.AsCString ());
return error;
}
else
{
if (log)
log->Printf ("NativeProcessLinux::%s breakpoint size: %" PRIu32, __FUNCTION__, breakpoint_size);
}
// First try probing for a breakpoint at a software breakpoint location: PC - breakpoint size.
const lldb::addr_t initial_pc_addr = context_sp->GetPCfromBreakpointLocation ();
lldb::addr_t breakpoint_addr = initial_pc_addr;
if (breakpoint_size > 0)
{
// Do not allow breakpoint probe to wrap around.
if (breakpoint_addr >= breakpoint_size)
breakpoint_addr -= breakpoint_size;
}
// Check if we stopped because of a breakpoint.
NativeBreakpointSP breakpoint_sp;
error = m_breakpoint_list.GetBreakpoint (breakpoint_addr, breakpoint_sp);
if (!error.Success () || !breakpoint_sp)
{
// We didn't find one at a software probe location. Nothing to do.
if (log)
log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " no lldb breakpoint found at current pc with adjustment: 0x%" PRIx64, __FUNCTION__, GetID (), breakpoint_addr);
return Error ();
}
// If the breakpoint is not a software breakpoint, nothing to do.
if (!breakpoint_sp->IsSoftwareBreakpoint ())
{
if (log)
log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " breakpoint found at 0x%" PRIx64 ", not software, nothing to adjust", __FUNCTION__, GetID (), breakpoint_addr);
return Error ();
}
//
// We have a software breakpoint and need to adjust the PC.
//
// Sanity check.
if (breakpoint_size == 0)
{
// Nothing to do! How did we get here?
if (log)
log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " breakpoint found at 0x%" PRIx64 ", it is software, but the size is zero, nothing to do (unexpected)", __FUNCTION__, GetID (), breakpoint_addr);
return Error ();
}
// Change the program counter.
if (log)
log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " tid %" PRIu64 ": changing PC from 0x%" PRIx64 " to 0x%" PRIx64, __FUNCTION__, GetID(), thread.GetID(), initial_pc_addr, breakpoint_addr);
error = context_sp->SetPC (breakpoint_addr);
if (error.Fail ())
{
if (log)
log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " tid %" PRIu64 ": failed to set PC: %s", __FUNCTION__, GetID(), thread.GetID(), error.AsCString ());
return error;
}
return error;
}
Error
NativeProcessLinux::GetLoadedModuleFileSpec(const char* module_path, FileSpec& file_spec)
{
FileSpec module_file_spec(module_path, true);
bool found = false;
file_spec.Clear();
ProcFileReader::ProcessLineByLine(GetID(), "maps",
[&] (const std::string &line)
{
SmallVector<StringRef, 16> columns;
StringRef(line).split(columns, " ", -1, false);
if (columns.size() < 6)
return true; // continue searching
FileSpec this_file_spec(columns[5].str().c_str(), false);
if (this_file_spec.GetFilename() != module_file_spec.GetFilename())
return true; // continue searching
file_spec = this_file_spec;
found = true;
return false; // we are done
});
if (! found)
return Error("Module file (%s) not found in /proc/%" PRIu64 "/maps file!",
module_file_spec.GetFilename().AsCString(), GetID());
return Error();
}
Error
NativeProcessLinux::GetFileLoadAddress(const llvm::StringRef& file_name, lldb::addr_t& load_addr)
{
load_addr = LLDB_INVALID_ADDRESS;
Error error = ProcFileReader::ProcessLineByLine (GetID (), "maps",
[&] (const std::string &line) -> bool
{
StringRef maps_row(line);
SmallVector<StringRef, 16> maps_columns;
maps_row.split(maps_columns, StringRef(" "), -1, false);
if (maps_columns.size() < 6)
{
// Return true to continue reading the proc file
return true;
}
if (maps_columns[5] == file_name)
{
StringExtractor addr_extractor(maps_columns[0].str().c_str());
load_addr = addr_extractor.GetHexMaxU64(false, LLDB_INVALID_ADDRESS);
// Return false to stop reading the proc file further
return false;
}
// Return true to continue reading the proc file
return true;
});
return error;
}
NativeThreadLinuxSP
NativeProcessLinux::GetThreadByID(lldb::tid_t tid)
{
return std::static_pointer_cast<NativeThreadLinux>(NativeProcessProtocol::GetThreadByID(tid));
}
Error
NativeProcessLinux::ResumeThread(NativeThreadLinux &thread, lldb::StateType state, int signo)
{
Log *const log = GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD);
if (log)
log->Printf("NativeProcessLinux::%s (tid: %" PRIu64 ")",
__FUNCTION__, thread.GetID());
// Before we do the resume below, first check if we have a pending
// stop notification that is currently waiting for
// all threads to stop. This is potentially a buggy situation since
// we're ostensibly waiting for threads to stop before we send out the
// pending notification, and here we are resuming one before we send
// out the pending stop notification.
if (m_pending_notification_tid != LLDB_INVALID_THREAD_ID && log)
{
log->Printf("NativeProcessLinux::%s about to resume tid %" PRIu64 " per explicit request but we have a pending stop notification (tid %" PRIu64 ") that is actively waiting for this thread to stop. Valid sequence of events?", __FUNCTION__, thread.GetID(), m_pending_notification_tid);
}
// Request a resume. We expect this to be synchronous and the system
// to reflect it is running after this completes.
switch (state)
{
case eStateRunning:
{
thread.SetRunning();
const auto resume_result = Resume(thread.GetID(), signo);
if (resume_result.Success())
SetState(eStateRunning, true);
return resume_result;
}
case eStateStepping:
{
thread.SetStepping();
const auto step_result = SingleStep(thread.GetID(), signo);
if (step_result.Success())
SetState(eStateRunning, true);
return step_result;
}
default:
if (log)
log->Printf("NativeProcessLinux::%s Unhandled state %s.",
__FUNCTION__, StateAsCString(state));
llvm_unreachable("Unhandled state for resume");
}
}
//===----------------------------------------------------------------------===//
void
NativeProcessLinux::StopRunningThreads(const lldb::tid_t triggering_tid)
{
Log *const log = GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD);
if (log)
{
log->Printf("NativeProcessLinux::%s about to process event: (triggering_tid: %" PRIu64 ")",
__FUNCTION__, triggering_tid);
}
m_pending_notification_tid = triggering_tid;
// Request a stop for all the thread stops that need to be stopped
// and are not already known to be stopped.
for (const auto &thread_sp: m_threads)
{
if (StateIsRunningState(thread_sp->GetState()))
static_pointer_cast<NativeThreadLinux>(thread_sp)->RequestStop();
}
SignalIfAllThreadsStopped();
if (log)
{
log->Printf("NativeProcessLinux::%s event processing done", __FUNCTION__);
}
}
void
NativeProcessLinux::SignalIfAllThreadsStopped()
{
if (m_pending_notification_tid == LLDB_INVALID_THREAD_ID)
return; // No pending notification. Nothing to do.
for (const auto &thread_sp: m_threads)
{
if (StateIsRunningState(thread_sp->GetState()))
return; // Some threads are still running. Don't signal yet.
}
// We have a pending notification and all threads have stopped.
Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_BREAKPOINTS));
// Clear any temporary breakpoints we used to implement software single stepping.
for (const auto &thread_info: m_threads_stepping_with_breakpoint)
{
Error error = RemoveBreakpoint (thread_info.second);
if (error.Fail())
if (log)
log->Printf("NativeProcessLinux::%s() pid = %" PRIu64 " remove stepping breakpoint: %s",
__FUNCTION__, thread_info.first, error.AsCString());
}
m_threads_stepping_with_breakpoint.clear();
// Notify the delegate about the stop
SetCurrentThreadID(m_pending_notification_tid);
SetState(StateType::eStateStopped, true);
m_pending_notification_tid = LLDB_INVALID_THREAD_ID;
}
void
NativeProcessLinux::ThreadWasCreated(NativeThreadLinux &thread)
{
Log *const log = GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD);
if (log)
log->Printf("NativeProcessLinux::%s (tid: %" PRIu64 ")", __FUNCTION__, thread.GetID());
if (m_pending_notification_tid != LLDB_INVALID_THREAD_ID && StateIsRunningState(thread.GetState()))
{
// We will need to wait for this new thread to stop as well before firing the
// notification.
thread.RequestStop();
}
}
void
NativeProcessLinux::SigchldHandler()
{
Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
// Process all pending waitpid notifications.
while (true)
{
int status = -1;
::pid_t wait_pid = waitpid(-1, &status, __WALL | __WNOTHREAD | WNOHANG);
if (wait_pid == 0)
break; // We are done.
if (wait_pid == -1)
{
if (errno == EINTR)
continue;
Error error(errno, eErrorTypePOSIX);
if (log)
log->Printf("NativeProcessLinux::%s waitpid (-1, &status, __WALL | __WNOTHREAD | WNOHANG) failed: %s",
__FUNCTION__, error.AsCString());
break;
}
bool exited = false;
int signal = 0;
int exit_status = 0;
const char *status_cstr = nullptr;
if (WIFSTOPPED(status))
{
signal = WSTOPSIG(status);
status_cstr = "STOPPED";
}
else if (WIFEXITED(status))
{
exit_status = WEXITSTATUS(status);
status_cstr = "EXITED";
exited = true;
}
else if (WIFSIGNALED(status))
{
signal = WTERMSIG(status);
status_cstr = "SIGNALED";
if (wait_pid == static_cast< ::pid_t>(GetID())) {
exited = true;
exit_status = -1;
}
}
else
status_cstr = "(\?\?\?)";
if (log)
log->Printf("NativeProcessLinux::%s: waitpid (-1, &status, __WALL | __WNOTHREAD | WNOHANG)"
"=> pid = %" PRIi32 ", status = 0x%8.8x (%s), signal = %i, exit_state = %i",
__FUNCTION__, wait_pid, status, status_cstr, signal, exit_status);
MonitorCallback (wait_pid, exited, signal, exit_status);
}
}
// Wrapper for ptrace to catch errors and log calls.
// Note that ptrace sets errno on error because -1 can be a valid result (i.e. for PTRACE_PEEK*)
Error
NativeProcessLinux::PtraceWrapper(int req, lldb::pid_t pid, void *addr, void *data, size_t data_size, long *result)
{
Error error;
long int ret;
Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_PTRACE));
PtraceDisplayBytes(req, data, data_size);
errno = 0;
if (req == PTRACE_GETREGSET || req == PTRACE_SETREGSET)
ret = ptrace(static_cast<__ptrace_request>(req), static_cast< ::pid_t>(pid), *(unsigned int *)addr, data);
else
ret = ptrace(static_cast<__ptrace_request>(req), static_cast< ::pid_t>(pid), addr, data);
if (ret == -1)
error.SetErrorToErrno();
if (result)
*result = ret;
if (log)
log->Printf("ptrace(%d, %" PRIu64 ", %p, %p, %zu)=%lX", req, pid, addr, data, data_size, ret);
PtraceDisplayBytes(req, data, data_size);
if (log && error.GetError() != 0)
{
const char* str;
switch (error.GetError())
{
case ESRCH: str = "ESRCH"; break;
case EINVAL: str = "EINVAL"; break;
case EBUSY: str = "EBUSY"; break;
case EPERM: str = "EPERM"; break;
default: str = error.AsCString();
}
log->Printf("ptrace() failed; errno=%d (%s)", error.GetError(), str);
}
return error;
}