Leandro Lacerda 75bf739208
[libc][gpu] Disable loop unrolling in the throughput benchmark loop (#153971)
This patch makes GPU throughput benchmark results more comparable across
targets by disabling loop unrolling in the benchmark loop.

Motivation:
* PTX (post-LTO) evidence on NVPTX: for libc `sin`, the generated PTX
shows the `throughput` loop unrolled 8x at `N=128` (one iteration
advances the input pointer by 64 bytes = 8 doubles), interleaving eight
independent chains before the back-edge. This hides latency and
significantly reduces cycles/call as the batch size `N` grows.
* Observed scaling (NVPTX measurements): with unrolling enabled, `sin`
dropped from ~3,100 cycles/call at `N=1` to ~360 at `N=128`. After
enforcing `#pragma clang loop unroll(disable)`, results stabilized
(e.g., from ~3100 cycles/call at `N=1` to ~2700 at `N=128`).
* libdevice contrast: the libdevice `sin` path did not exhibit a similar
drop in our measurements, and the PTX appears as compact internal calls
rather than a long FMA chain, leaving less ILP for the outer loop to
extract.

What this change does:
* Applies `#pragma clang loop unroll(disable)` to the GPU `throughput()`
loop in both NVPTX and AMDGPU backends.

Leaving unrolling entirely to the optimizer makes apples-to-apples
comparisons uneven (e.g., libc vs. vendor). Disabling unrolling yields
fairer, more consistent numbers.
2025-08-16 20:14:26 +00:00

227 lines
6.7 KiB
C++

//===------------- NVPTX implementation of timing utils ---------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_LIBC_UTILS_GPU_TIMING_NVPTX
#define LLVM_LIBC_UTILS_GPU_TIMING_NVPTX
#include "hdr/stdint_proxy.h"
#include "src/__support/CPP/algorithm.h"
#include "src/__support/CPP/array.h"
#include "src/__support/CPP/atomic.h"
#include "src/__support/GPU/utils.h"
#include "src/__support/macros/attributes.h"
#include "src/__support/macros/config.h"
namespace LIBC_NAMESPACE_DECL {
// Returns the overhead associated with calling the profiling region. This
// allows us to substract the constant-time overhead from the latency to
// obtain a true result. This can vary with system load.
[[gnu::noinline]] static uint64_t overhead() {
volatile uint32_t x = 1;
uint32_t y = x;
uint64_t start = gpu::processor_clock();
asm("" ::"llr"(start));
uint32_t result = y;
asm("or.b32 %[v_reg], %[v_reg], 0;" ::[v_reg] "r"(result));
uint64_t stop = gpu::processor_clock();
volatile auto storage = result;
return stop - start;
}
// Stimulate a simple function and obtain its latency in clock cycles on the
// system. This function cannot be inlined or else it will disturb the very
// delicate balance of hard-coded dependencies.
template <typename F, typename T>
[[gnu::noinline]] static LIBC_INLINE uint64_t latency(F f, T t) {
// We need to store the input somewhere to guarantee that the compiler will
// not constant propagate it and remove the profiling region.
volatile T storage = t;
T arg = storage;
// Get the current timestamp from the clock.
cpp::atomic_thread_fence(cpp::MemoryOrder::ACQ_REL);
uint64_t start = gpu::processor_clock();
// This forces the compiler to load the input argument and run the clock cycle
// counter before the profiling region.
asm("" ::"llr"(start));
// Run the function under test and return its value.
auto result = f(arg);
// This inline assembly performs a no-op which forces the result to both be
// used and prevents us from exiting this region before it's complete.
asm("or.b32 %[v_reg], %[v_reg], 0;" ::[v_reg] "r"(result));
// Obtain the current timestamp after running the calculation and force
// ordering.
uint64_t stop = gpu::processor_clock();
cpp::atomic_thread_fence(cpp::MemoryOrder::ACQ_REL);
asm("" ::"r"(stop));
volatile auto output = result;
// Return the time elapsed.
return stop - start;
}
template <typename F, typename T1, typename T2>
static LIBC_INLINE uint64_t latency(F f, T1 t1, T2 t2) {
volatile T1 storage = t1;
volatile T2 storage2 = t2;
T1 arg = storage;
T2 arg2 = storage2;
cpp::atomic_thread_fence(cpp::MemoryOrder::ACQ_REL);
uint64_t start = gpu::processor_clock();
asm("" ::"llr"(start));
auto result = f(arg, arg2);
asm("or.b32 %[v_reg], %[v_reg], 0;" ::[v_reg] "r"(result));
uint64_t stop = gpu::processor_clock();
cpp::atomic_thread_fence(cpp::MemoryOrder::ACQ_REL);
asm("" ::"r"(stop));
volatile auto output = result;
return stop - start;
}
// Provides the *baseline* for throughput: measures loop and measurement costs
// without calling the f function
template <typename T, size_t N>
static LIBC_INLINE uint64_t
throughput_baseline(const cpp::array<T, N> &inputs) {
asm("" ::"r"(&inputs));
cpp::atomic_thread_fence(cpp::MemoryOrder::ACQ_REL);
uint64_t start = gpu::processor_clock();
asm("" ::"llr"(start));
T result{};
#pragma clang loop unroll(disable)
for (auto input : inputs) {
asm("" ::"r"(input));
result = input;
asm("" ::"r"(result));
}
uint64_t stop = gpu::processor_clock();
asm("" ::"r"(stop));
cpp::atomic_thread_fence(cpp::MemoryOrder::ACQ_REL);
volatile auto output = result;
return stop - start;
}
// Provides throughput benchmarking
template <typename F, typename T, size_t N>
static LIBC_INLINE uint64_t throughput(F f, const cpp::array<T, N> &inputs) {
uint64_t baseline = UINT64_MAX;
for (int i = 0; i < 5; ++i)
baseline = cpp::min(baseline, throughput_baseline<T, N>(inputs));
asm("" ::"r"(&inputs));
cpp::atomic_thread_fence(cpp::MemoryOrder::ACQ_REL);
uint64_t start = gpu::processor_clock();
asm("" ::"llr"(start));
T result{};
#pragma clang loop unroll(disable)
for (auto input : inputs) {
asm("" ::"r"(input));
result = f(input);
asm("" ::"r"(result));
}
uint64_t stop = gpu::processor_clock();
asm("" ::"r"(stop));
cpp::atomic_thread_fence(cpp::MemoryOrder::ACQ_REL);
volatile auto output = result;
const uint64_t measured = stop - start;
return measured > baseline ? (measured - baseline) : 0;
}
// Provides the *baseline* for throughput with 2 arguments: measures loop and
// measurement costs without calling the f function
template <typename T, size_t N>
static LIBC_INLINE uint64_t throughput_baseline(
const cpp::array<T, N> &inputs1, const cpp::array<T, N> &inputs2) {
asm("" ::"r"(&inputs1), "r"(&inputs2));
cpp::atomic_thread_fence(cpp::MemoryOrder::ACQ_REL);
uint64_t start = gpu::processor_clock();
asm("" ::"llr"(start));
T result{};
#pragma clang loop unroll(disable)
for (size_t i = 0; i < N; i++) {
T x = inputs1[i];
T y = inputs2[i];
asm("" ::"r"(x), "r"(y));
result = x;
asm("" ::"r"(result));
}
uint64_t stop = gpu::processor_clock();
asm("" ::"r"(stop));
cpp::atomic_thread_fence(cpp::MemoryOrder::ACQ_REL);
volatile auto output = result;
return stop - start;
}
// Provides throughput benchmarking for 2 arguments (e.g. atan2())
template <typename F, typename T, size_t N>
static LIBC_INLINE uint64_t throughput(F f, const cpp::array<T, N> &inputs1,
const cpp::array<T, N> &inputs2) {
uint64_t baseline = UINT64_MAX;
for (int i = 0; i < 5; ++i)
baseline = cpp::min(baseline, throughput_baseline<T, N>(inputs1, inputs2));
asm("" ::"r"(&inputs1), "r"(&inputs2));
cpp::atomic_thread_fence(cpp::MemoryOrder::ACQ_REL);
uint64_t start = gpu::processor_clock();
asm("" ::"llr"(start));
T result{};
#pragma clang loop unroll(disable)
for (size_t i = 0; i < N; i++) {
T x = inputs1[i];
T y = inputs2[i];
asm("" ::"r"(x), "r"(y));
result = f(x, y);
asm("" ::"r"(result));
}
uint64_t stop = gpu::processor_clock();
asm("" ::"r"(stop));
cpp::atomic_thread_fence(cpp::MemoryOrder::ACQ_REL);
volatile auto output = result;
const uint64_t measured = stop - start;
return measured > baseline ? (measured - baseline) : 0;
}
} // namespace LIBC_NAMESPACE_DECL
#endif // LLVM_LIBC_UTILS_GPU_TIMING_NVPTX