llvm-project/mlir/lib/Dialect/SparseTensor/Transforms/SparseTensorConversion.cpp
wren romano 76647fce13 [mlir][sparse] Combining dimOrdering+higherOrdering fields into dimToLvl
This is a major step along the way towards the new STEA design.  While a great deal of this patch is simple renaming, there are several significant changes as well.  I've done my best to ensure that this patch retains the previous behavior and error-conditions, even though those are at odds with the eventual intended semantics of the `dimToLvl` mapping.  Since the majority of the compiler does not yet support non-permutations, I've also added explicit assertions in places that previously had implicitly assumed it was dealing with permutations.

Reviewed By: aartbik

Differential Revision: https://reviews.llvm.org/D151505
2023-05-30 15:19:50 -07:00

1476 lines
64 KiB
C++

//===- SparseTensorConversion.cpp - Sparse tensor primitives conversion ---===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// A pass that converts sparse tensor primitives into calls into a runtime
// support library. Sparse tensor types are converted into opaque pointers
// to the underlying sparse storage schemes. The use of opaque pointers
// together with runtime support library keeps the conversion relatively
// simple, but at the expense of IR opacity, which obscures opportunities
// for subsequent optimization of the IR. An alternative is provided by
// the SparseTensorCodegen pass.
//
//===----------------------------------------------------------------------===//
#include "CodegenUtils.h"
#include "mlir/Dialect/Bufferization/IR/BufferizableOpInterface.h"
#include "mlir/Dialect/Bufferization/IR/Bufferization.h"
#include "mlir/Dialect/Linalg/Utils/Utils.h"
#include "mlir/Dialect/MemRef/IR/MemRef.h"
#include "mlir/Dialect/SCF/IR/SCF.h"
#include "mlir/Dialect/SparseTensor/IR/Enums.h"
#include "mlir/Dialect/SparseTensor/IR/SparseTensor.h"
#include "mlir/Dialect/SparseTensor/IR/SparseTensorType.h"
#include "mlir/Dialect/SparseTensor/Transforms/Passes.h"
#include "mlir/Dialect/Tensor/IR/Tensor.h"
#include "mlir/Transforms/DialectConversion.h"
using namespace mlir;
using namespace mlir::sparse_tensor;
namespace {
//===----------------------------------------------------------------------===//
// Helper methods.
//===----------------------------------------------------------------------===//
/// Maps each sparse tensor type to an opaque pointer.
static std::optional<Type> convertSparseTensorTypes(Type type) {
if (getSparseTensorEncoding(type) != nullptr)
return LLVM::LLVMPointerType::get(IntegerType::get(type.getContext(), 8));
return std::nullopt;
}
/// Replaces the `op` with a `CallOp` to the function reference returned
/// by `getFunc()`.
static func::CallOp replaceOpWithFuncCall(RewriterBase &rewriter, Operation *op,
StringRef name, TypeRange resultType,
ValueRange operands,
EmitCInterface emitCInterface) {
auto fn = getFunc(op->getParentOfType<ModuleOp>(), name, resultType, operands,
emitCInterface);
return rewriter.replaceOpWithNewOp<func::CallOp>(op, resultType, fn,
operands);
}
/// Generates call to lookup a level-size. N.B., this only generates
/// the raw function call, and therefore (intentionally) does not perform
/// any dim<->lvl conversion or other logic.
static Value genLvlSizeCall(OpBuilder &builder, Location loc, Value tensor,
uint64_t lvl) {
StringRef name = "sparseLvlSize";
SmallVector<Value, 2> params{tensor, constantIndex(builder, loc, lvl)};
Type iTp = builder.getIndexType();
return createFuncCall(builder, loc, name, iTp, params, EmitCInterface::Off)
.getResult(0);
}
/// Generates call to lookup a dimension-size. N.B., this only generates
/// the raw function call, and therefore (intentionally) does not perform
/// any dim<->lvl conversion or other logic.
static Value genDimSizeCall(OpBuilder &builder, Location loc, Value tensor,
uint64_t dim) {
StringRef name = "sparseDimSize";
SmallVector<Value, 2> params{tensor, constantIndex(builder, loc, dim)};
Type iTp = builder.getIndexType();
return createFuncCall(builder, loc, name, iTp, params, EmitCInterface::Off)
.getResult(0);
}
/// Looks up a level-size by returning a statically-computed constant
/// (when possible), or by calling `genLvlSizeCall` (when dynamic).
static Value createOrFoldLvlCall(OpBuilder &builder, Location loc,
SparseTensorType stt, Value tensor,
Level lvl) {
// Only sparse tensors have "levels" to query.
assert(stt.hasEncoding());
// TODO: The following implementation only handles permutations;
// we'll need to generalize this to handle arbitrary AffineExpr.
//
// There's no need to assert `isPermutation` here: because
// `getDimPosition` checks that the expr isa `AffineDimExpr`,
// which is all we care about (for supporting permutations).
const Dimension dim =
stt.isIdentity() ? lvl : stt.getDimToLvl().getDimPosition(lvl);
if (const auto sz = stt.getStaticDimSize(dim))
return constantIndex(builder, loc, *sz);
// If we cannot statically compute the size from the shape, then we
// must dynamically query it. (In principle we could also dynamically
// compute it, but since we already did so to construct the `tensor`
// in the first place, we might as well query rather than recompute.)
return genLvlSizeCall(builder, loc, tensor, lvl);
}
/// Looks up a dimension-size by returning a constant from the shape
/// (for static sizes), or by calling `genDimSizeCall` (for dynamic sizes
/// of sparse tensors) or `linalg::createOrFoldDimOp` (for dynamic sizes
/// of dense tensors).
static Value createOrFoldDimCall(OpBuilder &builder, Location loc,
SparseTensorType stt, Value tensor,
Dimension dim) {
if (const auto sz = stt.getStaticDimSize(dim))
return constantIndex(builder, loc, *sz);
if (stt.hasEncoding())
return genDimSizeCall(builder, loc, tensor, dim);
return linalg::createOrFoldDimOp(builder, loc, tensor, dim);
}
/// Populates the array with the dimension-sizes of the given tensor.
static void fillDimSizes(OpBuilder &builder, Location loc, SparseTensorType stt,
Value tensor, SmallVectorImpl<Value> &out) {
const Dimension dimRank = stt.getDimRank();
out.clear();
out.reserve(dimRank);
for (Dimension d = 0; d < dimRank; d++)
out.push_back(createOrFoldDimCall(builder, loc, stt, tensor, d));
}
/// Returns an array with the dimension-sizes of the given tensor.
static SmallVector<Value> getDimSizes(OpBuilder &builder, Location loc,
SparseTensorType stt, Value tensor) {
SmallVector<Value> out;
fillDimSizes(builder, loc, stt, tensor, out);
return out;
}
/// Populates the array with the dimension-shape of the given
/// `SparseTensorType`, where dynamic sizes are represented by zero.
static void fillDimShape(OpBuilder &builder, Location loc, SparseTensorType stt,
SmallVectorImpl<Value> &out) {
out.clear();
out.reserve(stt.getDimRank());
for (const DynSize sh : stt.getDimShape()) {
const auto s = ShapedType::isDynamic(sh) ? 0 : sh;
out.push_back(constantIndex(builder, loc, s));
}
}
/// Returns an array with the dimension-shape of the given `SparseTensorType`,
/// where dynamic sizes are represented by zero.
static SmallVector<Value> getDimShape(OpBuilder &builder, Location loc,
SparseTensorType stt) {
SmallVector<Value> out;
fillDimShape(builder, loc, stt, out);
return out;
}
/// Populates the given sizes array for concatenation from type (for static
/// sizes) and from an already-converted opaque pointer source (for dynamic
/// sizes).
static void concatDimSizesFromInputs(OpBuilder &builder, Location loc,
SparseTensorType dstTp, ValueRange srcs,
Dimension dim,
SmallVectorImpl<Value> &dimSizes) {
assert(dim < dstTp.getDimRank() && "Dimension is out of bounds");
dimSizes.clear();
// We first fills the sizes from an input tensor, and then
// compute the size of the concatenation dimension if necessary.
const auto srcTp = getSparseTensorType(srcs[0]);
if (srcTp.hasEncoding())
// Reuses sizes from an arbitrary input tensor is fine.
fillDimSizes(builder, loc, srcTp, srcs[0], dimSizes);
else
sizesFromSrc(builder, dimSizes, loc, srcs[0]);
if (const auto sz = dstTp.getStaticDimSize(dim)) {
// Faithfully take the static size.
dimSizes[dim] = constantIndex(builder, loc, *sz);
} else {
// Else, dynamically compute the size.
for (const auto src : srcs.drop_front()) {
const auto srcTp = getSparseTensorType(src);
Value srcSz = createOrFoldDimCall(builder, loc, srcTp, src, dim);
dimSizes[dim] = builder.create<arith::AddIOp>(loc, dimSizes[dim], srcSz);
}
}
}
/// Generates an uninitialized buffer of the given size and type,
/// but returns it as type `memref<? x $tp>` (rather than as type
/// `memref<$sz x $tp>`). Unlike temporary buffers on the stack,
/// this buffer must be explicitly deallocated by client.
static Value genAlloc(RewriterBase &rewriter, Location loc, Value sz, Type tp) {
auto memTp = MemRefType::get({ShapedType::kDynamic}, tp);
return rewriter.create<memref::AllocOp>(loc, memTp, ValueRange{sz});
}
/// Generates a temporary buffer for the level-types of the given encoding.
static Value genLvlTypesBuffer(OpBuilder &builder, Location loc,
SparseTensorType stt) {
SmallVector<Value> lvlTypes;
lvlTypes.reserve(stt.getLvlRank());
for (const auto dlt : stt.getEncoding().getLvlTypes())
lvlTypes.push_back(constantDimLevelTypeEncoding(builder, loc, dlt));
return allocaBuffer(builder, loc, lvlTypes);
}
/// This class abstracts over the API of `_mlir_ciface_newSparseTensor`:
/// the "swiss army knife" method of the sparse runtime support library
/// for materializing sparse tensors into the computation. This abstraction
/// reduces the need to make modifications to client code whenever that
/// API changes.
class NewCallParams final {
public:
/// Allocates the `ValueRange` for the `func::CallOp` parameters,
/// but does not initialize them.
NewCallParams(OpBuilder &builder, Location loc)
: builder(builder), loc(loc), pTp(getOpaquePointerType(builder)) {}
/// Initializes all static parameters (i.e., those which indicate
/// type-level information such as the encoding and sizes), generating
/// MLIR buffers as needed, and returning `this` for method chaining.
/// This method does not set the action and pointer arguments, since
/// those are handled by `genNewCall` instead.
NewCallParams &genBuffers(SparseTensorType stt, ValueRange dimSizes);
/// (Re)sets the C++ template type parameters, and returns `this`
/// for method chaining. This is already done as part of `genBuffers`,
/// but is factored out so that it can also be called independently
/// whenever subsequent `genNewCall` calls want to reuse the same
/// buffers but different type parameters.
//
// TODO: This is only ever used by sparse2sparse-viaCOO `ConvertOp`;
// is there a better way to handle that than this one-off setter method?
NewCallParams &setTemplateTypes(SparseTensorType stt) {
const auto enc = stt.getEncoding();
params[kParamPosTp] = constantPosTypeEncoding(builder, loc, enc);
params[kParamCrdTp] = constantCrdTypeEncoding(builder, loc, enc);
params[kParamValTp] =
constantPrimaryTypeEncoding(builder, loc, stt.getElementType());
return *this;
}
/// Checks whether all the static parameters have been initialized.
bool isInitialized() const {
for (unsigned i = 0; i < kNumStaticParams; ++i)
if (!params[i])
return false;
return true;
}
/// Gets the dimension-to-level mapping.
//
// TODO: This is only ever used for passing into `genAddEltCall`;
// is there a better way to encapsulate that pattern (both to avoid
// this one-off getter, and to avoid potential mixups)?
Value getDimToLvl() const {
assert(isInitialized() && "Must initialize before getDimToLvl");
return params[kParamDimToLvl];
}
/// Generates a function call, with the current static parameters
/// and the given dynamic arguments.
Value genNewCall(Action action, Value ptr = Value()) {
assert(isInitialized() && "Must initialize before genNewCall");
StringRef name = "newSparseTensor";
params[kParamAction] = constantAction(builder, loc, action);
params[kParamPtr] = ptr ? ptr : builder.create<LLVM::NullOp>(loc, pTp);
return createFuncCall(builder, loc, name, pTp, params, EmitCInterface::On)
.getResult(0);
}
private:
static constexpr unsigned kNumStaticParams = 8;
static constexpr unsigned kNumDynamicParams = 2;
static constexpr unsigned kNumParams = kNumStaticParams + kNumDynamicParams;
static constexpr unsigned kParamDimSizes = 0;
static constexpr unsigned kParamLvlSizes = 1;
static constexpr unsigned kParamLvlTypes = 2;
static constexpr unsigned kParamLvlToDim = 3;
static constexpr unsigned kParamDimToLvl = 4;
static constexpr unsigned kParamPosTp = 5;
static constexpr unsigned kParamCrdTp = 6;
static constexpr unsigned kParamValTp = 7;
static constexpr unsigned kParamAction = 8;
static constexpr unsigned kParamPtr = 9;
OpBuilder &builder;
Location loc;
Type pTp;
Value params[kNumParams];
};
// TODO: see the note at `_mlir_ciface_newSparseTensor` about how
// the meaning of the various arguments (e.g., "sizes" vs "shapes")
// is inconsistent between the different actions.
NewCallParams &NewCallParams::genBuffers(SparseTensorType stt,
ValueRange dimSizes) {
const Level lvlRank = stt.getLvlRank();
const Dimension dimRank = stt.getDimRank();
// Sparsity annotations.
params[kParamLvlTypes] = genLvlTypesBuffer(builder, loc, stt);
// Dimension-sizes array of the enveloping tensor. Useful for either
// verification of external data, or for construction of internal data.
assert(dimSizes.size() == static_cast<size_t>(dimRank) &&
"Dimension-rank mismatch");
params[kParamDimSizes] = allocaBuffer(builder, loc, dimSizes);
// The level-sizes array must be passed as well, since for arbitrary
// dimToLvl mappings it cannot be trivially reconstructed at runtime.
// For now however, since we're still assuming permutations, we will
// initialize this parameter alongside the `dimToLvl` and `lvlToDim`
// parameters below. We preinitialize `lvlSizes` for code symmetry.
SmallVector<Value> lvlSizes(lvlRank);
// The dimension-to-level mapping and its inverse. We must preinitialize
// `dimToLvl` so that the true branch below can perform random-access
// `operator[]` assignment. We preinitialize `lvlToDim` for code symmetry.
SmallVector<Value> dimToLvl(dimRank);
SmallVector<Value> lvlToDim(lvlRank);
if (!stt.isIdentity()) {
const auto dimToLvlMap = stt.getDimToLvl();
assert(dimToLvlMap.isPermutation());
for (Level l = 0; l < lvlRank; l++) {
// The `d`th source variable occurs in the `l`th result position.
const Dimension d = dimToLvlMap.getDimPosition(l);
dimToLvl[d] = constantIndex(builder, loc, l);
lvlToDim[l] = constantIndex(builder, loc, d);
lvlSizes[l] = dimSizes[d];
}
} else {
// The `SparseTensorType` ctor already ensures `dimRank == lvlRank`
// when `isIdentity`; so no need to re-assert it here.
for (Level l = 0; l < lvlRank; l++) {
dimToLvl[l] = lvlToDim[l] = constantIndex(builder, loc, l);
lvlSizes[l] = dimSizes[l];
}
}
params[kParamLvlSizes] = allocaBuffer(builder, loc, lvlSizes);
params[kParamLvlToDim] = allocaBuffer(builder, loc, lvlToDim);
params[kParamDimToLvl] = stt.isIdentity()
? params[kParamLvlToDim]
: allocaBuffer(builder, loc, dimToLvl);
// Secondary and primary types encoding.
setTemplateTypes(stt);
// Finally, make note that initialization is complete.
assert(isInitialized() && "Initialization failed");
// And return `this` for method chaining.
return *this;
}
/// Generates a call to obtain the values array.
static Value genValuesCall(OpBuilder &builder, Location loc, ShapedType tp,
ValueRange ptr) {
SmallString<15> name{"sparseValues",
primaryTypeFunctionSuffix(tp.getElementType())};
return createFuncCall(builder, loc, name, tp, ptr, EmitCInterface::On)
.getResult(0);
}
/// Generates a call to release/delete a `SparseTensorCOO`.
static void genDelCOOCall(OpBuilder &builder, Location loc, Type elemTp,
Value coo) {
SmallString<21> name{"delSparseTensorCOO", primaryTypeFunctionSuffix(elemTp)};
createFuncCall(builder, loc, name, {}, coo, EmitCInterface::Off);
}
/// Generates a call to release/delete a `SparseTensorIterator`.
static void genDelIteratorCall(OpBuilder &builder, Location loc, Type elemTp,
Value iter) {
SmallString<26> name{"delSparseTensorIterator",
primaryTypeFunctionSuffix(elemTp)};
createFuncCall(builder, loc, name, {}, iter, EmitCInterface::Off);
}
/// Generates a call that adds one element to a coordinate scheme.
/// In particular, this generates code like the following:
/// val = a[i1,..,ik];
/// if val != 0
/// t->add(&val, [i1,..,ik], [p1,..,pk]);
static void genAddEltCall(OpBuilder &builder, Location loc, Type eltType,
Value lvlCOO, Value valPtr, Value dimCoords,
Value dimToLvl) {
SmallString<9> name{"addElt", primaryTypeFunctionSuffix(eltType)};
SmallVector<Value, 4> params{lvlCOO, valPtr, dimCoords, dimToLvl};
Type pTp = getOpaquePointerType(builder);
createFuncCall(builder, loc, name, pTp, params, EmitCInterface::On);
}
/// Generates a call to `iter->getNext()`. If there is a next element,
/// then it is copied into the out-parameters `coords` and `elemPtr`,
/// and the return value is true. If there isn't a next element, then
/// the return value is false.
///
/// The `coords` argument uses the same coordinate-space as the `iter`
/// (which can be either dim- or lvl-coords, depending on context).
static Value genGetNextCall(OpBuilder &builder, Location loc, Value iter,
Value coords, Value elemPtr) {
Type elemTp = cast<ShapedType>(elemPtr.getType()).getElementType();
SmallString<10> name{"getNext", primaryTypeFunctionSuffix(elemTp)};
SmallVector<Value, 3> params{iter, coords, elemPtr};
Type i1 = builder.getI1Type();
return createFuncCall(builder, loc, name, i1, params, EmitCInterface::On)
.getResult(0);
}
/// Loads the value stored in `elemPtr`, and stores it at the coordinates
/// `cvs` into a dense tensor created by `allocDenseTensor`.
static void insertScalarIntoDenseTensor(OpBuilder &builder, Location loc,
Value elemPtr, Value tensor,
ValueRange cvs) {
Value elemV = builder.create<memref::LoadOp>(loc, elemPtr);
builder.create<memref::StoreOp>(loc, elemV, tensor, cvs);
}
/// Determine if the runtime library supports direct conversion to the
/// given target `dimTypes`.
static bool canUseDirectConversion(ArrayRef<DimLevelType> dimTypes) {
bool alreadyCompressed = false;
for (const auto dlt : dimTypes) {
if (isCompressedDLT(dlt)) {
if (alreadyCompressed)
return false; // Multiple compressed dimensions not yet supported.
alreadyCompressed = true;
} else if (isDenseDLT(dlt)) {
if (alreadyCompressed)
return false; // Dense after Compressed not yet supported.
} else if (isSingletonDLT(dlt)) {
// Direct conversion doesn't have any particular problems with
// singleton after compressed.
} else { // TODO: investigate
return false;
}
}
return true;
}
/// Helper method to translate coordinates during a reshaping operation.
/// TODO: provide as general utility to MLIR at large?
static void reshapeCoords(Location loc, OpBuilder &builder,
ArrayRef<ReassociationIndices> reassociation,
ValueRange srcSizes, Value srcCoords,
ValueRange dstSizes, Value dstCoords) {
const auto srcCvs = loadAll(builder, loc, srcSizes.size(), srcCoords);
SmallVector<Value> dstCvs;
reshapeCvs(builder, loc, reassociation, srcSizes, srcCvs, dstSizes, dstCvs);
assert(dstCvs.size() == dstSizes.size());
storeAll(builder, loc, dstCoords, dstCvs);
}
/// Generate code for a general sparse to sparse reshaping operation.
/// Note that unlike dense reshaping (which can be done with a "cheap"
/// change of view), sparse reshaping is currently done with actual
/// data shuffling.
///
/// TODO: proportional to nnz, but still a lot of data movement
/// https://github.com/llvm/llvm-project/issues/56477
///
/// iter = src->toCOO();
/// coo = newSparseCOO()
/// while (elem = iter->getNext()) {
/// coo->add(reshape(elem.coords), elem.value)
/// }
/// s = newSparseTensor(coo)
template <typename ReshapeOp>
static LogicalResult
genSparse2SparseReshape(ReshapeOp op, typename ReshapeOp::Adaptor adaptor,
ConversionPatternRewriter &rewriter) {
Location loc = op.getLoc();
const auto srcTp = getSparseTensorType(op.getSrc());
const auto dstTp = getSparseTensorType(op.getResult());
if (!srcTp.hasEncoding() || !dstTp.hasEncoding())
return failure();
Type elemTp = srcTp.getElementType();
assert(elemTp == dstTp.getElementType() &&
"reshape should not change element type");
// Start an iterator over the source tensor (in coordinate order).
SmallVector<Value> srcDimSizes =
getDimSizes(rewriter, loc, srcTp, adaptor.getSrc());
NewCallParams params(rewriter, loc);
Value iter = params.genBuffers(srcTp.withoutDimToLvl(), srcDimSizes)
.genNewCall(Action::kToIterator, adaptor.getSrc());
// Start a new COO for the destination tensor.
SmallVector<Value> dstDimSizes;
if (dstTp.hasStaticDimShape())
// Static "shapes" are in fact "sizes".
fillDimShape(rewriter, loc, dstTp, dstDimSizes);
else
genReshapeDstShape(rewriter, loc, dstDimSizes, srcDimSizes,
dstTp.getDimShape(), op.getReassociationIndices());
const Value coo =
params.genBuffers(dstTp, dstDimSizes).genNewCall(Action::kEmptyCOO);
const Value dstDimToLvl = params.getDimToLvl();
// Construct a while loop over the iterator.
const Type iTp = rewriter.getIndexType();
const Value srcDimCoords = genAlloca(rewriter, loc, srcTp.getDimRank(), iTp);
const Value dstDimCoords = genAlloca(rewriter, loc, dstTp.getDimRank(), iTp);
const Value elemPtr = genAllocaScalar(rewriter, loc, elemTp);
const SmallVector<Value> noArgs;
const SmallVector<Type> noTypes;
auto whileOp = rewriter.create<scf::WhileOp>(loc, noTypes, noArgs);
Block *before = rewriter.createBlock(&whileOp.getBefore(), {}, noTypes);
rewriter.setInsertionPointToEnd(before);
Value cond = genGetNextCall(rewriter, loc, iter, srcDimCoords, elemPtr);
rewriter.create<scf::ConditionOp>(loc, cond, before->getArguments());
// Translate coordinates from source to target and insert. Note that we do
// not need to store the value in elemPtr, as the value is still there.
Block *after = rewriter.createBlock(&whileOp.getAfter(), {}, noTypes);
rewriter.setInsertionPointToStart(after);
// We probably don't need these assertions, but better safe than sorry.
assert(srcTp.getDimRank() == srcDimSizes.size());
assert(dstTp.getDimRank() == dstDimSizes.size());
reshapeCoords(loc, rewriter, op.getReassociationIndices(), srcDimSizes,
srcDimCoords, dstDimSizes, dstDimCoords);
genAddEltCall(rewriter, loc, elemTp, coo, elemPtr, dstDimCoords, dstDimToLvl);
rewriter.create<scf::YieldOp>(loc);
// Final call to construct sparse tensor storage and free temporary resources.
rewriter.setInsertionPointAfter(whileOp);
Value dst = params.genNewCall(Action::kFromCOO, coo);
genDelCOOCall(rewriter, loc, elemTp, coo);
genDelIteratorCall(rewriter, loc, elemTp, iter);
rewriter.replaceOp(op, dst);
return success();
}
// Generates a while loop that iterates over the COO list extracted
// from `t`, using `bodyBuilder` to build the loop body.
// while (elem = coo->getNext()) {
// bodyBuilder
// }
// TODO: It can be used by other operators (ReshapeOp, ConvertOP) conversion to
// reduce code repetition!
// TODO: rename to `genSparseIterationLoop`?
static void genSparseCOOIterationLoop(
ConversionPatternRewriter &rewriter, Location loc, Value t,
SparseTensorType stt,
function_ref<void(OpBuilder &, Location, Value, Value)> bodyBuilder) {
assert(stt.hasEncoding() &&
"Generating Sparse Tensor COO Loop on a Dense Tensor!");
const Dimension dimRank = stt.getDimRank();
const Type elemTp = stt.getElementType();
// Start an iterator over the tensor (in coordinate order).
const auto noPerm = stt.withoutDimToLvl();
SmallVector<Value> dimSizes = getDimSizes(rewriter, loc, noPerm, t);
Value iter = NewCallParams(rewriter, loc)
.genBuffers(noPerm, dimSizes)
.genNewCall(Action::kToIterator, t);
// Construct a while loop over the iterator.
const Type iTp = rewriter.getIndexType();
Value srcDimCoords = genAlloca(rewriter, loc, dimRank, iTp);
Value elemPtr = genAllocaScalar(rewriter, loc, elemTp);
const SmallVector<Value> noArgs;
const SmallVector<Type> noTypes;
auto whileOp = rewriter.create<scf::WhileOp>(loc, noTypes, noArgs);
Block *before = rewriter.createBlock(&whileOp.getBefore(), {}, noTypes);
rewriter.setInsertionPointToEnd(before);
Value cond = genGetNextCall(rewriter, loc, iter, srcDimCoords, elemPtr);
rewriter.create<scf::ConditionOp>(loc, cond, before->getArguments());
Block *after = rewriter.createBlock(&whileOp.getAfter(), {}, noTypes);
rewriter.setInsertionPointToStart(after);
const bool hasDenseDim =
llvm::any_of(stt.getEncoding().getLvlTypes(), isDenseDLT);
if (hasDenseDim) {
Value elemV = rewriter.create<memref::LoadOp>(loc, elemPtr);
Value isZero = genIsNonzero(rewriter, loc, elemV);
scf::IfOp ifOp = rewriter.create<scf::IfOp>(loc, isZero, /*else*/ false);
rewriter.setInsertionPointToStart(&ifOp.getThenRegion().front());
}
// Callback here to build loop body.
bodyBuilder(rewriter, loc, srcDimCoords, elemPtr);
// Exit the scope from the IfOp.
if (hasDenseDim)
rewriter.setInsertionPointToEnd(after);
rewriter.create<scf::YieldOp>(loc);
// Finish generating loop.
rewriter.setInsertionPointAfter(whileOp);
// Free memory for iterator.
genDelIteratorCall(rewriter, loc, elemTp, iter);
}
// Generate loop that iterates over a dense tensor.
// for i1 in dim1
// ..
// for ik in dimk
// val = a[i1,..,ik]
// if val != 0
// bodyBuilder(v, [i1, ..., ik])
// TODO: It can be used by other operators (ReshapeOp, ConvertOP) conversion to
// reduce code repetition!
static void genDenseTensorIterationLoop(
ConversionPatternRewriter &rewriter, Location loc, Value t,
SparseTensorType stt,
function_ref<void(OpBuilder &, Location, ValueRange)> bodyBuilder) {
assert(!stt.hasEncoding() &&
"Generating Dense Tensor Loop on a Sparse Tensor!");
const Dimension dimRank = stt.getDimRank();
Value zero = constantIndex(rewriter, loc, 0);
Value one = constantIndex(rewriter, loc, 1);
SmallVector<Value> lo;
SmallVector<Value> hi;
SmallVector<Value> st;
// Fill out loop iteration information.
for (Dimension d = 0; d < dimRank; d++) {
lo.push_back(zero);
hi.push_back(linalg::createOrFoldDimOp(rewriter, loc, t, d));
st.push_back(one);
}
scf::buildLoopNest(rewriter, loc, lo, hi, st, {},
[&](OpBuilder &builder, Location loc, ValueRange ivs,
ValueRange args) -> scf::ValueVector {
// Invoke callback to build the body of the loop.
bodyBuilder(builder, loc, ivs);
return {};
});
}
//===----------------------------------------------------------------------===//
// Conversion rules.
//===----------------------------------------------------------------------===//
/// Sparse conversion rule for returns.
class SparseReturnConverter : public OpConversionPattern<func::ReturnOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(func::ReturnOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
rewriter.replaceOpWithNewOp<func::ReturnOp>(op, adaptor.getOperands());
return success();
}
};
/// Sparse conversion rule for accessing dimension-sizes.
class SparseTensorToDimSizeConverter
: public OpConversionPattern<tensor::DimOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(tensor::DimOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
const auto stt = getSparseTensorType(op.getSource());
// Only rewrite sparse DimOp.
if (!stt.hasEncoding())
return failure();
// Only rewrite DimOp with constant index.
std::optional<int64_t> dim = op.getConstantIndex();
if (!dim)
return failure();
// Generate the call.
Value src = adaptor.getOperands()[0];
rewriter.replaceOp(
op, createOrFoldDimCall(rewriter, op->getLoc(), stt, src, *dim));
return success();
}
};
/// Sparse conversion rule for trivial tensor casts.
class SparseCastConverter : public OpConversionPattern<tensor::CastOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(tensor::CastOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
// Only rewrite identically annotated source/dest.
auto encDst = getSparseTensorEncoding(op.getType());
auto encSrc = getSparseTensorEncoding(op.getSource().getType());
if (!encDst || encDst != encSrc)
return failure();
rewriter.replaceOp(op, adaptor.getOperands());
return success();
}
};
/// Sparse conversion rule for a reshape operator.
template <typename ReshapeOp>
class SparseReshapeConverter : public OpConversionPattern<ReshapeOp> {
public:
using OpAdaptor = typename OpConversionPattern<ReshapeOp>::OpAdaptor;
using OpConversionPattern<ReshapeOp>::OpConversionPattern;
LogicalResult
matchAndRewrite(ReshapeOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
return genSparse2SparseReshape(op, adaptor, rewriter);
}
};
/// Sparse conversion rule for the new operator.
class SparseTensorNewConverter : public OpConversionPattern<NewOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(NewOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
Location loc = op.getLoc();
const auto stt = getSparseTensorType(op);
if (!stt.hasEncoding())
return failure();
const Dimension dimRank = stt.getDimRank();
const Level lvlRank = stt.getLvlRank();
// Construct the dimShape.
SmallVector<Value> dimShapeValues = getDimShape(rewriter, loc, stt);
Value dimShapeBuffer = allocaBuffer(rewriter, loc, dimShapeValues);
// Allocate `SparseTensorReader` and perform all initial setup that
// does not depend on lvlSizes (nor dimToLvl, lvlToDim, etc).
Type opaqueTp = getOpaquePointerType(rewriter);
Value valTp =
constantPrimaryTypeEncoding(rewriter, loc, stt.getElementType());
Value reader =
createFuncCall(rewriter, loc, "createCheckedSparseTensorReader",
opaqueTp,
{adaptor.getOperands()[0], dimShapeBuffer, valTp},
EmitCInterface::On)
.getResult(0);
// Construct the lvlSizes. If the dimShape is static, then it's
// identical to dimSizes: so we can compute lvlSizes entirely at
// compile-time. If dimShape is dynamic, then we'll need to generate
// code for computing lvlSizes from the `reader`'s actual dimSizes.
//
// TODO: For now we're still assuming `dimToLvl` is a permutation.
// But since we're computing lvlSizes here (rather than in the runtime),
// we can easily generalize that simply by adjusting this code.
//
// FIXME: reduce redundancy vs `NewCallParams::genBuffers`.
Value dimSizesBuffer;
if (stt.hasDynamicDimShape()) {
Type indexTp = rewriter.getIndexType();
auto memTp = MemRefType::get({ShapedType::kDynamic}, indexTp);
dimSizesBuffer =
createFuncCall(rewriter, loc, "getSparseTensorReaderDimSizes", memTp,
reader, EmitCInterface::On)
.getResult(0);
}
Value lvlSizesBuffer;
Value lvlToDimBuffer;
Value dimToLvlBuffer;
if (!stt.isIdentity()) {
const auto dimToLvl = stt.getDimToLvl();
assert(dimToLvl.isPermutation() && "Got non-permutation");
// We preinitialize `dimToLvlValues` since we need random-access writing.
// And we preinitialize the others for stylistic consistency.
SmallVector<Value> lvlSizeValues(lvlRank);
SmallVector<Value> lvlToDimValues(lvlRank);
SmallVector<Value> dimToLvlValues(dimRank);
for (Level l = 0; l < lvlRank; l++) {
// The `d`th source variable occurs in the `l`th result position.
Dimension d = dimToLvl.getDimPosition(l);
Value lvl = constantIndex(rewriter, loc, l);
Value dim = constantIndex(rewriter, loc, d);
dimToLvlValues[d] = lvl;
lvlToDimValues[l] = dim;
lvlSizeValues[l] =
stt.isDynamicDim(d)
? rewriter.create<memref::LoadOp>(loc, dimSizesBuffer, dim)
: dimShapeValues[d];
}
lvlSizesBuffer = allocaBuffer(rewriter, loc, lvlSizeValues);
lvlToDimBuffer = allocaBuffer(rewriter, loc, lvlToDimValues);
dimToLvlBuffer = allocaBuffer(rewriter, loc, dimToLvlValues);
} else {
// The `SparseTensorType` ctor already ensures `dimRank == lvlRank`
// when `isIdentity`; so no need to re-assert it here.
SmallVector<Value> iotaValues;
iotaValues.reserve(lvlRank);
for (Level l = 0; l < lvlRank; l++)
iotaValues.push_back(constantIndex(rewriter, loc, l));
lvlSizesBuffer = dimSizesBuffer ? dimSizesBuffer : dimShapeBuffer;
dimToLvlBuffer = lvlToDimBuffer = allocaBuffer(rewriter, loc, iotaValues);
}
// Use the `reader` to parse the file.
SmallVector<Value, 8> params{
reader,
lvlSizesBuffer,
genLvlTypesBuffer(rewriter, loc, stt),
lvlToDimBuffer,
dimToLvlBuffer,
constantPosTypeEncoding(rewriter, loc, stt.getEncoding()),
constantCrdTypeEncoding(rewriter, loc, stt.getEncoding()),
valTp};
Value tensor = createFuncCall(rewriter, loc, "newSparseTensorFromReader",
opaqueTp, params, EmitCInterface::On)
.getResult(0);
// Free the memory for `reader`.
createFuncCall(rewriter, loc, "delSparseTensorReader", {}, {reader},
EmitCInterface::Off);
rewriter.replaceOp(op, tensor);
return success();
}
};
/// Sparse conversion rule for the alloc operator.
class SparseTensorAllocConverter
: public OpConversionPattern<bufferization::AllocTensorOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(bufferization::AllocTensorOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
if (op.getCopy())
return rewriter.notifyMatchFailure(op,
"sparse tensor copy not implemented");
Location loc = op.getLoc();
const auto stt = getSparseTensorType(op);
if (!stt.hasEncoding())
return failure();
// Gather all dimension sizes as SSA values.
const Dimension dimRank = stt.getDimRank();
SmallVector<Value> dimSizes;
dimSizes.reserve(dimRank);
unsigned operandCtr = 0;
for (Dimension d = 0; d < dimRank; ++d) {
dimSizes.push_back(
stt.isDynamicDim(d)
? adaptor.getOperands()[operandCtr++]
: constantIndex(rewriter, loc, op.getStaticSize(d)));
}
// Generate the call to construct empty tensor. The sizes are
// explicitly defined by the arguments to the alloc operator.
rewriter.replaceOp(op, NewCallParams(rewriter, loc)
.genBuffers(stt, dimSizes)
.genNewCall(Action::kEmpty));
return success();
}
};
/// Sparse conversion rule for the convert operator.
class SparseTensorConvertConverter : public OpConversionPattern<ConvertOp> {
public:
using OpConversionPattern::OpConversionPattern;
SparseTensorConvertConverter(MLIRContext *context,
SparseTensorConversionOptions o)
: OpConversionPattern<ConvertOp>(context), options(o) {}
SparseTensorConvertConverter(TypeConverter &typeConv, MLIRContext *context,
SparseTensorConversionOptions o)
: OpConversionPattern<ConvertOp>(typeConv, context), options(o) {}
LogicalResult
matchAndRewrite(ConvertOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
const Location loc = op->getLoc();
const auto srcTp = getSparseTensorType(op.getSource());
const auto dstTp = getSparseTensorType(op);
if (!srcTp.hasEncoding() && !dstTp.hasEncoding())
return failure();
const Dimension dimRank = srcTp.getDimRank();
const Type elemTp = srcTp.getElementType();
const Value src = adaptor.getOperands()[0];
if (srcTp.hasEncoding() && dstTp.hasEncoding()) {
const auto srcEnc = srcTp.getEncoding();
const auto dstEnc = dstTp.getEncoding();
// This is a sparse => sparse conversion, which is handled as follows:
// t = src->toCOO(); ; src to COO in dst order
// dst = newSparseTensor(t)
// Using the coordinate scheme as an intermediate does not always
// yield the fastest conversion but avoids the need for a full
// O(N^2) conversion matrix.
if (dstEnc == srcEnc) {
rewriter.replaceOp(op, adaptor.getOperands()); // hidden nop cast
return success();
}
NewCallParams params(rewriter, loc);
SmallVector<Value> dimSizes = getDimSizes(rewriter, loc, srcTp, src);
bool useDirectConversion;
switch (options.sparseToSparseStrategy) {
case SparseToSparseConversionStrategy::kViaCOO:
useDirectConversion = false;
break;
case SparseToSparseConversionStrategy::kDirect:
useDirectConversion = true;
assert(canUseDirectConversion(dstEnc.getLvlTypes()) &&
"Unsupported target for direct sparse-to-sparse conversion");
break;
case SparseToSparseConversionStrategy::kAuto:
useDirectConversion = canUseDirectConversion(dstEnc.getLvlTypes());
break;
}
if (useDirectConversion) {
rewriter.replaceOp(
op, params.genBuffers(srcTp.withEncoding(dstEnc), dimSizes)
.genNewCall(Action::kSparseToSparse, src));
} else { // use via-COO conversion.
// Set up encoding with right mix of src and dst so that the two
// method calls can share most parameters, while still providing
// the correct sparsity information to either of them.
const auto mixedEnc =
dstEnc.withBitWidths(srcEnc.getPosWidth(), srcEnc.getCrdWidth());
// TODO: This is the only place where `kToCOO` (or `kToIterator`)
// is called with a non-identity permutation. Is there any clean
// way to push the permutation over to the `kFromCOO` side instead?
Value coo = params.genBuffers(srcTp.withEncoding(mixedEnc), dimSizes)
.genNewCall(Action::kToCOO, src);
Value dst = params.setTemplateTypes(srcTp.withEncoding(dstEnc))
.genNewCall(Action::kFromCOO, coo);
genDelCOOCall(rewriter, loc, elemTp, coo);
rewriter.replaceOp(op, dst);
}
return success();
}
if (srcTp.hasEncoding() && !dstTp.hasEncoding()) {
const auto srcEnc = srcTp.getEncoding();
// This is sparse => dense conversion, which is handled as follows:
// dst = new Tensor(0);
// iter = new SparseTensorIterator(src);
// while (elem = iter->getNext()) {
// dst[elem.coords] = elem.value;
// }
// delete iter;
//
// Fabricate a no-permutation encoding for NewCallParams
// The position/coordinate types must be those of `src`.
// The dimLevelTypes aren't actually used by Action::kToIterator.
const auto dstEnc = SparseTensorEncodingAttr::get(
op->getContext(),
SmallVector<DimLevelType>(dimRank, DimLevelType::Dense), AffineMap(),
srcEnc.getPosWidth(), srcEnc.getCrdWidth());
SmallVector<Value> dimSizes = getDimSizes(rewriter, loc, srcTp, src);
Value iter = NewCallParams(rewriter, loc)
.genBuffers(dstTp.withEncoding(dstEnc), dimSizes)
.genNewCall(Action::kToIterator, src);
const Type iTp = rewriter.getIndexType();
Value dimCoords = genAlloca(rewriter, loc, dimRank, iTp);
Value elemPtr = genAllocaScalar(rewriter, loc, elemTp);
Block *insertionBlock = rewriter.getInsertionBlock();
// TODO: Dense buffers should be allocated/deallocated via the callback
// in BufferizationOptions.
Value dst = allocDenseTensor(rewriter, loc, dstTp, dimSizes);
const SmallVector<Value> noArgs;
const SmallVector<Type> noTypes;
auto whileOp = rewriter.create<scf::WhileOp>(loc, noTypes, noArgs);
Block *before = rewriter.createBlock(&whileOp.getBefore(), {}, noTypes);
rewriter.setInsertionPointToEnd(before);
Value cond = genGetNextCall(rewriter, loc, iter, dimCoords, elemPtr);
rewriter.create<scf::ConditionOp>(loc, cond, before->getArguments());
Block *after = rewriter.createBlock(&whileOp.getAfter(), {}, noTypes);
rewriter.setInsertionPointToStart(after);
const auto dcvs = loadAll(rewriter, loc, dimRank, dimCoords);
insertScalarIntoDenseTensor(rewriter, loc, elemPtr, dst, dcvs);
rewriter.create<scf::YieldOp>(loc);
rewriter.setInsertionPointAfter(whileOp);
genDelIteratorCall(rewriter, loc, elemTp, iter);
rewriter.replaceOpWithNewOp<bufferization::ToTensorOp>(
op, dstTp.getRankedTensorType(), dst);
// Deallocate the buffer.
if (bufferization::allocationDoesNotEscape(op->getOpResult(0))) {
rewriter.setInsertionPoint(insertionBlock->getTerminator());
deallocDenseTensor(rewriter, loc, dst);
}
return success();
}
assert(!srcTp.hasEncoding() && dstTp.hasEncoding());
// This is a dense => sparse conversion or a sparse constant in COO =>
// sparse conversion, which is handled as follows:
// t = newSparseCOO()
// ...code to fill the COO tensor t...
// s = newSparseTensor(t)
//
// To fill the COO tensor from a dense tensor:
// for i1 in dim1
// ..
// for ik in dimk
// val = a[i1,..,ik]
// if val != 0
// t->add(val, [i1,..,ik], [p1,..,pk])
//
// To fill the COO tensor from a sparse constant in COO format:
// for i in range(NNZ)
// val = values[i]
// [i1,..,ik] = coordinates[i]
// t->add(val, [i1,..,ik], [p1,..,pk])
//
// Note that the dense tensor traversal code is actually implemented
// using MLIR IR to avoid having to expose too much low-level
// memref traversal details to the runtime support library.
// Also note that the code below only generates the "new" ops and
// the loop-nest per se; whereas the entire body of the innermost
// loop is generated by genAddElt().
SmallVector<Value> dimSizes;
sizesFromSrc(rewriter, dimSizes, loc, src);
NewCallParams params(rewriter, loc);
Value coo =
params.genBuffers(dstTp, dimSizes).genNewCall(Action::kEmptyCOO);
const Type iTp = rewriter.getIndexType();
Value dimCoords = genAlloca(rewriter, loc, dimRank, iTp);
Value dimToLvl = params.getDimToLvl();
Value elemPtr = genAllocaScalar(rewriter, loc, elemTp);
genDenseTensorOrSparseConstantIterLoop(
rewriter, loc, src, dimRank,
[&](OpBuilder &builder, Location loc, Value val, ValueRange dcvs) {
assert(dcvs.size() == static_cast<size_t>(dimRank));
storeAll(builder, loc, dimCoords, dcvs);
builder.create<memref::StoreOp>(loc, val, elemPtr);
genAddEltCall(builder, loc, elemTp, coo, elemPtr, dimCoords,
dimToLvl);
});
// Final call to construct sparse tensor storage.
Value dst = params.genNewCall(Action::kFromCOO, coo);
genDelCOOCall(rewriter, loc, elemTp, coo);
rewriter.replaceOp(op, dst);
return success();
}
private:
/// Options to control sparse code generation.
SparseTensorConversionOptions options;
};
/// Sparse conversion rule for the dealloc operator.
class SparseTensorDeallocConverter
: public OpConversionPattern<bufferization::DeallocTensorOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(bufferization::DeallocTensorOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
if (!getSparseTensorType(op.getTensor()).hasEncoding())
return failure();
StringRef name = "delSparseTensor";
createFuncCall(rewriter, op->getLoc(), name, {}, adaptor.getOperands(),
EmitCInterface::Off);
rewriter.eraseOp(op);
return success();
}
};
/// Sparse conversion rule for position accesses.
class SparseTensorToPositionsConverter
: public OpConversionPattern<ToPositionsOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(ToPositionsOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
Type resTp = op.getType();
Type posTp = cast<ShapedType>(resTp).getElementType();
SmallString<17> name{"sparsePositions", overheadTypeFunctionSuffix(posTp)};
Value lvl = constantIndex(rewriter, op->getLoc(), op.getLevel());
replaceOpWithFuncCall(rewriter, op, name, resTp, {adaptor.getTensor(), lvl},
EmitCInterface::On);
return success();
}
};
/// Sparse conversion rule for coordinate accesses.
class SparseTensorToCoordinatesConverter
: public OpConversionPattern<ToCoordinatesOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(ToCoordinatesOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
// TODO: use `SparseTensorType::getCrdType` instead.
Type resType = op.getType();
const Type crdTp = cast<ShapedType>(resType).getElementType();
SmallString<19> name{"sparseCoordinates",
overheadTypeFunctionSuffix(crdTp)};
Location loc = op->getLoc();
Value lvl = constantIndex(rewriter, loc, op.getLevel());
// The function returns a MemRef without a layout.
MemRefType callRetType = get1DMemRefType(crdTp, false);
SmallVector<Value> operands{adaptor.getTensor(), lvl};
auto fn = getFunc(op->getParentOfType<ModuleOp>(), name, callRetType,
operands, EmitCInterface::On);
Value callRet =
rewriter.create<func::CallOp>(loc, callRetType, fn, operands)
.getResult(0);
// Cast the MemRef type to the type expected by the users, though these
// two types should be compatible at runtime.
if (resType != callRetType)
callRet = rewriter.create<memref::CastOp>(loc, resType, callRet);
rewriter.replaceOp(op, callRet);
return success();
}
};
/// Sparse conversion rule for value accesses.
class SparseTensorToValuesConverter : public OpConversionPattern<ToValuesOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(ToValuesOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
auto resType = cast<ShapedType>(op.getType());
rewriter.replaceOp(op, genValuesCall(rewriter, op.getLoc(), resType,
adaptor.getOperands()));
return success();
}
};
/// Sparse conversion rule for number of entries operator.
class SparseNumberOfEntriesConverter
: public OpConversionPattern<NumberOfEntriesOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(NumberOfEntriesOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
Location loc = op.getLoc();
// Query values array size for the actually stored values size.
Type eltType = cast<ShapedType>(op.getTensor().getType()).getElementType();
auto resTp = MemRefType::get({ShapedType::kDynamic}, eltType);
Value values = genValuesCall(rewriter, loc, resTp, adaptor.getOperands());
rewriter.replaceOpWithNewOp<memref::DimOp>(op, values,
constantIndex(rewriter, loc, 0));
return success();
}
};
/// Sparse conversion rule for tensor rematerialization.
class SparseTensorLoadConverter : public OpConversionPattern<LoadOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(LoadOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
if (op.getHasInserts()) {
// Finalize any pending insertions.
StringRef name = "endInsert";
createFuncCall(rewriter, op->getLoc(), name, {}, adaptor.getOperands(),
EmitCInterface::Off);
}
rewriter.replaceOp(op, adaptor.getOperands());
return success();
}
};
/// Sparse conversion rule for the insertion operator.
class SparseTensorInsertConverter : public OpConversionPattern<InsertOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(InsertOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
// Note that the current regime only allows for strict lexicographic
// coordinate order. All values are passed by reference through stack
// allocated memrefs.
Location loc = op->getLoc();
const auto stt = getSparseTensorType(op.getTensor());
const auto elemTp = stt.getElementType();
const Level lvlRank = stt.getLvlRank();
auto lvlCoords = genAlloca(rewriter, loc, lvlRank, rewriter.getIndexType());
auto vref = genAllocaScalar(rewriter, loc, elemTp);
storeAll(rewriter, loc, lvlCoords, adaptor.getLvlCoords());
rewriter.create<memref::StoreOp>(loc, adaptor.getValue(), vref);
SmallString<12> name{"lexInsert", primaryTypeFunctionSuffix(elemTp)};
createFuncCall(rewriter, loc, name, {},
{adaptor.getTensor(), lvlCoords, vref}, EmitCInterface::On);
rewriter.replaceOp(op, adaptor.getTensor());
return success();
}
};
/// Sparse conversion rule for the expand operator.
class SparseTensorExpandConverter : public OpConversionPattern<ExpandOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(ExpandOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
Location loc = op->getLoc();
const auto srcTp = getSparseTensorType(op.getTensor());
Type eltType = srcTp.getElementType();
Type boolType = rewriter.getIntegerType(1);
Type idxType = rewriter.getIndexType();
// All initialization should be done on entry of the loop nest.
rewriter.setInsertionPointAfter(op.getTensor().getDefiningOp());
// Get the cardinality of valid coordinates for the innermost level.
Value sz = createOrFoldLvlCall(rewriter, loc, srcTp, adaptor.getTensor(),
srcTp.getLvlRank() - 1);
// Allocate temporary buffers for values, filled-switch, and coordinates.
// We do not use stack buffers for this, since the expanded size may
// be rather large (as it envelops a single expanded dense dimension).
Value values = genAlloc(rewriter, loc, sz, eltType);
Value filled = genAlloc(rewriter, loc, sz, boolType);
Value lastLvlCoordinates = genAlloc(rewriter, loc, sz, idxType);
Value zero = constantZero(rewriter, loc, idxType);
// Reset the values/filled-switch to all-zero/false. Note that this
// introduces an O(N) operation into the computation, but this reset
// operation is amortized over the innermost loops for the access
// pattern expansion. As noted in the operation doc, we would like
// to amortize this setup cost even between kernels.
rewriter.create<linalg::FillOp>(
loc, ValueRange{constantZero(rewriter, loc, eltType)},
ValueRange{values});
rewriter.create<linalg::FillOp>(
loc, ValueRange{constantZero(rewriter, loc, boolType)},
ValueRange{filled});
// Replace expansion op with these buffers and initial coordinate.
assert(op.getNumResults() == 4);
rewriter.replaceOp(op, {values, filled, lastLvlCoordinates, zero});
return success();
}
};
/// Sparse conversion rule for the compress operator.
class SparseTensorCompressConverter : public OpConversionPattern<CompressOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(CompressOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
Location loc = op->getLoc();
// Note that this method call resets the values/filled-switch back to
// all-zero/false by only iterating over the set elements, so the
// complexity remains proportional to the sparsity of the expanded
// access pattern.
Value values = adaptor.getValues();
Value filled = adaptor.getFilled();
Value added = adaptor.getAdded();
Value count = adaptor.getCount();
Value tensor = adaptor.getTensor();
const auto stt = getSparseTensorType(op.getTensor());
const Type elemTp = stt.getElementType();
const Level lvlRank = stt.getLvlRank();
auto lvlCoords = genAlloca(rewriter, loc, lvlRank, rewriter.getIndexType());
storeAll(rewriter, loc, lvlCoords, adaptor.getLvlCoords());
SmallString<12> name{"expInsert", primaryTypeFunctionSuffix(elemTp)};
createFuncCall(rewriter, loc, name, {},
{tensor, lvlCoords, values, filled, added, count},
EmitCInterface::On);
rewriter.replaceOp(op, adaptor.getTensor());
// Deallocate the buffers on exit of the loop nest.
Operation *parent = getTop(op);
rewriter.setInsertionPointAfter(parent);
rewriter.create<memref::DeallocOp>(loc, values);
rewriter.create<memref::DeallocOp>(loc, filled);
rewriter.create<memref::DeallocOp>(loc, added);
return success();
}
};
/// Sparse conversion rule for the concatenate operator.
class SparseTensorConcatConverter : public OpConversionPattern<ConcatenateOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(ConcatenateOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
// The conversion works as follow:
// (1). When output is sparse and not all dims are dense, and mix of inputs:
// a_sparse = concat (b_dense, c_sparse, ....)
// =>
// coo_for_a = newSparseCOO(shapeOf(a))
// for i, j, k // dense input
// coo->add(adjustForOffset(i,j,k), b[i,j,k])
//
// for elem in sparse_input
// coo->add(adjustForOffset(elem.coords), elem.value)
// ...
// a = newSparseTensor(coo_for_a)
// return a
//
// (2). When output is dense or annotated all dense, and mix of inputs:
// a_dense = concat (b_dense, c_sparse, ....)
// =>
// a = malloc(shapeOf(a)) or newSparseAllDense(shapeOf(a))
// for i, j, k // dense input
// a[ adjustForOffset(i,j,k) ] = b[i,j,k]
//
// for elem in sparse_input
// a[ adjustForOffset(elem.coords) ] = elem.value
// return a
Location loc = op.getLoc();
const auto dstTp = getSparseTensorType(op);
const auto dstEnc = dstTp.getEncoding();
const Type elemTp = dstTp.getElementType();
const Dimension concatDim = op.getDimension();
const Dimension dimRank = dstTp.getDimRank();
Value dst; // destination tensor
Value dstDimToLvl; // destination tensor permutation (if sparse out)
// A pointer to the value being inserted (if dense => sparse)
Value elemPtr;
// Memory that holds the dim-coords for destination tensor (if sparse out)
Value dstDimCoords;
// The offset applied to the dimension to be concated (starting from 0)
Value offset = constantIndex(rewriter, loc, 0);
SmallVector<Value> dimSizes;
concatDimSizesFromInputs(rewriter, loc, dstTp, op.getInputs(), concatDim,
dimSizes);
NewCallParams params(rewriter, loc);
const bool allDense = dstTp.hasEncoding() && dstTp.isAllDense();
Value dstTensor;
if (dstTp.hasEncoding()) {
// Start a new COO or an initialized annotated all dense sparse tensor.
dst = params.genBuffers(dstTp, dimSizes)
.genNewCall(allDense ? Action::kEmpty : Action::kEmptyCOO);
dstDimCoords = genAlloca(rewriter, loc, dimRank, rewriter.getIndexType());
if (allDense) {
dstTensor = dst;
// Get the values buffer for the sparse tensor and reshape it to the
// corresponding dense tensor shape.
dst = genValuesCall(rewriter, loc,
MemRefType::get({ShapedType::kDynamic}, elemTp),
{dst});
// Pass the `dstDimCoords` buffer for `reshapeValuesToLevels`
// to reuse for storing level-sizes (yes, "level-sizes").
// This is safe to do because `dstTp` is a dense-tensor type,
// and therefore lvlRank == dimRank.
dst = reshapeValuesToLevels(rewriter, loc, dstEnc, dimSizes, dst,
dstDimCoords);
} else {
dstDimToLvl = params.getDimToLvl();
elemPtr = genAllocaScalar(rewriter, loc, elemTp);
}
} else {
// TODO: Dense buffers should be allocated/deallocated via the callback
// in BufferizationOptions.
dst = allocDenseTensor(rewriter, loc, dstTp, dimSizes);
}
const Level lvlRank = dstTp.getLvlRank();
const auto dcvs2lcvs = [&](ValueRange dcvs) -> SmallVector<Value> {
SmallVector<Value> lcvs;
lcvs.reserve(lvlRank);
for (Level l = 0; l < lvlRank; l++)
// FIXME: `toOrigDim` is deprecated
lcvs.push_back(dcvs[toOrigDim(dstEnc, l)]);
return lcvs;
};
for (const auto &it : llvm::zip(op.getInputs(), adaptor.getInputs())) {
Value orignalOp = std::get<0>(it); // Input (with encoding) from Op
Value adaptedOp = std::get<1>(it); // Input (type converted) from adaptor
const auto srcTp = getSparseTensorType(orignalOp);
if (srcTp.hasEncoding()) {
genSparseCOOIterationLoop(
rewriter, loc, adaptedOp, srcTp,
[&](OpBuilder &builder, Location loc, Value dimCoords,
Value elemPtr) -> void {
const auto dcvs =
loadAll(builder, loc, dimRank, dimCoords, concatDim, offset);
if (dstTp.hasEncoding() && !allDense) {
// Case: sparse => sparse, except for annotated all dense.
storeAll(builder, loc, dstDimCoords, dcvs);
genAddEltCall(builder, loc, elemTp, dst, elemPtr, dstDimCoords,
dstDimToLvl);
} else {
// Case: sparse => dense, or annotated all dense.
const auto lcvs = allDense ? dcvs2lcvs(dcvs) : dcvs;
insertScalarIntoDenseTensor(builder, loc, elemPtr, dst, lcvs);
}
});
} else {
genDenseTensorIterationLoop(
rewriter, loc, adaptedOp, srcTp,
[&](OpBuilder &builder, Location loc, ValueRange dcvs) -> void {
if (dstTp.hasEncoding() && !allDense) {
// Case: dense => sparse, except for annotated all dense.
assert(dcvs.size() == static_cast<size_t>(dimRank));
storeAll(builder, loc, dstDimCoords, dcvs, concatDim, offset);
Value val = genValueForDense(builder, loc, adaptedOp, dcvs);
builder.create<memref::StoreOp>(loc, val, elemPtr);
genAddEltCall(builder, loc, elemTp, dst, elemPtr, dstDimCoords,
dstDimToLvl);
} else {
// Case: dense => dense, or annotated all dense.
Value val = genValueForDense(builder, loc, adaptedOp, dcvs);
// Despite the name, this isn't actually level-cvs until
// after the `dcvs2lcvs` call.
SmallVector<Value> lcvs(dcvs);
// Apply offset.
lcvs[concatDim] =
builder.create<arith::AddIOp>(loc, lcvs[concatDim], offset);
if (allDense)
lcvs = dcvs2lcvs(lcvs);
builder.create<memref::StoreOp>(loc, val, dst, lcvs);
}
});
}
// Accumulate offset.
// TODO: avoid calling sparseDimSize multiple times by caching the result!
Value curDim =
createOrFoldDimCall(rewriter, loc, srcTp, adaptedOp, concatDim);
offset = rewriter.create<arith::AddIOp>(loc, offset, curDim);
}
if (!dstTp.hasEncoding()) {
rewriter.replaceOpWithNewOp<bufferization::ToTensorOp>(
op, dstTp.getRankedTensorType(), dst);
} else if (allDense) {
rewriter.replaceOp(op, dstTensor);
} else {
// In sparse output case, the destination holds the COO.
Value coo = dst;
dst = params.genNewCall(Action::kFromCOO, coo);
// Release resources.
genDelCOOCall(rewriter, loc, elemTp, coo);
rewriter.replaceOp(op, dst);
}
return success();
}
};
/// Sparse conversion rule for the output operator.
class SparseTensorOutConverter : public OpConversionPattern<OutOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(OutOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
const Location loc = op->getLoc();
const auto srcTp = getSparseTensorType(op.getTensor());
// Convert to default permuted COO.
Value src = adaptor.getOperands()[0];
SmallVector<Value> dimSizes = getDimSizes(rewriter, loc, srcTp, src);
Value coo = NewCallParams(rewriter, loc)
.genBuffers(srcTp.withoutDimToLvl(), dimSizes)
.genNewCall(Action::kToCOO, src);
// Then output the tensor to external file with coordinates in the
// externally visible lexicographic coordinate order. A sort is
// required if the source was not in that order yet (note that the
// sort can be dropped altogether if external format does not care
// about the order at all, but here we assume it does).
const Value sort = constantI1(rewriter, loc, !srcTp.isIdentity());
SmallVector<Value, 3> outParams{coo, adaptor.getOperands()[1], sort};
const Type elemTp = srcTp.getElementType();
SmallString<18> name{"outSparseTensor", primaryTypeFunctionSuffix(elemTp)};
createFuncCall(rewriter, loc, name, {}, outParams, EmitCInterface::Off);
genDelCOOCall(rewriter, loc, elemTp, coo);
rewriter.eraseOp(op);
return success();
}
};
} // namespace
//===----------------------------------------------------------------------===//
// Sparse tensor type conversion into opaque pointer.
//===----------------------------------------------------------------------===//
mlir::SparseTensorTypeToPtrConverter::SparseTensorTypeToPtrConverter() {
addConversion([](Type type) { return type; });
addConversion(convertSparseTensorTypes);
}
//===----------------------------------------------------------------------===//
// Public method for populating conversion rules.
//===----------------------------------------------------------------------===//
/// Populates the given patterns list with conversion rules required for
/// the sparsification of linear algebra operations.
void mlir::populateSparseTensorConversionPatterns(
TypeConverter &typeConverter, RewritePatternSet &patterns,
const SparseTensorConversionOptions &options) {
patterns
.add<SparseReturnConverter, SparseTensorToDimSizeConverter,
SparseCastConverter, SparseTensorNewConverter,
SparseReshapeConverter<tensor::ExpandShapeOp>,
SparseReshapeConverter<tensor::CollapseShapeOp>,
SparseTensorConcatConverter, SparseTensorAllocConverter,
SparseTensorDeallocConverter, SparseTensorToPositionsConverter,
SparseTensorToCoordinatesConverter, SparseTensorToValuesConverter,
SparseNumberOfEntriesConverter, SparseTensorLoadConverter,
SparseTensorInsertConverter, SparseTensorExpandConverter,
SparseTensorCompressConverter, SparseTensorOutConverter>(
typeConverter, patterns.getContext());
patterns.add<SparseTensorConvertConverter>(typeConverter,
patterns.getContext(), options);
}