
This is a major step along the way towards the new STEA design. While a great deal of this patch is simple renaming, there are several significant changes as well. I've done my best to ensure that this patch retains the previous behavior and error-conditions, even though those are at odds with the eventual intended semantics of the `dimToLvl` mapping. Since the majority of the compiler does not yet support non-permutations, I've also added explicit assertions in places that previously had implicitly assumed it was dealing with permutations. Reviewed By: aartbik Differential Revision: https://reviews.llvm.org/D151505
82 lines
3.6 KiB
C++
82 lines
3.6 KiB
C++
//===- DialectSparseTensor.cpp - 'sparse_tensor' dialect submodule --------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "mlir-c/Dialect/SparseTensor.h"
|
|
#include "mlir-c/IR.h"
|
|
#include "mlir/Bindings/Python/PybindAdaptors.h"
|
|
#include <optional>
|
|
|
|
namespace py = pybind11;
|
|
using namespace llvm;
|
|
using namespace mlir;
|
|
using namespace mlir::python::adaptors;
|
|
|
|
static void populateDialectSparseTensorSubmodule(const py::module &m) {
|
|
py::enum_<MlirSparseTensorDimLevelType>(m, "DimLevelType", py::module_local())
|
|
.value("dense", MLIR_SPARSE_TENSOR_DIM_LEVEL_DENSE)
|
|
.value("compressed", MLIR_SPARSE_TENSOR_DIM_LEVEL_COMPRESSED)
|
|
.value("compressed-nu", MLIR_SPARSE_TENSOR_DIM_LEVEL_COMPRESSED_NU)
|
|
.value("compressed-no", MLIR_SPARSE_TENSOR_DIM_LEVEL_COMPRESSED_NO)
|
|
.value("compressed-nu-no", MLIR_SPARSE_TENSOR_DIM_LEVEL_COMPRESSED_NU_NO)
|
|
.value("singleton", MLIR_SPARSE_TENSOR_DIM_LEVEL_SINGLETON)
|
|
.value("singleton-nu", MLIR_SPARSE_TENSOR_DIM_LEVEL_SINGLETON_NU)
|
|
.value("singleton-no", MLIR_SPARSE_TENSOR_DIM_LEVEL_SINGLETON_NO)
|
|
.value("singleton-nu-no", MLIR_SPARSE_TENSOR_DIM_LEVEL_SINGLETON_NU_NO)
|
|
.value("compressed-hi", MLIR_SPARSE_TENSOR_DIM_LEVEL_COMPRESSED_WITH_HI)
|
|
.value("compressed-hi-nu",
|
|
MLIR_SPARSE_TENSOR_DIM_LEVEL_COMPRESSED_WITH_HI_NU)
|
|
.value("compressed-hi-no",
|
|
MLIR_SPARSE_TENSOR_DIM_LEVEL_COMPRESSED_WITH_HI_NO)
|
|
.value("compressed-hi-nu-no",
|
|
MLIR_SPARSE_TENSOR_DIM_LEVEL_COMPRESSED_WITH_HI_NU_NO);
|
|
|
|
mlir_attribute_subclass(m, "EncodingAttr",
|
|
mlirAttributeIsASparseTensorEncodingAttr)
|
|
.def_classmethod(
|
|
"get",
|
|
[](py::object cls, std::vector<MlirSparseTensorDimLevelType> lvlTypes,
|
|
std::optional<MlirAffineMap> dimToLvl, int posWidth, int crdWidth,
|
|
MlirContext context) {
|
|
return cls(mlirSparseTensorEncodingAttrGet(
|
|
context, lvlTypes.size(), lvlTypes.data(),
|
|
dimToLvl ? *dimToLvl : MlirAffineMap{nullptr}, posWidth,
|
|
crdWidth));
|
|
},
|
|
py::arg("cls"), py::arg("lvl_types"), py::arg("dim_to_lvl"),
|
|
py::arg("pos_width"), py::arg("crd_width"),
|
|
py::arg("context") = py::none(),
|
|
"Gets a sparse_tensor.encoding from parameters.")
|
|
.def_property_readonly(
|
|
"lvl_types",
|
|
[](MlirAttribute self) {
|
|
const int lvlRank = mlirSparseTensorEncodingGetLvlRank(self);
|
|
std::vector<MlirSparseTensorDimLevelType> ret;
|
|
ret.reserve(lvlRank);
|
|
for (int l = 0; l < lvlRank; ++l)
|
|
ret.push_back(mlirSparseTensorEncodingAttrGetLvlType(self, l));
|
|
return ret;
|
|
})
|
|
.def_property_readonly(
|
|
"dim_to_lvl",
|
|
[](MlirAttribute self) -> std::optional<MlirAffineMap> {
|
|
MlirAffineMap ret = mlirSparseTensorEncodingAttrGetDimToLvl(self);
|
|
if (mlirAffineMapIsNull(ret))
|
|
return {};
|
|
return ret;
|
|
})
|
|
.def_property_readonly("pos_width",
|
|
mlirSparseTensorEncodingAttrGetPosWidth)
|
|
.def_property_readonly("crd_width",
|
|
mlirSparseTensorEncodingAttrGetCrdWidth);
|
|
}
|
|
|
|
PYBIND11_MODULE(_mlirDialectsSparseTensor, m) {
|
|
m.doc() = "MLIR SparseTensor dialect.";
|
|
populateDialectSparseTensorSubmodule(m);
|
|
}
|