llvm-project/llvm/utils/TableGen/Basic/IntrinsicEmitter.cpp
Rahul Joshi 22af0cd6f9
[LLVM][Intrinsics] Reduce stack size for Intrinsic::getAttributes (#152219)
This change fixes a stack size regression that got introduced in
0de0354aa8.
That change did 2 independent things:

1. Uniquify argument and function attributes separately so that we
generate a smaller number of unique sets as opposed to uniquifying them
together. This is beneficial for code size.
2. Eliminate the fixed size array `AS` and `NumAttrs` variable and
instead build the returned AttribteList in each case using an
initializer list.

The second part seems to have caused a regression in the stack size
usage of this function for Windows. This change essentially undoes part
2 and reinstates the use of the fixed size array `AS` which fixes this
stack size regression. The actual measured stack frame size for this
function before/after this change is as follows:

```
  Current trunk data for release build (x86_64 builds for Linux, x86 build for Windows):
  Compiler                              gcc-13.3.0      clang-18.1.3      MSVC 19.43.34810.0
  DLLVM_ENABLE_ASSERTIONS=OFF           0x120           0x110             0x54B0   
  DLLVM_ENABLE_ASSERTIONS=ON            0x2880          0x110             0x5250

  After applying the fix:
  Compiler                              gcc-13.3.0      clang-18.1.3      MSVC 19.43.34810.0
  DLLVM_ENABLE_ASSERTIONS=OFF           0x120           0x118             0x1240h                                               
  DLLVM_ENABLE_ASSERTIONS=ON            0x120           0x118             0x1240h  
```
Note that for Windows builds with assertions disabled, the stack frame
size for this function reduces from 21680 to 4672 which is a 4.6x
reduction. Stack frame size for GCC build with assertions also improved
and clang builds are unimpacted. The speculation is that clang and gcc
is able to reuse the stack space across these switch cases better with
existing code, but MSVC is not, and re-introducing the `AS` variable
forces all cases to use the same local variable, addressing the stack
space regression.
2025-08-06 07:09:52 -07:00

897 lines
30 KiB
C++

//===- IntrinsicEmitter.cpp - Generate intrinsic information --------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This tablegen backend emits information about intrinsic functions.
//
//===----------------------------------------------------------------------===//
#include "CodeGenIntrinsics.h"
#include "SequenceToOffsetTable.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/Twine.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/FormatVariadic.h"
#include "llvm/Support/ModRef.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/TableGen/Error.h"
#include "llvm/TableGen/Record.h"
#include "llvm/TableGen/StringToOffsetTable.h"
#include "llvm/TableGen/TableGenBackend.h"
#include <algorithm>
#include <array>
#include <cassert>
#include <cctype>
#include <map>
#include <optional>
#include <string>
#include <utility>
#include <vector>
using namespace llvm;
static cl::OptionCategory GenIntrinsicCat("Options for -gen-intrinsic-enums");
static cl::opt<std::string>
IntrinsicPrefix("intrinsic-prefix",
cl::desc("Generate intrinsics with this target prefix"),
cl::value_desc("target prefix"), cl::cat(GenIntrinsicCat));
namespace {
class IntrinsicEmitter {
const RecordKeeper &Records;
public:
IntrinsicEmitter(const RecordKeeper &R) : Records(R) {}
void run(raw_ostream &OS, bool Enums);
void EmitEnumInfo(const CodeGenIntrinsicTable &Ints, raw_ostream &OS);
void EmitArgKind(raw_ostream &OS);
void EmitIITInfo(raw_ostream &OS);
void EmitTargetInfo(const CodeGenIntrinsicTable &Ints, raw_ostream &OS);
void EmitIntrinsicToNameTable(const CodeGenIntrinsicTable &Ints,
raw_ostream &OS);
void EmitIntrinsicToOverloadTable(const CodeGenIntrinsicTable &Ints,
raw_ostream &OS);
void EmitGenerator(const CodeGenIntrinsicTable &Ints, raw_ostream &OS);
void EmitAttributes(const CodeGenIntrinsicTable &Ints, raw_ostream &OS);
void EmitIntrinsicToBuiltinMap(const CodeGenIntrinsicTable &Ints,
bool IsClang, raw_ostream &OS);
};
// Helper class to use with `TableGen::Emitter::OptClass`.
template <bool Enums> class IntrinsicEmitterOpt : public IntrinsicEmitter {
public:
IntrinsicEmitterOpt(const RecordKeeper &R) : IntrinsicEmitter(R) {}
void run(raw_ostream &OS) { IntrinsicEmitter::run(OS, Enums); }
};
} // End anonymous namespace
//===----------------------------------------------------------------------===//
// IntrinsicEmitter Implementation
//===----------------------------------------------------------------------===//
void IntrinsicEmitter::run(raw_ostream &OS, bool Enums) {
emitSourceFileHeader("Intrinsic Function Source Fragment", OS);
CodeGenIntrinsicTable Ints(Records);
if (Enums) {
// Emit the enum information.
EmitEnumInfo(Ints, OS);
// Emit ArgKind for Intrinsics.h.
EmitArgKind(OS);
} else {
// Emit IIT_Info constants.
EmitIITInfo(OS);
// Emit the target metadata.
EmitTargetInfo(Ints, OS);
// Emit the intrinsic ID -> name table.
EmitIntrinsicToNameTable(Ints, OS);
// Emit the intrinsic ID -> overload table.
EmitIntrinsicToOverloadTable(Ints, OS);
// Emit the intrinsic declaration generator.
EmitGenerator(Ints, OS);
// Emit the intrinsic parameter attributes.
EmitAttributes(Ints, OS);
// Emit code to translate Clang builtins into LLVM intrinsics.
EmitIntrinsicToBuiltinMap(Ints, true, OS);
// Emit code to translate MS builtins into LLVM intrinsics.
EmitIntrinsicToBuiltinMap(Ints, false, OS);
}
}
void IntrinsicEmitter::EmitEnumInfo(const CodeGenIntrinsicTable &Ints,
raw_ostream &OS) {
// Find the TargetSet for which to generate enums. There will be an initial
// set with an empty target prefix which will include target independent
// intrinsics like dbg.value.
using TargetSet = CodeGenIntrinsicTable::TargetSet;
const TargetSet *Set = nullptr;
for (const auto &Target : Ints.getTargets()) {
if (Target.Name == IntrinsicPrefix) {
Set = &Target;
break;
}
}
if (!Set) {
// The first entry is for target independent intrinsics, so drop it.
auto KnowTargets = Ints.getTargets().drop_front();
PrintFatalError([KnowTargets](raw_ostream &OS) {
OS << "tried to generate intrinsics for unknown target "
<< IntrinsicPrefix << "\nKnown targets are: ";
interleaveComma(KnowTargets, OS,
[&OS](const TargetSet &Target) { OS << Target.Name; });
OS << '\n';
});
}
// Generate a complete header for target specific intrinsics.
if (IntrinsicPrefix.empty()) {
OS << "#ifdef GET_INTRINSIC_ENUM_VALUES\n";
} else {
std::string UpperPrefix = StringRef(IntrinsicPrefix).upper();
OS << formatv("#ifndef LLVM_IR_INTRINSIC_{}_ENUMS_H\n", UpperPrefix);
OS << formatv("#define LLVM_IR_INTRINSIC_{}_ENUMS_H\n", UpperPrefix);
OS << "namespace llvm::Intrinsic {\n";
OS << formatv("enum {}Intrinsics : unsigned {{\n", UpperPrefix);
}
OS << "// Enum values for intrinsics.\n";
bool First = true;
for (const auto &Int : Ints[*Set]) {
OS << " " << Int.EnumName;
// Assign a value to the first intrinsic in this target set so that all
// intrinsic ids are distinct.
if (First) {
OS << " = " << Set->Offset + 1;
First = false;
}
OS << ", ";
if (Int.EnumName.size() < 40)
OS.indent(40 - Int.EnumName.size());
OS << formatv(" // {}\n", Int.Name);
}
// Emit num_intrinsics into the target neutral enum.
if (IntrinsicPrefix.empty()) {
OS << formatv(" num_intrinsics = {}\n", Ints.size() + 1);
OS << "#endif\n\n";
} else {
OS << R"(}; // enum
} // namespace llvm::Intrinsic
#endif
)";
}
}
void IntrinsicEmitter::EmitArgKind(raw_ostream &OS) {
if (!IntrinsicPrefix.empty())
return;
OS << "// llvm::Intrinsic::IITDescriptor::ArgKind.\n";
OS << "#ifdef GET_INTRINSIC_ARGKIND\n";
if (const auto RecArgKind = Records.getDef("ArgKind")) {
for (const auto &RV : RecArgKind->getValues())
OS << " AK_" << RV.getName() << " = " << *RV.getValue() << ",\n";
} else {
OS << "#error \"ArgKind is not defined\"\n";
}
OS << "#endif\n\n";
}
void IntrinsicEmitter::EmitIITInfo(raw_ostream &OS) {
OS << "#ifdef GET_INTRINSIC_IITINFO\n";
std::array<StringRef, 256> RecsByNumber;
auto IIT_Base = Records.getAllDerivedDefinitionsIfDefined("IIT_Base");
for (const Record *Rec : IIT_Base) {
auto Number = Rec->getValueAsInt("Number");
assert(0 <= Number && Number < (int)RecsByNumber.size() &&
"IIT_Info.Number should be uint8_t");
assert(RecsByNumber[Number].empty() && "Duplicate IIT_Info.Number");
RecsByNumber[Number] = Rec->getName();
}
if (IIT_Base.size() > 0) {
for (unsigned I = 0, E = RecsByNumber.size(); I < E; ++I)
if (!RecsByNumber[I].empty())
OS << " " << RecsByNumber[I] << " = " << I << ",\n";
} else {
OS << "#error \"class IIT_Base is not defined\"\n";
}
OS << "#endif\n\n";
}
void IntrinsicEmitter::EmitTargetInfo(const CodeGenIntrinsicTable &Ints,
raw_ostream &OS) {
OS << R"(// Target mapping.
#ifdef GET_INTRINSIC_TARGET_DATA
struct IntrinsicTargetInfo {
StringLiteral Name;
size_t Offset;
size_t Count;
};
static constexpr IntrinsicTargetInfo TargetInfos[] = {
)";
for (const auto [Name, Offset, Count] : Ints.getTargets())
OS << formatv(" {{\"{}\", {}, {}},\n", Name, Offset, Count);
OS << R"(};
#endif
)";
}
void IntrinsicEmitter::EmitIntrinsicToNameTable(
const CodeGenIntrinsicTable &Ints, raw_ostream &OS) {
// Built up a table of the intrinsic names.
constexpr StringLiteral NotIntrinsic = "not_intrinsic";
StringToOffsetTable Table;
Table.GetOrAddStringOffset(NotIntrinsic);
for (const auto &Int : Ints)
Table.GetOrAddStringOffset(Int.Name);
OS << R"(// Intrinsic ID to name table.
#ifdef GET_INTRINSIC_NAME_TABLE
// Note that entry #0 is the invalid intrinsic!
)";
Table.EmitStringTableDef(OS, "IntrinsicNameTable");
OS << R"(
static constexpr unsigned IntrinsicNameOffsetTable[] = {
)";
OS << formatv(" {}, // {}\n", Table.GetStringOffset(NotIntrinsic),
NotIntrinsic);
for (const auto &Int : Ints)
OS << formatv(" {}, // {}\n", Table.GetStringOffset(Int.Name), Int.Name);
OS << R"(
}; // IntrinsicNameOffsetTable
#endif
)";
}
void IntrinsicEmitter::EmitIntrinsicToOverloadTable(
const CodeGenIntrinsicTable &Ints, raw_ostream &OS) {
OS << R"(// Intrinsic ID to overload bitset.
#ifdef GET_INTRINSIC_OVERLOAD_TABLE
static constexpr uint8_t OTable[] = {
0
)";
for (auto [I, Int] : enumerate(Ints)) {
// Add one to the index so we emit a null bit for the invalid #0 intrinsic.
size_t Idx = I + 1;
if (Idx % 8 == 0)
OS << ",\n 0";
if (Int.isOverloaded)
OS << " | (1<<" << Idx % 8 << ')';
}
OS << "\n};\n\n";
// OTable contains a true bit at the position if the intrinsic is overloaded.
OS << "return (OTable[id/8] & (1 << (id%8))) != 0;\n";
OS << "#endif\n\n";
}
using TypeSigTy = SmallVector<unsigned char>;
/// Computes type signature of the intrinsic \p Int.
static TypeSigTy ComputeTypeSignature(const CodeGenIntrinsic &Int) {
TypeSigTy TypeSig;
const Record *TypeInfo = Int.TheDef->getValueAsDef("TypeInfo");
const ListInit *TypeList = TypeInfo->getValueAsListInit("TypeSig");
for (const auto *TypeListEntry : TypeList->getElements())
TypeSig.emplace_back(cast<IntInit>(TypeListEntry)->getValue());
return TypeSig;
}
// Pack the type signature into 32-bit fixed encoding word.
static std::optional<uint32_t> encodePacked(const TypeSigTy &TypeSig) {
if (TypeSig.size() > 8)
return std::nullopt;
uint32_t Result = 0;
for (unsigned char C : reverse(TypeSig)) {
if (C > 15)
return std::nullopt;
Result = (Result << 4) | C;
}
return Result;
}
void IntrinsicEmitter::EmitGenerator(const CodeGenIntrinsicTable &Ints,
raw_ostream &OS) {
// Note: the code below can be switched to use 32-bit fixed encoding by
// flipping the flag below.
constexpr bool Use16BitFixedEncoding = true;
using FixedEncodingTy =
std::conditional_t<Use16BitFixedEncoding, uint16_t, uint32_t>;
constexpr unsigned FixedEncodingBits = sizeof(FixedEncodingTy) * CHAR_BIT;
// Mask with all bits 1 except the most significant bit.
const unsigned Mask = (1U << (FixedEncodingBits - 1)) - 1;
const unsigned MSBPostion = FixedEncodingBits - 1;
StringRef FixedEncodingTypeName =
Use16BitFixedEncoding ? "uint16_t" : "uint32_t";
// If we can compute a 16/32-bit fixed encoding for this intrinsic, do so and
// capture it in this vector, otherwise store a ~0U.
std::vector<FixedEncodingTy> FixedEncodings;
SequenceToOffsetTable<TypeSigTy> LongEncodingTable;
FixedEncodings.reserve(Ints.size());
// Compute the unique argument type info.
for (const CodeGenIntrinsic &Int : Ints) {
// Get the signature for the intrinsic.
TypeSigTy TypeSig = ComputeTypeSignature(Int);
// Check to see if we can encode it into a 16/32 bit word.
std::optional<uint32_t> Result = encodePacked(TypeSig);
if (Result && (*Result & Mask) == Result) {
FixedEncodings.push_back(static_cast<FixedEncodingTy>(*Result));
continue;
}
LongEncodingTable.add(TypeSig);
// This is a placehold that we'll replace after the table is laid out.
FixedEncodings.push_back(static_cast<FixedEncodingTy>(~0U));
}
LongEncodingTable.layout();
OS << formatv(R"(// Global intrinsic function declaration type table.
#ifdef GET_INTRINSIC_GENERATOR_GLOBAL
static constexpr {} IIT_Table[] = {{
)",
FixedEncodingTypeName);
unsigned MaxOffset = 0;
for (auto [Idx, FixedEncoding, Int] : enumerate(FixedEncodings, Ints)) {
if ((Idx & 7) == 7)
OS << "\n ";
// If the entry fit in the table, just emit it.
if ((FixedEncoding & Mask) == FixedEncoding) {
OS << "0x" << Twine::utohexstr(FixedEncoding) << ", ";
continue;
}
TypeSigTy TypeSig = ComputeTypeSignature(Int);
unsigned Offset = LongEncodingTable.get(TypeSig);
MaxOffset = std::max(MaxOffset, Offset);
// Otherwise, emit the offset into the long encoding table. We emit it this
// way so that it is easier to read the offset in the .def file.
OS << formatv("(1U<<{}) | {}, ", MSBPostion, Offset);
}
OS << "0\n};\n\n";
// verify that all offsets will fit in 16/32 bits.
if ((MaxOffset & Mask) != MaxOffset)
PrintFatalError("Offset of long encoding table exceeds encoding bits");
// Emit the shared table of register lists.
OS << "static constexpr unsigned char IIT_LongEncodingTable[] = {\n";
if (!LongEncodingTable.empty())
LongEncodingTable.emit(
OS, [](raw_ostream &OS, unsigned char C) { OS << (unsigned)C; });
OS << " 255\n};\n";
OS << "#endif\n\n"; // End of GET_INTRINSIC_GENERATOR_GLOBAL
}
/// Returns the effective MemoryEffects for intrinsic \p Int.
static MemoryEffects getEffectiveME(const CodeGenIntrinsic &Int) {
MemoryEffects ME = Int.ME;
// TODO: IntrHasSideEffects should affect not only readnone intrinsics.
if (ME.doesNotAccessMemory() && Int.hasSideEffects)
ME = MemoryEffects::unknown();
return ME;
}
static bool compareFnAttributes(const CodeGenIntrinsic *L,
const CodeGenIntrinsic *R) {
auto TieBoolAttributes = [](const CodeGenIntrinsic *I) -> auto {
// Sort throwing intrinsics after non-throwing intrinsics.
return std::tie(I->canThrow, I->isNoDuplicate, I->isNoMerge, I->isNoReturn,
I->isNoCallback, I->isNoSync, I->isNoFree, I->isWillReturn,
I->isCold, I->isConvergent, I->isSpeculatable,
I->hasSideEffects, I->isStrictFP);
};
auto TieL = TieBoolAttributes(L);
auto TieR = TieBoolAttributes(R);
if (TieL != TieR)
return TieL < TieR;
// Try to order by readonly/readnone attribute.
uint32_t LME = getEffectiveME(*L).toIntValue();
uint32_t RME = getEffectiveME(*R).toIntValue();
if (LME != RME)
return LME > RME;
return false;
}
/// Returns true if \p Int has a non-empty set of function attributes. Note that
/// NoUnwind = !canThrow, so we need to negate it's sense to test if the
// intrinsic has NoUnwind attribute.
static bool hasFnAttributes(const CodeGenIntrinsic &Int) {
return !Int.canThrow || Int.isNoReturn || Int.isNoCallback || Int.isNoSync ||
Int.isNoFree || Int.isWillReturn || Int.isCold || Int.isNoDuplicate ||
Int.isNoMerge || Int.isConvergent || Int.isSpeculatable ||
Int.isStrictFP || getEffectiveME(Int) != MemoryEffects::unknown();
}
namespace {
struct FnAttributeComparator {
bool operator()(const CodeGenIntrinsic *L, const CodeGenIntrinsic *R) const {
return compareFnAttributes(L, R);
}
};
struct AttributeComparator {
bool operator()(const CodeGenIntrinsic *L, const CodeGenIntrinsic *R) const {
// Order all intrinsics with no functiona attributes before all intrinsics
// with function attributes.
bool HasFnAttrLHS = hasFnAttributes(*L);
bool HasFnAttrRHS = hasFnAttributes(*R);
// Order by argument attributes if function `hasFnAttributes` is equal.
// This is reliable because each side is already sorted internally.
return std::tie(HasFnAttrLHS, L->ArgumentAttributes) <
std::tie(HasFnAttrRHS, R->ArgumentAttributes);
}
};
} // End anonymous namespace
/// Returns the name of the IR enum for argument attribute kind \p Kind.
static StringRef getArgAttrEnumName(CodeGenIntrinsic::ArgAttrKind Kind) {
switch (Kind) {
case CodeGenIntrinsic::NoCapture:
llvm_unreachable("Handled separately");
case CodeGenIntrinsic::NoAlias:
return "NoAlias";
case CodeGenIntrinsic::NoUndef:
return "NoUndef";
case CodeGenIntrinsic::NonNull:
return "NonNull";
case CodeGenIntrinsic::Returned:
return "Returned";
case CodeGenIntrinsic::ReadOnly:
return "ReadOnly";
case CodeGenIntrinsic::WriteOnly:
return "WriteOnly";
case CodeGenIntrinsic::ReadNone:
return "ReadNone";
case CodeGenIntrinsic::ImmArg:
return "ImmArg";
case CodeGenIntrinsic::Alignment:
return "Alignment";
case CodeGenIntrinsic::Dereferenceable:
return "Dereferenceable";
case CodeGenIntrinsic::Range:
return "Range";
}
llvm_unreachable("Unknown CodeGenIntrinsic::ArgAttrKind enum");
}
/// EmitAttributes - This emits the Intrinsic::getAttributes method.
void IntrinsicEmitter::EmitAttributes(const CodeGenIntrinsicTable &Ints,
raw_ostream &OS) {
OS << R"(// Add parameter attributes that are not common to all intrinsics.
#ifdef GET_INTRINSIC_ATTRIBUTES
static AttributeSet getIntrinsicArgAttributeSet(LLVMContext &C, unsigned ID,
Type *ArgType) {
unsigned BitWidth = ArgType->getScalarSizeInBits();
switch (ID) {
default: llvm_unreachable("Invalid attribute set number");)";
// Compute unique argument attribute sets.
std::map<SmallVector<CodeGenIntrinsic::ArgAttribute, 0>, unsigned>
UniqArgAttributes;
for (const CodeGenIntrinsic &Int : Ints) {
for (auto &Attrs : Int.ArgumentAttributes) {
if (Attrs.empty())
continue;
unsigned ID = UniqArgAttributes.size();
if (!UniqArgAttributes.try_emplace(Attrs, ID).second)
continue;
assert(is_sorted(Attrs) && "Argument attributes are not sorted");
OS << formatv(R"(
case {}:
return AttributeSet::get(C, {{
)",
ID);
for (const CodeGenIntrinsic::ArgAttribute &Attr : Attrs) {
if (Attr.Kind == CodeGenIntrinsic::NoCapture) {
OS << " Attribute::getWithCaptureInfo(C, "
"CaptureInfo::none()),\n";
continue;
}
StringRef AttrName = getArgAttrEnumName(Attr.Kind);
if (Attr.Kind == CodeGenIntrinsic::Alignment ||
Attr.Kind == CodeGenIntrinsic::Dereferenceable)
OS << formatv(" Attribute::get(C, Attribute::{}, {}),\n",
AttrName, Attr.Value);
else if (Attr.Kind == CodeGenIntrinsic::Range)
// This allows implicitTrunc because the range may only fit the
// type based on rules implemented in the IR verifier. E.g. the
// [-1, 1] range for ucmp/scmp intrinsics requires a minimum i2 type.
// Give the verifier a chance to diagnose this instead of asserting
// here.
OS << formatv(" Attribute::get(C, Attribute::{}, "
"ConstantRange(APInt(BitWidth, {}, /*isSigned=*/true, "
"/*implicitTrunc=*/true), APInt(BitWidth, {}, "
"/*isSigned=*/true, /*implicitTrunc=*/true))),\n",
AttrName, (int64_t)Attr.Value, (int64_t)Attr.Value2);
else
OS << formatv(" Attribute::get(C, Attribute::{}),\n", AttrName);
}
OS << " });";
}
}
OS << R"(
}
} // getIntrinsicArgAttributeSet
)";
// Compute unique function attribute sets.
std::map<const CodeGenIntrinsic *, unsigned, FnAttributeComparator>
UniqFnAttributes;
OS << R"(
static AttributeSet getIntrinsicFnAttributeSet(LLVMContext &C, unsigned ID) {
switch (ID) {
default: llvm_unreachable("Invalid attribute set number");)";
for (const CodeGenIntrinsic &Int : Ints) {
unsigned ID = UniqFnAttributes.size();
if (!UniqFnAttributes.try_emplace(&Int, ID).second)
continue;
OS << formatv(R"(
case {}:
return AttributeSet::get(C, {{
)",
ID);
auto addAttribute = [&OS](StringRef Attr) {
OS << formatv(" Attribute::get(C, Attribute::{}),\n", Attr);
};
if (!Int.canThrow)
addAttribute("NoUnwind");
if (Int.isNoReturn)
addAttribute("NoReturn");
if (Int.isNoCallback)
addAttribute("NoCallback");
if (Int.isNoSync)
addAttribute("NoSync");
if (Int.isNoFree)
addAttribute("NoFree");
if (Int.isWillReturn)
addAttribute("WillReturn");
if (Int.isCold)
addAttribute("Cold");
if (Int.isNoDuplicate)
addAttribute("NoDuplicate");
if (Int.isNoMerge)
addAttribute("NoMerge");
if (Int.isConvergent)
addAttribute("Convergent");
if (Int.isSpeculatable)
addAttribute("Speculatable");
if (Int.isStrictFP)
addAttribute("StrictFP");
const MemoryEffects ME = getEffectiveME(Int);
if (ME != MemoryEffects::unknown()) {
OS << formatv(" // {}\n", ME);
OS << formatv(" Attribute::getWithMemoryEffects(C, "
"MemoryEffects::createFromIntValue({})),\n",
ME.toIntValue());
}
OS << " });";
}
OS << R"(
}
} // getIntrinsicFnAttributeSet
static constexpr uint16_t IntrinsicsToAttributesMap[] = {)";
// Compute the maximum number of attribute arguments and the map. For function
// attributes, we only consider whether the intrinsics has any function
// arguments or not.
std::map<const CodeGenIntrinsic *, unsigned, AttributeComparator>
UniqAttributes;
for (const CodeGenIntrinsic &Int : Ints) {
unsigned ID = UniqAttributes.size();
UniqAttributes.try_emplace(&Int, ID);
}
// Emit an array of AttributeList. Most intrinsics will have at least one
// entry, for the function itself (index ~1), which is usually nounwind.
for (const CodeGenIntrinsic &Int : Ints) {
uint16_t FnAttrIndex = UniqFnAttributes[&Int];
OS << formatv("\n {} << 8 | {}, // {}", FnAttrIndex,
UniqAttributes[&Int], Int.Name);
}
// Assign a 16-bit packed ID for each intrinsic. The lower 8-bits will be its
// "argument attribute ID" (index in UniqAttributes) and upper 8 bits will be
// its "function attribute ID" (index in UniqFnAttributes).
if (UniqAttributes.size() > 256)
PrintFatalError("Too many unique argument attributes for table!");
if (UniqFnAttributes.size() > 256)
PrintFatalError("Too many unique function attributes for table!");
OS << R"(
};
AttributeList Intrinsic::getAttributes(LLVMContext &C, ID id,
FunctionType *FT) {)";
// Find the max number of attributes to create the local array.
unsigned MaxNumAttrs = 0;
for (const auto [IntPtr, UniqueID] : UniqAttributes) {
const CodeGenIntrinsic &Int = *IntPtr;
unsigned NumAttrs =
llvm::count_if(Int.ArgumentAttributes,
[](const auto &Attrs) { return !Attrs.empty(); });
NumAttrs += hasFnAttributes(Int);
MaxNumAttrs = std::max(MaxNumAttrs, NumAttrs);
}
OS << formatv(R"(
if (id == 0)
return AttributeList();
uint16_t PackedID = IntrinsicsToAttributesMap[id - 1];
uint8_t FnAttrID = PackedID >> 8;
std::pair<unsigned, AttributeSet> AS[{}];
unsigned NumAttrs = 0;
bool HasFnAttr = false;
switch(PackedID & 0xFF) {{
default: llvm_unreachable("Invalid attribute number");
)",
MaxNumAttrs);
for (const auto [IntPtr, UniqueID] : UniqAttributes) {
OS << formatv(" case {}:\n", UniqueID);
const CodeGenIntrinsic &Int = *IntPtr;
unsigned NumAttrs = 0;
for (const auto &[AttrIdx, Attrs] : enumerate(Int.ArgumentAttributes)) {
if (Attrs.empty())
continue;
unsigned ArgAttrID = UniqArgAttributes.find(Attrs)->second;
OS << formatv(" AS[{}] = {{{}, getIntrinsicArgAttributeSet(C, {}, "
"FT->getContainedType({}))};\n",
NumAttrs++, AttrIdx, ArgAttrID, AttrIdx);
}
if (hasFnAttributes(Int))
OS << " HasFnAttr = true;\n";
if (NumAttrs)
OS << formatv(" NumAttrs = {};\n", NumAttrs);
OS << " break;\n";
}
OS << R"( }
if (HasFnAttr) {
AS[NumAttrs++] = {AttributeList::FunctionIndex,
getIntrinsicFnAttributeSet(C, FnAttrID)};
}
return AttributeList::get(C, ArrayRef(AS, NumAttrs));
}
#endif // GET_INTRINSIC_ATTRIBUTES
)";
}
void IntrinsicEmitter::EmitIntrinsicToBuiltinMap(
const CodeGenIntrinsicTable &Ints, bool IsClang, raw_ostream &OS) {
StringRef CompilerName = IsClang ? "Clang" : "MS";
StringRef UpperCompilerName = IsClang ? "CLANG" : "MS";
// map<TargetPrefix, pair<map<BuiltinName, EnumName>, CommonPrefix>.
// Note that we iterate over both the maps in the code below and both
// iterations need to iterate in sorted key order. For the inner map, entries
// need to be emitted in the sorted order of `BuiltinName` with `CommonPrefix`
// rempved, because we use std::lower_bound to search these entries. For the
// outer map as well, entries need to be emitted in sorter order of
// `TargetPrefix` as we use std::lower_bound to search these entries.
using BIMEntryTy =
std::pair<std::map<StringRef, StringRef>, std::optional<StringRef>>;
std::map<StringRef, BIMEntryTy> BuiltinMap;
for (const CodeGenIntrinsic &Int : Ints) {
StringRef BuiltinName = IsClang ? Int.ClangBuiltinName : Int.MSBuiltinName;
if (BuiltinName.empty())
continue;
// Get the map for this target prefix.
auto &[Map, CommonPrefix] = BuiltinMap[Int.TargetPrefix];
if (!Map.try_emplace(BuiltinName, Int.EnumName).second)
PrintFatalError(Int.TheDef->getLoc(),
"Intrinsic '" + Int.TheDef->getName() + "': duplicate " +
CompilerName + " builtin name!");
// Update common prefix.
if (!CommonPrefix) {
// For the first builtin for this target, initialize the common prefix.
CommonPrefix = BuiltinName;
continue;
}
// Update the common prefix. Note that this assumes that `take_front` will
// never set the `Data` pointer in CommonPrefix to nullptr.
const char *Mismatch = mismatch(*CommonPrefix, BuiltinName).first;
*CommonPrefix = CommonPrefix->take_front(Mismatch - CommonPrefix->begin());
}
// Populate the string table with the names of all the builtins after
// removing this common prefix.
StringToOffsetTable Table;
for (const auto &[TargetPrefix, Entry] : BuiltinMap) {
auto &[Map, CommonPrefix] = Entry;
for (auto &[BuiltinName, EnumName] : Map) {
StringRef Suffix = BuiltinName.substr(CommonPrefix->size());
Table.GetOrAddStringOffset(Suffix);
}
}
OS << formatv(R"(
// Get the LLVM intrinsic that corresponds to a builtin. This is used by the
// C front-end. The builtin name is passed in as BuiltinName, and a target
// prefix (e.g. 'ppc') is passed in as TargetPrefix.
#ifdef GET_LLVM_INTRINSIC_FOR_{}_BUILTIN
Intrinsic::ID
Intrinsic::getIntrinsicFor{}Builtin(StringRef TargetPrefix,
StringRef BuiltinName) {{
using namespace Intrinsic;
)",
UpperCompilerName, CompilerName);
if (BuiltinMap.empty()) {
OS << formatv(R"(
return not_intrinsic;
}
#endif // GET_LLVM_INTRINSIC_FOR_{}_BUILTIN
)",
UpperCompilerName);
return;
}
if (!Table.empty()) {
Table.EmitStringTableDef(OS, "BuiltinNames");
OS << R"(
struct BuiltinEntry {
ID IntrinsicID;
unsigned StrTabOffset;
const char *getName() const { return BuiltinNames[StrTabOffset].data(); }
bool operator<(StringRef RHS) const {
return strncmp(getName(), RHS.data(), RHS.size()) < 0;
}
};
)";
}
// Emit a per target table of bultin names.
bool HasTargetIndependentBuiltins = false;
StringRef TargetIndepndentCommonPrefix;
for (const auto &[TargetPrefix, Entry] : BuiltinMap) {
const auto &[Map, CommonPrefix] = Entry;
if (!TargetPrefix.empty()) {
OS << formatv(" // Builtins for {0}.\n", TargetPrefix);
} else {
OS << " // Target independent builtins.\n";
HasTargetIndependentBuiltins = true;
TargetIndepndentCommonPrefix = *CommonPrefix;
}
// Emit the builtin table for this target prefix.
OS << formatv(" static constexpr BuiltinEntry {}Names[] = {{\n",
TargetPrefix);
for (const auto &[BuiltinName, EnumName] : Map) {
StringRef Suffix = BuiltinName.substr(CommonPrefix->size());
OS << formatv(" {{{}, {}}, // {}\n", EnumName,
*Table.GetStringOffset(Suffix), BuiltinName);
}
OS << formatv(" }; // {}Names\n\n", TargetPrefix);
}
// After emitting the builtin tables for all targets, emit a lookup table for
// all targets. We will use binary search, similar to the table for builtin
// names to lookup into this table.
OS << R"(
struct TargetEntry {
StringLiteral TargetPrefix;
ArrayRef<BuiltinEntry> Names;
StringLiteral CommonPrefix;
bool operator<(StringRef RHS) const {
return TargetPrefix < RHS;
};
};
static constexpr TargetEntry TargetTable[] = {
)";
for (const auto &[TargetPrefix, Entry] : BuiltinMap) {
const auto &[Map, CommonPrefix] = Entry;
if (TargetPrefix.empty())
continue;
OS << formatv(R"( {{"{0}", {0}Names, "{1}"},)", TargetPrefix,
CommonPrefix)
<< "\n";
}
OS << " };\n";
// Now for the actual lookup, first check the target independent table if
// we emitted one.
if (HasTargetIndependentBuiltins) {
OS << formatv(R"(
// Check if it's a target independent builtin.
// Copy the builtin name so we can use it in consume_front without clobbering
// if for the lookup in the target specific table.
StringRef Suffix = BuiltinName;
if (Suffix.consume_front("{}")) {{
auto II = lower_bound(Names, Suffix);
if (II != std::end(Names) && II->getName() == Suffix)
return II->IntrinsicID;
}
)",
TargetIndepndentCommonPrefix);
}
// If a target independent builtin was not found, lookup the target specific.
OS << formatv(R"(
auto TI = lower_bound(TargetTable, TargetPrefix);
if (TI == std::end(TargetTable) || TI->TargetPrefix != TargetPrefix)
return not_intrinsic;
// This is the last use of BuiltinName, so no need to copy before using it in
// consume_front.
if (!BuiltinName.consume_front(TI->CommonPrefix))
return not_intrinsic;
auto II = lower_bound(TI->Names, BuiltinName);
if (II == std::end(TI->Names) || II->getName() != BuiltinName)
return not_intrinsic;
return II->IntrinsicID;
}
#endif // GET_LLVM_INTRINSIC_FOR_{}_BUILTIN
)",
UpperCompilerName);
}
static TableGen::Emitter::OptClass<IntrinsicEmitterOpt</*Enums=*/true>>
X("gen-intrinsic-enums", "Generate intrinsic enums");
static TableGen::Emitter::OptClass<IntrinsicEmitterOpt</*Enums=*/false>>
Y("gen-intrinsic-impl", "Generate intrinsic implementation code");