Artem Dergachev 73f018e381 [analyzer] Fix SVal/SymExpr/MemRegion class and enum names for consistency.
The purpose of these changes is to simplify introduction of definition files
for the three hierarchies.

1. For every sub-class C of these classes, its kind in the relevant enumeration
is changed to "CKind" (or C##Kind in preprocessor-ish terms), eg:

  MemRegionKind   -> MemRegionValKind
  RegionValueKind -> SymbolRegionValueKind
  CastSymbolKind  -> SymbolCastKind
  SymIntKind      -> SymIntExprKind

2. MemSpaceRegion used to be inconsistently used as both an abstract base and
a particular region. This region class is now an abstract base and no longer
occupies GenericMemSpaceRegionKind. Instead, a new class, CodeSpaceRegion,
is introduced for handling the unique use case for MemSpaceRegion as
"the generic memory space" (when it represents a memory space that holds all
executable code).

3. BEG_ prefixes in memory region kind ranges are renamed to BEGIN_ for
consisitency with symbol kind ranges.

4. FunctionTextRegion and BlockTextRegion are renamed to FunctionCodeRegion and
BlockCodeRegion, respectively. The term 'code' is less jargony than 'text' and
we already refer to BlockTextRegion as a 'code region' in BlockDataRegion.

Differential Revision: http://reviews.llvm.org/D16062

llvm-svn: 257598
2016-01-13 13:49:29 +00:00

755 lines
25 KiB
C++

//= ProgramState.cpp - Path-Sensitive "State" for tracking values --*- C++ -*--=
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements ProgramState and ProgramStateManager.
//
//===----------------------------------------------------------------------===//
#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
#include "clang/Analysis/CFG.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/SubEngine.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/TaintManager.h"
#include "llvm/Support/raw_ostream.h"
using namespace clang;
using namespace ento;
namespace clang { namespace ento {
/// Increments the number of times this state is referenced.
void ProgramStateRetain(const ProgramState *state) {
++const_cast<ProgramState*>(state)->refCount;
}
/// Decrement the number of times this state is referenced.
void ProgramStateRelease(const ProgramState *state) {
assert(state->refCount > 0);
ProgramState *s = const_cast<ProgramState*>(state);
if (--s->refCount == 0) {
ProgramStateManager &Mgr = s->getStateManager();
Mgr.StateSet.RemoveNode(s);
s->~ProgramState();
Mgr.freeStates.push_back(s);
}
}
}}
ProgramState::ProgramState(ProgramStateManager *mgr, const Environment& env,
StoreRef st, GenericDataMap gdm)
: stateMgr(mgr),
Env(env),
store(st.getStore()),
GDM(gdm),
refCount(0) {
stateMgr->getStoreManager().incrementReferenceCount(store);
}
ProgramState::ProgramState(const ProgramState &RHS)
: llvm::FoldingSetNode(),
stateMgr(RHS.stateMgr),
Env(RHS.Env),
store(RHS.store),
GDM(RHS.GDM),
refCount(0) {
stateMgr->getStoreManager().incrementReferenceCount(store);
}
ProgramState::~ProgramState() {
if (store)
stateMgr->getStoreManager().decrementReferenceCount(store);
}
ProgramStateManager::ProgramStateManager(ASTContext &Ctx,
StoreManagerCreator CreateSMgr,
ConstraintManagerCreator CreateCMgr,
llvm::BumpPtrAllocator &alloc,
SubEngine *SubEng)
: Eng(SubEng), EnvMgr(alloc), GDMFactory(alloc),
svalBuilder(createSimpleSValBuilder(alloc, Ctx, *this)),
CallEventMgr(new CallEventManager(alloc)), Alloc(alloc) {
StoreMgr = (*CreateSMgr)(*this);
ConstraintMgr = (*CreateCMgr)(*this, SubEng);
}
ProgramStateManager::~ProgramStateManager() {
for (GDMContextsTy::iterator I=GDMContexts.begin(), E=GDMContexts.end();
I!=E; ++I)
I->second.second(I->second.first);
}
ProgramStateRef
ProgramStateManager::removeDeadBindings(ProgramStateRef state,
const StackFrameContext *LCtx,
SymbolReaper& SymReaper) {
// This code essentially performs a "mark-and-sweep" of the VariableBindings.
// The roots are any Block-level exprs and Decls that our liveness algorithm
// tells us are live. We then see what Decls they may reference, and keep
// those around. This code more than likely can be made faster, and the
// frequency of which this method is called should be experimented with
// for optimum performance.
ProgramState NewState = *state;
NewState.Env = EnvMgr.removeDeadBindings(NewState.Env, SymReaper, state);
// Clean up the store.
StoreRef newStore = StoreMgr->removeDeadBindings(NewState.getStore(), LCtx,
SymReaper);
NewState.setStore(newStore);
SymReaper.setReapedStore(newStore);
ProgramStateRef Result = getPersistentState(NewState);
return ConstraintMgr->removeDeadBindings(Result, SymReaper);
}
ProgramStateRef ProgramState::bindLoc(Loc LV, SVal V, bool notifyChanges) const {
ProgramStateManager &Mgr = getStateManager();
ProgramStateRef newState = makeWithStore(Mgr.StoreMgr->Bind(getStore(),
LV, V));
const MemRegion *MR = LV.getAsRegion();
if (MR && Mgr.getOwningEngine() && notifyChanges)
return Mgr.getOwningEngine()->processRegionChange(newState, MR);
return newState;
}
ProgramStateRef ProgramState::bindDefault(SVal loc, SVal V) const {
ProgramStateManager &Mgr = getStateManager();
const MemRegion *R = loc.castAs<loc::MemRegionVal>().getRegion();
const StoreRef &newStore = Mgr.StoreMgr->BindDefault(getStore(), R, V);
ProgramStateRef new_state = makeWithStore(newStore);
return Mgr.getOwningEngine() ?
Mgr.getOwningEngine()->processRegionChange(new_state, R) :
new_state;
}
typedef ArrayRef<const MemRegion *> RegionList;
typedef ArrayRef<SVal> ValueList;
ProgramStateRef
ProgramState::invalidateRegions(RegionList Regions,
const Expr *E, unsigned Count,
const LocationContext *LCtx,
bool CausedByPointerEscape,
InvalidatedSymbols *IS,
const CallEvent *Call,
RegionAndSymbolInvalidationTraits *ITraits) const {
SmallVector<SVal, 8> Values;
for (RegionList::const_iterator I = Regions.begin(),
End = Regions.end(); I != End; ++I)
Values.push_back(loc::MemRegionVal(*I));
return invalidateRegionsImpl(Values, E, Count, LCtx, CausedByPointerEscape,
IS, ITraits, Call);
}
ProgramStateRef
ProgramState::invalidateRegions(ValueList Values,
const Expr *E, unsigned Count,
const LocationContext *LCtx,
bool CausedByPointerEscape,
InvalidatedSymbols *IS,
const CallEvent *Call,
RegionAndSymbolInvalidationTraits *ITraits) const {
return invalidateRegionsImpl(Values, E, Count, LCtx, CausedByPointerEscape,
IS, ITraits, Call);
}
ProgramStateRef
ProgramState::invalidateRegionsImpl(ValueList Values,
const Expr *E, unsigned Count,
const LocationContext *LCtx,
bool CausedByPointerEscape,
InvalidatedSymbols *IS,
RegionAndSymbolInvalidationTraits *ITraits,
const CallEvent *Call) const {
ProgramStateManager &Mgr = getStateManager();
SubEngine* Eng = Mgr.getOwningEngine();
InvalidatedSymbols Invalidated;
if (!IS)
IS = &Invalidated;
RegionAndSymbolInvalidationTraits ITraitsLocal;
if (!ITraits)
ITraits = &ITraitsLocal;
if (Eng) {
StoreManager::InvalidatedRegions TopLevelInvalidated;
StoreManager::InvalidatedRegions Invalidated;
const StoreRef &newStore
= Mgr.StoreMgr->invalidateRegions(getStore(), Values, E, Count, LCtx, Call,
*IS, *ITraits, &TopLevelInvalidated,
&Invalidated);
ProgramStateRef newState = makeWithStore(newStore);
if (CausedByPointerEscape) {
newState = Eng->notifyCheckersOfPointerEscape(newState, IS,
TopLevelInvalidated,
Invalidated, Call,
*ITraits);
}
return Eng->processRegionChanges(newState, IS, TopLevelInvalidated,
Invalidated, Call);
}
const StoreRef &newStore =
Mgr.StoreMgr->invalidateRegions(getStore(), Values, E, Count, LCtx, Call,
*IS, *ITraits, nullptr, nullptr);
return makeWithStore(newStore);
}
ProgramStateRef ProgramState::killBinding(Loc LV) const {
assert(!LV.getAs<loc::MemRegionVal>() && "Use invalidateRegion instead.");
Store OldStore = getStore();
const StoreRef &newStore =
getStateManager().StoreMgr->killBinding(OldStore, LV);
if (newStore.getStore() == OldStore)
return this;
return makeWithStore(newStore);
}
ProgramStateRef
ProgramState::enterStackFrame(const CallEvent &Call,
const StackFrameContext *CalleeCtx) const {
const StoreRef &NewStore =
getStateManager().StoreMgr->enterStackFrame(getStore(), Call, CalleeCtx);
return makeWithStore(NewStore);
}
SVal ProgramState::getSValAsScalarOrLoc(const MemRegion *R) const {
// We only want to do fetches from regions that we can actually bind
// values. For example, SymbolicRegions of type 'id<...>' cannot
// have direct bindings (but their can be bindings on their subregions).
if (!R->isBoundable())
return UnknownVal();
if (const TypedValueRegion *TR = dyn_cast<TypedValueRegion>(R)) {
QualType T = TR->getValueType();
if (Loc::isLocType(T) || T->isIntegralOrEnumerationType())
return getSVal(R);
}
return UnknownVal();
}
SVal ProgramState::getSVal(Loc location, QualType T) const {
SVal V = getRawSVal(cast<Loc>(location), T);
// If 'V' is a symbolic value that is *perfectly* constrained to
// be a constant value, use that value instead to lessen the burden
// on later analysis stages (so we have less symbolic values to reason
// about).
if (!T.isNull()) {
if (SymbolRef sym = V.getAsSymbol()) {
if (const llvm::APSInt *Int = getStateManager()
.getConstraintManager()
.getSymVal(this, sym)) {
// FIXME: Because we don't correctly model (yet) sign-extension
// and truncation of symbolic values, we need to convert
// the integer value to the correct signedness and bitwidth.
//
// This shows up in the following:
//
// char foo();
// unsigned x = foo();
// if (x == 54)
// ...
//
// The symbolic value stored to 'x' is actually the conjured
// symbol for the call to foo(); the type of that symbol is 'char',
// not unsigned.
const llvm::APSInt &NewV = getBasicVals().Convert(T, *Int);
if (V.getAs<Loc>())
return loc::ConcreteInt(NewV);
else
return nonloc::ConcreteInt(NewV);
}
}
}
return V;
}
ProgramStateRef ProgramState::BindExpr(const Stmt *S,
const LocationContext *LCtx,
SVal V, bool Invalidate) const{
Environment NewEnv =
getStateManager().EnvMgr.bindExpr(Env, EnvironmentEntry(S, LCtx), V,
Invalidate);
if (NewEnv == Env)
return this;
ProgramState NewSt = *this;
NewSt.Env = NewEnv;
return getStateManager().getPersistentState(NewSt);
}
ProgramStateRef ProgramState::assumeInBound(DefinedOrUnknownSVal Idx,
DefinedOrUnknownSVal UpperBound,
bool Assumption,
QualType indexTy) const {
if (Idx.isUnknown() || UpperBound.isUnknown())
return this;
// Build an expression for 0 <= Idx < UpperBound.
// This is the same as Idx + MIN < UpperBound + MIN, if overflow is allowed.
// FIXME: This should probably be part of SValBuilder.
ProgramStateManager &SM = getStateManager();
SValBuilder &svalBuilder = SM.getSValBuilder();
ASTContext &Ctx = svalBuilder.getContext();
// Get the offset: the minimum value of the array index type.
BasicValueFactory &BVF = svalBuilder.getBasicValueFactory();
// FIXME: This should be using ValueManager::ArrayindexTy...somehow.
if (indexTy.isNull())
indexTy = Ctx.IntTy;
nonloc::ConcreteInt Min(BVF.getMinValue(indexTy));
// Adjust the index.
SVal newIdx = svalBuilder.evalBinOpNN(this, BO_Add,
Idx.castAs<NonLoc>(), Min, indexTy);
if (newIdx.isUnknownOrUndef())
return this;
// Adjust the upper bound.
SVal newBound =
svalBuilder.evalBinOpNN(this, BO_Add, UpperBound.castAs<NonLoc>(),
Min, indexTy);
if (newBound.isUnknownOrUndef())
return this;
// Build the actual comparison.
SVal inBound = svalBuilder.evalBinOpNN(this, BO_LT, newIdx.castAs<NonLoc>(),
newBound.castAs<NonLoc>(), Ctx.IntTy);
if (inBound.isUnknownOrUndef())
return this;
// Finally, let the constraint manager take care of it.
ConstraintManager &CM = SM.getConstraintManager();
return CM.assume(this, inBound.castAs<DefinedSVal>(), Assumption);
}
ConditionTruthVal ProgramState::isNull(SVal V) const {
if (V.isZeroConstant())
return true;
if (V.isConstant())
return false;
SymbolRef Sym = V.getAsSymbol(/* IncludeBaseRegion */ true);
if (!Sym)
return ConditionTruthVal();
return getStateManager().ConstraintMgr->isNull(this, Sym);
}
ProgramStateRef ProgramStateManager::getInitialState(const LocationContext *InitLoc) {
ProgramState State(this,
EnvMgr.getInitialEnvironment(),
StoreMgr->getInitialStore(InitLoc),
GDMFactory.getEmptyMap());
return getPersistentState(State);
}
ProgramStateRef ProgramStateManager::getPersistentStateWithGDM(
ProgramStateRef FromState,
ProgramStateRef GDMState) {
ProgramState NewState(*FromState);
NewState.GDM = GDMState->GDM;
return getPersistentState(NewState);
}
ProgramStateRef ProgramStateManager::getPersistentState(ProgramState &State) {
llvm::FoldingSetNodeID ID;
State.Profile(ID);
void *InsertPos;
if (ProgramState *I = StateSet.FindNodeOrInsertPos(ID, InsertPos))
return I;
ProgramState *newState = nullptr;
if (!freeStates.empty()) {
newState = freeStates.back();
freeStates.pop_back();
}
else {
newState = (ProgramState*) Alloc.Allocate<ProgramState>();
}
new (newState) ProgramState(State);
StateSet.InsertNode(newState, InsertPos);
return newState;
}
ProgramStateRef ProgramState::makeWithStore(const StoreRef &store) const {
ProgramState NewSt(*this);
NewSt.setStore(store);
return getStateManager().getPersistentState(NewSt);
}
void ProgramState::setStore(const StoreRef &newStore) {
Store newStoreStore = newStore.getStore();
if (newStoreStore)
stateMgr->getStoreManager().incrementReferenceCount(newStoreStore);
if (store)
stateMgr->getStoreManager().decrementReferenceCount(store);
store = newStoreStore;
}
//===----------------------------------------------------------------------===//
// State pretty-printing.
//===----------------------------------------------------------------------===//
void ProgramState::print(raw_ostream &Out,
const char *NL, const char *Sep) const {
// Print the store.
ProgramStateManager &Mgr = getStateManager();
Mgr.getStoreManager().print(getStore(), Out, NL, Sep);
// Print out the environment.
Env.print(Out, NL, Sep);
// Print out the constraints.
Mgr.getConstraintManager().print(this, Out, NL, Sep);
// Print checker-specific data.
Mgr.getOwningEngine()->printState(Out, this, NL, Sep);
}
void ProgramState::printDOT(raw_ostream &Out) const {
print(Out, "\\l", "\\|");
}
void ProgramState::dump() const {
print(llvm::errs());
}
void ProgramState::printTaint(raw_ostream &Out,
const char *NL, const char *Sep) const {
TaintMapImpl TM = get<TaintMap>();
if (!TM.isEmpty())
Out <<"Tainted Symbols:" << NL;
for (TaintMapImpl::iterator I = TM.begin(), E = TM.end(); I != E; ++I) {
Out << I->first << " : " << I->second << NL;
}
}
void ProgramState::dumpTaint() const {
printTaint(llvm::errs());
}
//===----------------------------------------------------------------------===//
// Generic Data Map.
//===----------------------------------------------------------------------===//
void *const* ProgramState::FindGDM(void *K) const {
return GDM.lookup(K);
}
void*
ProgramStateManager::FindGDMContext(void *K,
void *(*CreateContext)(llvm::BumpPtrAllocator&),
void (*DeleteContext)(void*)) {
std::pair<void*, void (*)(void*)>& p = GDMContexts[K];
if (!p.first) {
p.first = CreateContext(Alloc);
p.second = DeleteContext;
}
return p.first;
}
ProgramStateRef ProgramStateManager::addGDM(ProgramStateRef St, void *Key, void *Data){
ProgramState::GenericDataMap M1 = St->getGDM();
ProgramState::GenericDataMap M2 = GDMFactory.add(M1, Key, Data);
if (M1 == M2)
return St;
ProgramState NewSt = *St;
NewSt.GDM = M2;
return getPersistentState(NewSt);
}
ProgramStateRef ProgramStateManager::removeGDM(ProgramStateRef state, void *Key) {
ProgramState::GenericDataMap OldM = state->getGDM();
ProgramState::GenericDataMap NewM = GDMFactory.remove(OldM, Key);
if (NewM == OldM)
return state;
ProgramState NewState = *state;
NewState.GDM = NewM;
return getPersistentState(NewState);
}
bool ScanReachableSymbols::scan(nonloc::LazyCompoundVal val) {
bool wasVisited = !visited.insert(val.getCVData()).second;
if (wasVisited)
return true;
StoreManager &StoreMgr = state->getStateManager().getStoreManager();
// FIXME: We don't really want to use getBaseRegion() here because pointer
// arithmetic doesn't apply, but scanReachableSymbols only accepts base
// regions right now.
const MemRegion *R = val.getRegion()->getBaseRegion();
return StoreMgr.scanReachableSymbols(val.getStore(), R, *this);
}
bool ScanReachableSymbols::scan(nonloc::CompoundVal val) {
for (nonloc::CompoundVal::iterator I=val.begin(), E=val.end(); I!=E; ++I)
if (!scan(*I))
return false;
return true;
}
bool ScanReachableSymbols::scan(const SymExpr *sym) {
bool wasVisited = !visited.insert(sym).second;
if (wasVisited)
return true;
if (!visitor.VisitSymbol(sym))
return false;
// TODO: should be rewritten using SymExpr::symbol_iterator.
switch (sym->getKind()) {
case SymExpr::SymbolRegionValueKind:
case SymExpr::SymbolConjuredKind:
case SymExpr::SymbolDerivedKind:
case SymExpr::SymbolExtentKind:
case SymExpr::SymbolMetadataKind:
break;
case SymExpr::SymbolCastKind:
return scan(cast<SymbolCast>(sym)->getOperand());
case SymExpr::SymIntExprKind:
return scan(cast<SymIntExpr>(sym)->getLHS());
case SymExpr::IntSymExprKind:
return scan(cast<IntSymExpr>(sym)->getRHS());
case SymExpr::SymSymExprKind: {
const SymSymExpr *x = cast<SymSymExpr>(sym);
return scan(x->getLHS()) && scan(x->getRHS());
}
}
return true;
}
bool ScanReachableSymbols::scan(SVal val) {
if (Optional<loc::MemRegionVal> X = val.getAs<loc::MemRegionVal>())
return scan(X->getRegion());
if (Optional<nonloc::LazyCompoundVal> X =
val.getAs<nonloc::LazyCompoundVal>())
return scan(*X);
if (Optional<nonloc::LocAsInteger> X = val.getAs<nonloc::LocAsInteger>())
return scan(X->getLoc());
if (SymbolRef Sym = val.getAsSymbol())
return scan(Sym);
if (const SymExpr *Sym = val.getAsSymbolicExpression())
return scan(Sym);
if (Optional<nonloc::CompoundVal> X = val.getAs<nonloc::CompoundVal>())
return scan(*X);
return true;
}
bool ScanReachableSymbols::scan(const MemRegion *R) {
if (isa<MemSpaceRegion>(R))
return true;
bool wasVisited = !visited.insert(R).second;
if (wasVisited)
return true;
if (!visitor.VisitMemRegion(R))
return false;
// If this is a symbolic region, visit the symbol for the region.
if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(R))
if (!visitor.VisitSymbol(SR->getSymbol()))
return false;
// If this is a subregion, also visit the parent regions.
if (const SubRegion *SR = dyn_cast<SubRegion>(R)) {
const MemRegion *Super = SR->getSuperRegion();
if (!scan(Super))
return false;
// When we reach the topmost region, scan all symbols in it.
if (isa<MemSpaceRegion>(Super)) {
StoreManager &StoreMgr = state->getStateManager().getStoreManager();
if (!StoreMgr.scanReachableSymbols(state->getStore(), SR, *this))
return false;
}
}
// Regions captured by a block are also implicitly reachable.
if (const BlockDataRegion *BDR = dyn_cast<BlockDataRegion>(R)) {
BlockDataRegion::referenced_vars_iterator I = BDR->referenced_vars_begin(),
E = BDR->referenced_vars_end();
for ( ; I != E; ++I) {
if (!scan(I.getCapturedRegion()))
return false;
}
}
return true;
}
bool ProgramState::scanReachableSymbols(SVal val, SymbolVisitor& visitor) const {
ScanReachableSymbols S(this, visitor);
return S.scan(val);
}
bool ProgramState::scanReachableSymbols(const SVal *I, const SVal *E,
SymbolVisitor &visitor) const {
ScanReachableSymbols S(this, visitor);
for ( ; I != E; ++I) {
if (!S.scan(*I))
return false;
}
return true;
}
bool ProgramState::scanReachableSymbols(const MemRegion * const *I,
const MemRegion * const *E,
SymbolVisitor &visitor) const {
ScanReachableSymbols S(this, visitor);
for ( ; I != E; ++I) {
if (!S.scan(*I))
return false;
}
return true;
}
ProgramStateRef ProgramState::addTaint(const Stmt *S,
const LocationContext *LCtx,
TaintTagType Kind) const {
if (const Expr *E = dyn_cast_or_null<Expr>(S))
S = E->IgnoreParens();
SymbolRef Sym = getSVal(S, LCtx).getAsSymbol();
if (Sym)
return addTaint(Sym, Kind);
const MemRegion *R = getSVal(S, LCtx).getAsRegion();
addTaint(R, Kind);
// Cannot add taint, so just return the state.
return this;
}
ProgramStateRef ProgramState::addTaint(const MemRegion *R,
TaintTagType Kind) const {
if (const SymbolicRegion *SR = dyn_cast_or_null<SymbolicRegion>(R))
return addTaint(SR->getSymbol(), Kind);
return this;
}
ProgramStateRef ProgramState::addTaint(SymbolRef Sym,
TaintTagType Kind) const {
// If this is a symbol cast, remove the cast before adding the taint. Taint
// is cast agnostic.
while (const SymbolCast *SC = dyn_cast<SymbolCast>(Sym))
Sym = SC->getOperand();
ProgramStateRef NewState = set<TaintMap>(Sym, Kind);
assert(NewState);
return NewState;
}
bool ProgramState::isTainted(const Stmt *S, const LocationContext *LCtx,
TaintTagType Kind) const {
if (const Expr *E = dyn_cast_or_null<Expr>(S))
S = E->IgnoreParens();
SVal val = getSVal(S, LCtx);
return isTainted(val, Kind);
}
bool ProgramState::isTainted(SVal V, TaintTagType Kind) const {
if (const SymExpr *Sym = V.getAsSymExpr())
return isTainted(Sym, Kind);
if (const MemRegion *Reg = V.getAsRegion())
return isTainted(Reg, Kind);
return false;
}
bool ProgramState::isTainted(const MemRegion *Reg, TaintTagType K) const {
if (!Reg)
return false;
// Element region (array element) is tainted if either the base or the offset
// are tainted.
if (const ElementRegion *ER = dyn_cast<ElementRegion>(Reg))
return isTainted(ER->getSuperRegion(), K) || isTainted(ER->getIndex(), K);
if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(Reg))
return isTainted(SR->getSymbol(), K);
if (const SubRegion *ER = dyn_cast<SubRegion>(Reg))
return isTainted(ER->getSuperRegion(), K);
return false;
}
bool ProgramState::isTainted(SymbolRef Sym, TaintTagType Kind) const {
if (!Sym)
return false;
// Traverse all the symbols this symbol depends on to see if any are tainted.
bool Tainted = false;
for (SymExpr::symbol_iterator SI = Sym->symbol_begin(), SE =Sym->symbol_end();
SI != SE; ++SI) {
if (!isa<SymbolData>(*SI))
continue;
const TaintTagType *Tag = get<TaintMap>(*SI);
Tainted = (Tag && *Tag == Kind);
// If this is a SymbolDerived with a tainted parent, it's also tainted.
if (const SymbolDerived *SD = dyn_cast<SymbolDerived>(*SI))
Tainted = Tainted || isTainted(SD->getParentSymbol(), Kind);
// If memory region is tainted, data is also tainted.
if (const SymbolRegionValue *SRV = dyn_cast<SymbolRegionValue>(*SI))
Tainted = Tainted || isTainted(SRV->getRegion(), Kind);
// If If this is a SymbolCast from a tainted value, it's also tainted.
if (const SymbolCast *SC = dyn_cast<SymbolCast>(*SI))
Tainted = Tainted || isTainted(SC->getOperand(), Kind);
if (Tainted)
return true;
}
return Tainted;
}