
This is a major step along the way towards the new STEA design. While a great deal of this patch is simple renaming, there are several significant changes as well. I've done my best to ensure that this patch retains the previous behavior and error-conditions, even though those are at odds with the eventual intended semantics of the `dimToLvl` mapping. Since the majority of the compiler does not yet support non-permutations, I've also added explicit assertions in places that previously had implicitly assumed it was dealing with permutations. Reviewed By: aartbik Differential Revision: https://reviews.llvm.org/D151505
1476 lines
64 KiB
C++
1476 lines
64 KiB
C++
//===- SparseTensorConversion.cpp - Sparse tensor primitives conversion ---===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// A pass that converts sparse tensor primitives into calls into a runtime
|
|
// support library. Sparse tensor types are converted into opaque pointers
|
|
// to the underlying sparse storage schemes. The use of opaque pointers
|
|
// together with runtime support library keeps the conversion relatively
|
|
// simple, but at the expense of IR opacity, which obscures opportunities
|
|
// for subsequent optimization of the IR. An alternative is provided by
|
|
// the SparseTensorCodegen pass.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "CodegenUtils.h"
|
|
|
|
#include "mlir/Dialect/Bufferization/IR/BufferizableOpInterface.h"
|
|
#include "mlir/Dialect/Bufferization/IR/Bufferization.h"
|
|
#include "mlir/Dialect/Linalg/Utils/Utils.h"
|
|
#include "mlir/Dialect/MemRef/IR/MemRef.h"
|
|
#include "mlir/Dialect/SCF/IR/SCF.h"
|
|
#include "mlir/Dialect/SparseTensor/IR/Enums.h"
|
|
#include "mlir/Dialect/SparseTensor/IR/SparseTensor.h"
|
|
#include "mlir/Dialect/SparseTensor/IR/SparseTensorType.h"
|
|
#include "mlir/Dialect/SparseTensor/Transforms/Passes.h"
|
|
#include "mlir/Dialect/Tensor/IR/Tensor.h"
|
|
#include "mlir/Transforms/DialectConversion.h"
|
|
|
|
using namespace mlir;
|
|
using namespace mlir::sparse_tensor;
|
|
|
|
namespace {
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Helper methods.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// Maps each sparse tensor type to an opaque pointer.
|
|
static std::optional<Type> convertSparseTensorTypes(Type type) {
|
|
if (getSparseTensorEncoding(type) != nullptr)
|
|
return LLVM::LLVMPointerType::get(IntegerType::get(type.getContext(), 8));
|
|
return std::nullopt;
|
|
}
|
|
|
|
/// Replaces the `op` with a `CallOp` to the function reference returned
|
|
/// by `getFunc()`.
|
|
static func::CallOp replaceOpWithFuncCall(RewriterBase &rewriter, Operation *op,
|
|
StringRef name, TypeRange resultType,
|
|
ValueRange operands,
|
|
EmitCInterface emitCInterface) {
|
|
auto fn = getFunc(op->getParentOfType<ModuleOp>(), name, resultType, operands,
|
|
emitCInterface);
|
|
return rewriter.replaceOpWithNewOp<func::CallOp>(op, resultType, fn,
|
|
operands);
|
|
}
|
|
|
|
/// Generates call to lookup a level-size. N.B., this only generates
|
|
/// the raw function call, and therefore (intentionally) does not perform
|
|
/// any dim<->lvl conversion or other logic.
|
|
static Value genLvlSizeCall(OpBuilder &builder, Location loc, Value tensor,
|
|
uint64_t lvl) {
|
|
StringRef name = "sparseLvlSize";
|
|
SmallVector<Value, 2> params{tensor, constantIndex(builder, loc, lvl)};
|
|
Type iTp = builder.getIndexType();
|
|
return createFuncCall(builder, loc, name, iTp, params, EmitCInterface::Off)
|
|
.getResult(0);
|
|
}
|
|
|
|
/// Generates call to lookup a dimension-size. N.B., this only generates
|
|
/// the raw function call, and therefore (intentionally) does not perform
|
|
/// any dim<->lvl conversion or other logic.
|
|
static Value genDimSizeCall(OpBuilder &builder, Location loc, Value tensor,
|
|
uint64_t dim) {
|
|
StringRef name = "sparseDimSize";
|
|
SmallVector<Value, 2> params{tensor, constantIndex(builder, loc, dim)};
|
|
Type iTp = builder.getIndexType();
|
|
return createFuncCall(builder, loc, name, iTp, params, EmitCInterface::Off)
|
|
.getResult(0);
|
|
}
|
|
|
|
/// Looks up a level-size by returning a statically-computed constant
|
|
/// (when possible), or by calling `genLvlSizeCall` (when dynamic).
|
|
static Value createOrFoldLvlCall(OpBuilder &builder, Location loc,
|
|
SparseTensorType stt, Value tensor,
|
|
Level lvl) {
|
|
// Only sparse tensors have "levels" to query.
|
|
assert(stt.hasEncoding());
|
|
// TODO: The following implementation only handles permutations;
|
|
// we'll need to generalize this to handle arbitrary AffineExpr.
|
|
//
|
|
// There's no need to assert `isPermutation` here: because
|
|
// `getDimPosition` checks that the expr isa `AffineDimExpr`,
|
|
// which is all we care about (for supporting permutations).
|
|
const Dimension dim =
|
|
stt.isIdentity() ? lvl : stt.getDimToLvl().getDimPosition(lvl);
|
|
if (const auto sz = stt.getStaticDimSize(dim))
|
|
return constantIndex(builder, loc, *sz);
|
|
// If we cannot statically compute the size from the shape, then we
|
|
// must dynamically query it. (In principle we could also dynamically
|
|
// compute it, but since we already did so to construct the `tensor`
|
|
// in the first place, we might as well query rather than recompute.)
|
|
return genLvlSizeCall(builder, loc, tensor, lvl);
|
|
}
|
|
|
|
/// Looks up a dimension-size by returning a constant from the shape
|
|
/// (for static sizes), or by calling `genDimSizeCall` (for dynamic sizes
|
|
/// of sparse tensors) or `linalg::createOrFoldDimOp` (for dynamic sizes
|
|
/// of dense tensors).
|
|
static Value createOrFoldDimCall(OpBuilder &builder, Location loc,
|
|
SparseTensorType stt, Value tensor,
|
|
Dimension dim) {
|
|
if (const auto sz = stt.getStaticDimSize(dim))
|
|
return constantIndex(builder, loc, *sz);
|
|
if (stt.hasEncoding())
|
|
return genDimSizeCall(builder, loc, tensor, dim);
|
|
return linalg::createOrFoldDimOp(builder, loc, tensor, dim);
|
|
}
|
|
|
|
/// Populates the array with the dimension-sizes of the given tensor.
|
|
static void fillDimSizes(OpBuilder &builder, Location loc, SparseTensorType stt,
|
|
Value tensor, SmallVectorImpl<Value> &out) {
|
|
const Dimension dimRank = stt.getDimRank();
|
|
out.clear();
|
|
out.reserve(dimRank);
|
|
for (Dimension d = 0; d < dimRank; d++)
|
|
out.push_back(createOrFoldDimCall(builder, loc, stt, tensor, d));
|
|
}
|
|
|
|
/// Returns an array with the dimension-sizes of the given tensor.
|
|
static SmallVector<Value> getDimSizes(OpBuilder &builder, Location loc,
|
|
SparseTensorType stt, Value tensor) {
|
|
SmallVector<Value> out;
|
|
fillDimSizes(builder, loc, stt, tensor, out);
|
|
return out;
|
|
}
|
|
|
|
/// Populates the array with the dimension-shape of the given
|
|
/// `SparseTensorType`, where dynamic sizes are represented by zero.
|
|
static void fillDimShape(OpBuilder &builder, Location loc, SparseTensorType stt,
|
|
SmallVectorImpl<Value> &out) {
|
|
out.clear();
|
|
out.reserve(stt.getDimRank());
|
|
for (const DynSize sh : stt.getDimShape()) {
|
|
const auto s = ShapedType::isDynamic(sh) ? 0 : sh;
|
|
out.push_back(constantIndex(builder, loc, s));
|
|
}
|
|
}
|
|
|
|
/// Returns an array with the dimension-shape of the given `SparseTensorType`,
|
|
/// where dynamic sizes are represented by zero.
|
|
static SmallVector<Value> getDimShape(OpBuilder &builder, Location loc,
|
|
SparseTensorType stt) {
|
|
SmallVector<Value> out;
|
|
fillDimShape(builder, loc, stt, out);
|
|
return out;
|
|
}
|
|
|
|
/// Populates the given sizes array for concatenation from type (for static
|
|
/// sizes) and from an already-converted opaque pointer source (for dynamic
|
|
/// sizes).
|
|
static void concatDimSizesFromInputs(OpBuilder &builder, Location loc,
|
|
SparseTensorType dstTp, ValueRange srcs,
|
|
Dimension dim,
|
|
SmallVectorImpl<Value> &dimSizes) {
|
|
assert(dim < dstTp.getDimRank() && "Dimension is out of bounds");
|
|
dimSizes.clear();
|
|
|
|
// We first fills the sizes from an input tensor, and then
|
|
// compute the size of the concatenation dimension if necessary.
|
|
const auto srcTp = getSparseTensorType(srcs[0]);
|
|
if (srcTp.hasEncoding())
|
|
// Reuses sizes from an arbitrary input tensor is fine.
|
|
fillDimSizes(builder, loc, srcTp, srcs[0], dimSizes);
|
|
else
|
|
sizesFromSrc(builder, dimSizes, loc, srcs[0]);
|
|
|
|
if (const auto sz = dstTp.getStaticDimSize(dim)) {
|
|
// Faithfully take the static size.
|
|
dimSizes[dim] = constantIndex(builder, loc, *sz);
|
|
} else {
|
|
// Else, dynamically compute the size.
|
|
for (const auto src : srcs.drop_front()) {
|
|
const auto srcTp = getSparseTensorType(src);
|
|
Value srcSz = createOrFoldDimCall(builder, loc, srcTp, src, dim);
|
|
dimSizes[dim] = builder.create<arith::AddIOp>(loc, dimSizes[dim], srcSz);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Generates an uninitialized buffer of the given size and type,
|
|
/// but returns it as type `memref<? x $tp>` (rather than as type
|
|
/// `memref<$sz x $tp>`). Unlike temporary buffers on the stack,
|
|
/// this buffer must be explicitly deallocated by client.
|
|
static Value genAlloc(RewriterBase &rewriter, Location loc, Value sz, Type tp) {
|
|
auto memTp = MemRefType::get({ShapedType::kDynamic}, tp);
|
|
return rewriter.create<memref::AllocOp>(loc, memTp, ValueRange{sz});
|
|
}
|
|
|
|
/// Generates a temporary buffer for the level-types of the given encoding.
|
|
static Value genLvlTypesBuffer(OpBuilder &builder, Location loc,
|
|
SparseTensorType stt) {
|
|
SmallVector<Value> lvlTypes;
|
|
lvlTypes.reserve(stt.getLvlRank());
|
|
for (const auto dlt : stt.getEncoding().getLvlTypes())
|
|
lvlTypes.push_back(constantDimLevelTypeEncoding(builder, loc, dlt));
|
|
return allocaBuffer(builder, loc, lvlTypes);
|
|
}
|
|
|
|
/// This class abstracts over the API of `_mlir_ciface_newSparseTensor`:
|
|
/// the "swiss army knife" method of the sparse runtime support library
|
|
/// for materializing sparse tensors into the computation. This abstraction
|
|
/// reduces the need to make modifications to client code whenever that
|
|
/// API changes.
|
|
class NewCallParams final {
|
|
public:
|
|
/// Allocates the `ValueRange` for the `func::CallOp` parameters,
|
|
/// but does not initialize them.
|
|
NewCallParams(OpBuilder &builder, Location loc)
|
|
: builder(builder), loc(loc), pTp(getOpaquePointerType(builder)) {}
|
|
|
|
/// Initializes all static parameters (i.e., those which indicate
|
|
/// type-level information such as the encoding and sizes), generating
|
|
/// MLIR buffers as needed, and returning `this` for method chaining.
|
|
/// This method does not set the action and pointer arguments, since
|
|
/// those are handled by `genNewCall` instead.
|
|
NewCallParams &genBuffers(SparseTensorType stt, ValueRange dimSizes);
|
|
|
|
/// (Re)sets the C++ template type parameters, and returns `this`
|
|
/// for method chaining. This is already done as part of `genBuffers`,
|
|
/// but is factored out so that it can also be called independently
|
|
/// whenever subsequent `genNewCall` calls want to reuse the same
|
|
/// buffers but different type parameters.
|
|
//
|
|
// TODO: This is only ever used by sparse2sparse-viaCOO `ConvertOp`;
|
|
// is there a better way to handle that than this one-off setter method?
|
|
NewCallParams &setTemplateTypes(SparseTensorType stt) {
|
|
const auto enc = stt.getEncoding();
|
|
params[kParamPosTp] = constantPosTypeEncoding(builder, loc, enc);
|
|
params[kParamCrdTp] = constantCrdTypeEncoding(builder, loc, enc);
|
|
params[kParamValTp] =
|
|
constantPrimaryTypeEncoding(builder, loc, stt.getElementType());
|
|
return *this;
|
|
}
|
|
|
|
/// Checks whether all the static parameters have been initialized.
|
|
bool isInitialized() const {
|
|
for (unsigned i = 0; i < kNumStaticParams; ++i)
|
|
if (!params[i])
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
/// Gets the dimension-to-level mapping.
|
|
//
|
|
// TODO: This is only ever used for passing into `genAddEltCall`;
|
|
// is there a better way to encapsulate that pattern (both to avoid
|
|
// this one-off getter, and to avoid potential mixups)?
|
|
Value getDimToLvl() const {
|
|
assert(isInitialized() && "Must initialize before getDimToLvl");
|
|
return params[kParamDimToLvl];
|
|
}
|
|
|
|
/// Generates a function call, with the current static parameters
|
|
/// and the given dynamic arguments.
|
|
Value genNewCall(Action action, Value ptr = Value()) {
|
|
assert(isInitialized() && "Must initialize before genNewCall");
|
|
StringRef name = "newSparseTensor";
|
|
params[kParamAction] = constantAction(builder, loc, action);
|
|
params[kParamPtr] = ptr ? ptr : builder.create<LLVM::NullOp>(loc, pTp);
|
|
return createFuncCall(builder, loc, name, pTp, params, EmitCInterface::On)
|
|
.getResult(0);
|
|
}
|
|
|
|
private:
|
|
static constexpr unsigned kNumStaticParams = 8;
|
|
static constexpr unsigned kNumDynamicParams = 2;
|
|
static constexpr unsigned kNumParams = kNumStaticParams + kNumDynamicParams;
|
|
static constexpr unsigned kParamDimSizes = 0;
|
|
static constexpr unsigned kParamLvlSizes = 1;
|
|
static constexpr unsigned kParamLvlTypes = 2;
|
|
static constexpr unsigned kParamLvlToDim = 3;
|
|
static constexpr unsigned kParamDimToLvl = 4;
|
|
static constexpr unsigned kParamPosTp = 5;
|
|
static constexpr unsigned kParamCrdTp = 6;
|
|
static constexpr unsigned kParamValTp = 7;
|
|
static constexpr unsigned kParamAction = 8;
|
|
static constexpr unsigned kParamPtr = 9;
|
|
|
|
OpBuilder &builder;
|
|
Location loc;
|
|
Type pTp;
|
|
Value params[kNumParams];
|
|
};
|
|
|
|
// TODO: see the note at `_mlir_ciface_newSparseTensor` about how
|
|
// the meaning of the various arguments (e.g., "sizes" vs "shapes")
|
|
// is inconsistent between the different actions.
|
|
NewCallParams &NewCallParams::genBuffers(SparseTensorType stt,
|
|
ValueRange dimSizes) {
|
|
const Level lvlRank = stt.getLvlRank();
|
|
const Dimension dimRank = stt.getDimRank();
|
|
// Sparsity annotations.
|
|
params[kParamLvlTypes] = genLvlTypesBuffer(builder, loc, stt);
|
|
// Dimension-sizes array of the enveloping tensor. Useful for either
|
|
// verification of external data, or for construction of internal data.
|
|
assert(dimSizes.size() == static_cast<size_t>(dimRank) &&
|
|
"Dimension-rank mismatch");
|
|
params[kParamDimSizes] = allocaBuffer(builder, loc, dimSizes);
|
|
// The level-sizes array must be passed as well, since for arbitrary
|
|
// dimToLvl mappings it cannot be trivially reconstructed at runtime.
|
|
// For now however, since we're still assuming permutations, we will
|
|
// initialize this parameter alongside the `dimToLvl` and `lvlToDim`
|
|
// parameters below. We preinitialize `lvlSizes` for code symmetry.
|
|
SmallVector<Value> lvlSizes(lvlRank);
|
|
// The dimension-to-level mapping and its inverse. We must preinitialize
|
|
// `dimToLvl` so that the true branch below can perform random-access
|
|
// `operator[]` assignment. We preinitialize `lvlToDim` for code symmetry.
|
|
SmallVector<Value> dimToLvl(dimRank);
|
|
SmallVector<Value> lvlToDim(lvlRank);
|
|
if (!stt.isIdentity()) {
|
|
const auto dimToLvlMap = stt.getDimToLvl();
|
|
assert(dimToLvlMap.isPermutation());
|
|
for (Level l = 0; l < lvlRank; l++) {
|
|
// The `d`th source variable occurs in the `l`th result position.
|
|
const Dimension d = dimToLvlMap.getDimPosition(l);
|
|
dimToLvl[d] = constantIndex(builder, loc, l);
|
|
lvlToDim[l] = constantIndex(builder, loc, d);
|
|
lvlSizes[l] = dimSizes[d];
|
|
}
|
|
} else {
|
|
// The `SparseTensorType` ctor already ensures `dimRank == lvlRank`
|
|
// when `isIdentity`; so no need to re-assert it here.
|
|
for (Level l = 0; l < lvlRank; l++) {
|
|
dimToLvl[l] = lvlToDim[l] = constantIndex(builder, loc, l);
|
|
lvlSizes[l] = dimSizes[l];
|
|
}
|
|
}
|
|
params[kParamLvlSizes] = allocaBuffer(builder, loc, lvlSizes);
|
|
params[kParamLvlToDim] = allocaBuffer(builder, loc, lvlToDim);
|
|
params[kParamDimToLvl] = stt.isIdentity()
|
|
? params[kParamLvlToDim]
|
|
: allocaBuffer(builder, loc, dimToLvl);
|
|
// Secondary and primary types encoding.
|
|
setTemplateTypes(stt);
|
|
// Finally, make note that initialization is complete.
|
|
assert(isInitialized() && "Initialization failed");
|
|
// And return `this` for method chaining.
|
|
return *this;
|
|
}
|
|
|
|
/// Generates a call to obtain the values array.
|
|
static Value genValuesCall(OpBuilder &builder, Location loc, ShapedType tp,
|
|
ValueRange ptr) {
|
|
SmallString<15> name{"sparseValues",
|
|
primaryTypeFunctionSuffix(tp.getElementType())};
|
|
return createFuncCall(builder, loc, name, tp, ptr, EmitCInterface::On)
|
|
.getResult(0);
|
|
}
|
|
|
|
/// Generates a call to release/delete a `SparseTensorCOO`.
|
|
static void genDelCOOCall(OpBuilder &builder, Location loc, Type elemTp,
|
|
Value coo) {
|
|
SmallString<21> name{"delSparseTensorCOO", primaryTypeFunctionSuffix(elemTp)};
|
|
createFuncCall(builder, loc, name, {}, coo, EmitCInterface::Off);
|
|
}
|
|
|
|
/// Generates a call to release/delete a `SparseTensorIterator`.
|
|
static void genDelIteratorCall(OpBuilder &builder, Location loc, Type elemTp,
|
|
Value iter) {
|
|
SmallString<26> name{"delSparseTensorIterator",
|
|
primaryTypeFunctionSuffix(elemTp)};
|
|
createFuncCall(builder, loc, name, {}, iter, EmitCInterface::Off);
|
|
}
|
|
|
|
/// Generates a call that adds one element to a coordinate scheme.
|
|
/// In particular, this generates code like the following:
|
|
/// val = a[i1,..,ik];
|
|
/// if val != 0
|
|
/// t->add(&val, [i1,..,ik], [p1,..,pk]);
|
|
static void genAddEltCall(OpBuilder &builder, Location loc, Type eltType,
|
|
Value lvlCOO, Value valPtr, Value dimCoords,
|
|
Value dimToLvl) {
|
|
SmallString<9> name{"addElt", primaryTypeFunctionSuffix(eltType)};
|
|
SmallVector<Value, 4> params{lvlCOO, valPtr, dimCoords, dimToLvl};
|
|
Type pTp = getOpaquePointerType(builder);
|
|
createFuncCall(builder, loc, name, pTp, params, EmitCInterface::On);
|
|
}
|
|
|
|
/// Generates a call to `iter->getNext()`. If there is a next element,
|
|
/// then it is copied into the out-parameters `coords` and `elemPtr`,
|
|
/// and the return value is true. If there isn't a next element, then
|
|
/// the return value is false.
|
|
///
|
|
/// The `coords` argument uses the same coordinate-space as the `iter`
|
|
/// (which can be either dim- or lvl-coords, depending on context).
|
|
static Value genGetNextCall(OpBuilder &builder, Location loc, Value iter,
|
|
Value coords, Value elemPtr) {
|
|
Type elemTp = cast<ShapedType>(elemPtr.getType()).getElementType();
|
|
SmallString<10> name{"getNext", primaryTypeFunctionSuffix(elemTp)};
|
|
SmallVector<Value, 3> params{iter, coords, elemPtr};
|
|
Type i1 = builder.getI1Type();
|
|
return createFuncCall(builder, loc, name, i1, params, EmitCInterface::On)
|
|
.getResult(0);
|
|
}
|
|
|
|
/// Loads the value stored in `elemPtr`, and stores it at the coordinates
|
|
/// `cvs` into a dense tensor created by `allocDenseTensor`.
|
|
static void insertScalarIntoDenseTensor(OpBuilder &builder, Location loc,
|
|
Value elemPtr, Value tensor,
|
|
ValueRange cvs) {
|
|
Value elemV = builder.create<memref::LoadOp>(loc, elemPtr);
|
|
builder.create<memref::StoreOp>(loc, elemV, tensor, cvs);
|
|
}
|
|
|
|
/// Determine if the runtime library supports direct conversion to the
|
|
/// given target `dimTypes`.
|
|
static bool canUseDirectConversion(ArrayRef<DimLevelType> dimTypes) {
|
|
bool alreadyCompressed = false;
|
|
for (const auto dlt : dimTypes) {
|
|
if (isCompressedDLT(dlt)) {
|
|
if (alreadyCompressed)
|
|
return false; // Multiple compressed dimensions not yet supported.
|
|
alreadyCompressed = true;
|
|
} else if (isDenseDLT(dlt)) {
|
|
if (alreadyCompressed)
|
|
return false; // Dense after Compressed not yet supported.
|
|
} else if (isSingletonDLT(dlt)) {
|
|
// Direct conversion doesn't have any particular problems with
|
|
// singleton after compressed.
|
|
} else { // TODO: investigate
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/// Helper method to translate coordinates during a reshaping operation.
|
|
/// TODO: provide as general utility to MLIR at large?
|
|
static void reshapeCoords(Location loc, OpBuilder &builder,
|
|
ArrayRef<ReassociationIndices> reassociation,
|
|
ValueRange srcSizes, Value srcCoords,
|
|
ValueRange dstSizes, Value dstCoords) {
|
|
const auto srcCvs = loadAll(builder, loc, srcSizes.size(), srcCoords);
|
|
SmallVector<Value> dstCvs;
|
|
reshapeCvs(builder, loc, reassociation, srcSizes, srcCvs, dstSizes, dstCvs);
|
|
assert(dstCvs.size() == dstSizes.size());
|
|
storeAll(builder, loc, dstCoords, dstCvs);
|
|
}
|
|
|
|
/// Generate code for a general sparse to sparse reshaping operation.
|
|
/// Note that unlike dense reshaping (which can be done with a "cheap"
|
|
/// change of view), sparse reshaping is currently done with actual
|
|
/// data shuffling.
|
|
///
|
|
/// TODO: proportional to nnz, but still a lot of data movement
|
|
/// https://github.com/llvm/llvm-project/issues/56477
|
|
///
|
|
/// iter = src->toCOO();
|
|
/// coo = newSparseCOO()
|
|
/// while (elem = iter->getNext()) {
|
|
/// coo->add(reshape(elem.coords), elem.value)
|
|
/// }
|
|
/// s = newSparseTensor(coo)
|
|
template <typename ReshapeOp>
|
|
static LogicalResult
|
|
genSparse2SparseReshape(ReshapeOp op, typename ReshapeOp::Adaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) {
|
|
Location loc = op.getLoc();
|
|
const auto srcTp = getSparseTensorType(op.getSrc());
|
|
const auto dstTp = getSparseTensorType(op.getResult());
|
|
if (!srcTp.hasEncoding() || !dstTp.hasEncoding())
|
|
return failure();
|
|
Type elemTp = srcTp.getElementType();
|
|
assert(elemTp == dstTp.getElementType() &&
|
|
"reshape should not change element type");
|
|
// Start an iterator over the source tensor (in coordinate order).
|
|
SmallVector<Value> srcDimSizes =
|
|
getDimSizes(rewriter, loc, srcTp, adaptor.getSrc());
|
|
NewCallParams params(rewriter, loc);
|
|
Value iter = params.genBuffers(srcTp.withoutDimToLvl(), srcDimSizes)
|
|
.genNewCall(Action::kToIterator, adaptor.getSrc());
|
|
// Start a new COO for the destination tensor.
|
|
SmallVector<Value> dstDimSizes;
|
|
if (dstTp.hasStaticDimShape())
|
|
// Static "shapes" are in fact "sizes".
|
|
fillDimShape(rewriter, loc, dstTp, dstDimSizes);
|
|
else
|
|
genReshapeDstShape(rewriter, loc, dstDimSizes, srcDimSizes,
|
|
dstTp.getDimShape(), op.getReassociationIndices());
|
|
const Value coo =
|
|
params.genBuffers(dstTp, dstDimSizes).genNewCall(Action::kEmptyCOO);
|
|
const Value dstDimToLvl = params.getDimToLvl();
|
|
// Construct a while loop over the iterator.
|
|
const Type iTp = rewriter.getIndexType();
|
|
const Value srcDimCoords = genAlloca(rewriter, loc, srcTp.getDimRank(), iTp);
|
|
const Value dstDimCoords = genAlloca(rewriter, loc, dstTp.getDimRank(), iTp);
|
|
const Value elemPtr = genAllocaScalar(rewriter, loc, elemTp);
|
|
const SmallVector<Value> noArgs;
|
|
const SmallVector<Type> noTypes;
|
|
auto whileOp = rewriter.create<scf::WhileOp>(loc, noTypes, noArgs);
|
|
Block *before = rewriter.createBlock(&whileOp.getBefore(), {}, noTypes);
|
|
rewriter.setInsertionPointToEnd(before);
|
|
Value cond = genGetNextCall(rewriter, loc, iter, srcDimCoords, elemPtr);
|
|
rewriter.create<scf::ConditionOp>(loc, cond, before->getArguments());
|
|
// Translate coordinates from source to target and insert. Note that we do
|
|
// not need to store the value in elemPtr, as the value is still there.
|
|
Block *after = rewriter.createBlock(&whileOp.getAfter(), {}, noTypes);
|
|
rewriter.setInsertionPointToStart(after);
|
|
// We probably don't need these assertions, but better safe than sorry.
|
|
assert(srcTp.getDimRank() == srcDimSizes.size());
|
|
assert(dstTp.getDimRank() == dstDimSizes.size());
|
|
reshapeCoords(loc, rewriter, op.getReassociationIndices(), srcDimSizes,
|
|
srcDimCoords, dstDimSizes, dstDimCoords);
|
|
genAddEltCall(rewriter, loc, elemTp, coo, elemPtr, dstDimCoords, dstDimToLvl);
|
|
rewriter.create<scf::YieldOp>(loc);
|
|
// Final call to construct sparse tensor storage and free temporary resources.
|
|
rewriter.setInsertionPointAfter(whileOp);
|
|
Value dst = params.genNewCall(Action::kFromCOO, coo);
|
|
genDelCOOCall(rewriter, loc, elemTp, coo);
|
|
genDelIteratorCall(rewriter, loc, elemTp, iter);
|
|
rewriter.replaceOp(op, dst);
|
|
return success();
|
|
}
|
|
|
|
// Generates a while loop that iterates over the COO list extracted
|
|
// from `t`, using `bodyBuilder` to build the loop body.
|
|
// while (elem = coo->getNext()) {
|
|
// bodyBuilder
|
|
// }
|
|
// TODO: It can be used by other operators (ReshapeOp, ConvertOP) conversion to
|
|
// reduce code repetition!
|
|
// TODO: rename to `genSparseIterationLoop`?
|
|
static void genSparseCOOIterationLoop(
|
|
ConversionPatternRewriter &rewriter, Location loc, Value t,
|
|
SparseTensorType stt,
|
|
function_ref<void(OpBuilder &, Location, Value, Value)> bodyBuilder) {
|
|
assert(stt.hasEncoding() &&
|
|
"Generating Sparse Tensor COO Loop on a Dense Tensor!");
|
|
const Dimension dimRank = stt.getDimRank();
|
|
const Type elemTp = stt.getElementType();
|
|
|
|
// Start an iterator over the tensor (in coordinate order).
|
|
const auto noPerm = stt.withoutDimToLvl();
|
|
SmallVector<Value> dimSizes = getDimSizes(rewriter, loc, noPerm, t);
|
|
Value iter = NewCallParams(rewriter, loc)
|
|
.genBuffers(noPerm, dimSizes)
|
|
.genNewCall(Action::kToIterator, t);
|
|
|
|
// Construct a while loop over the iterator.
|
|
const Type iTp = rewriter.getIndexType();
|
|
Value srcDimCoords = genAlloca(rewriter, loc, dimRank, iTp);
|
|
Value elemPtr = genAllocaScalar(rewriter, loc, elemTp);
|
|
const SmallVector<Value> noArgs;
|
|
const SmallVector<Type> noTypes;
|
|
auto whileOp = rewriter.create<scf::WhileOp>(loc, noTypes, noArgs);
|
|
Block *before = rewriter.createBlock(&whileOp.getBefore(), {}, noTypes);
|
|
rewriter.setInsertionPointToEnd(before);
|
|
Value cond = genGetNextCall(rewriter, loc, iter, srcDimCoords, elemPtr);
|
|
rewriter.create<scf::ConditionOp>(loc, cond, before->getArguments());
|
|
Block *after = rewriter.createBlock(&whileOp.getAfter(), {}, noTypes);
|
|
rewriter.setInsertionPointToStart(after);
|
|
|
|
const bool hasDenseDim =
|
|
llvm::any_of(stt.getEncoding().getLvlTypes(), isDenseDLT);
|
|
if (hasDenseDim) {
|
|
Value elemV = rewriter.create<memref::LoadOp>(loc, elemPtr);
|
|
Value isZero = genIsNonzero(rewriter, loc, elemV);
|
|
scf::IfOp ifOp = rewriter.create<scf::IfOp>(loc, isZero, /*else*/ false);
|
|
rewriter.setInsertionPointToStart(&ifOp.getThenRegion().front());
|
|
}
|
|
// Callback here to build loop body.
|
|
bodyBuilder(rewriter, loc, srcDimCoords, elemPtr);
|
|
|
|
// Exit the scope from the IfOp.
|
|
if (hasDenseDim)
|
|
rewriter.setInsertionPointToEnd(after);
|
|
|
|
rewriter.create<scf::YieldOp>(loc);
|
|
// Finish generating loop.
|
|
rewriter.setInsertionPointAfter(whileOp);
|
|
|
|
// Free memory for iterator.
|
|
genDelIteratorCall(rewriter, loc, elemTp, iter);
|
|
}
|
|
|
|
// Generate loop that iterates over a dense tensor.
|
|
// for i1 in dim1
|
|
// ..
|
|
// for ik in dimk
|
|
// val = a[i1,..,ik]
|
|
// if val != 0
|
|
// bodyBuilder(v, [i1, ..., ik])
|
|
// TODO: It can be used by other operators (ReshapeOp, ConvertOP) conversion to
|
|
// reduce code repetition!
|
|
static void genDenseTensorIterationLoop(
|
|
ConversionPatternRewriter &rewriter, Location loc, Value t,
|
|
SparseTensorType stt,
|
|
function_ref<void(OpBuilder &, Location, ValueRange)> bodyBuilder) {
|
|
assert(!stt.hasEncoding() &&
|
|
"Generating Dense Tensor Loop on a Sparse Tensor!");
|
|
|
|
const Dimension dimRank = stt.getDimRank();
|
|
Value zero = constantIndex(rewriter, loc, 0);
|
|
Value one = constantIndex(rewriter, loc, 1);
|
|
|
|
SmallVector<Value> lo;
|
|
SmallVector<Value> hi;
|
|
SmallVector<Value> st;
|
|
|
|
// Fill out loop iteration information.
|
|
for (Dimension d = 0; d < dimRank; d++) {
|
|
lo.push_back(zero);
|
|
hi.push_back(linalg::createOrFoldDimOp(rewriter, loc, t, d));
|
|
st.push_back(one);
|
|
}
|
|
|
|
scf::buildLoopNest(rewriter, loc, lo, hi, st, {},
|
|
[&](OpBuilder &builder, Location loc, ValueRange ivs,
|
|
ValueRange args) -> scf::ValueVector {
|
|
// Invoke callback to build the body of the loop.
|
|
bodyBuilder(builder, loc, ivs);
|
|
return {};
|
|
});
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Conversion rules.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// Sparse conversion rule for returns.
|
|
class SparseReturnConverter : public OpConversionPattern<func::ReturnOp> {
|
|
public:
|
|
using OpConversionPattern::OpConversionPattern;
|
|
LogicalResult
|
|
matchAndRewrite(func::ReturnOp op, OpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
rewriter.replaceOpWithNewOp<func::ReturnOp>(op, adaptor.getOperands());
|
|
return success();
|
|
}
|
|
};
|
|
|
|
/// Sparse conversion rule for accessing dimension-sizes.
|
|
class SparseTensorToDimSizeConverter
|
|
: public OpConversionPattern<tensor::DimOp> {
|
|
public:
|
|
using OpConversionPattern::OpConversionPattern;
|
|
LogicalResult
|
|
matchAndRewrite(tensor::DimOp op, OpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
const auto stt = getSparseTensorType(op.getSource());
|
|
// Only rewrite sparse DimOp.
|
|
if (!stt.hasEncoding())
|
|
return failure();
|
|
// Only rewrite DimOp with constant index.
|
|
std::optional<int64_t> dim = op.getConstantIndex();
|
|
if (!dim)
|
|
return failure();
|
|
// Generate the call.
|
|
Value src = adaptor.getOperands()[0];
|
|
rewriter.replaceOp(
|
|
op, createOrFoldDimCall(rewriter, op->getLoc(), stt, src, *dim));
|
|
return success();
|
|
}
|
|
};
|
|
|
|
/// Sparse conversion rule for trivial tensor casts.
|
|
class SparseCastConverter : public OpConversionPattern<tensor::CastOp> {
|
|
public:
|
|
using OpConversionPattern::OpConversionPattern;
|
|
LogicalResult
|
|
matchAndRewrite(tensor::CastOp op, OpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
// Only rewrite identically annotated source/dest.
|
|
auto encDst = getSparseTensorEncoding(op.getType());
|
|
auto encSrc = getSparseTensorEncoding(op.getSource().getType());
|
|
if (!encDst || encDst != encSrc)
|
|
return failure();
|
|
rewriter.replaceOp(op, adaptor.getOperands());
|
|
return success();
|
|
}
|
|
};
|
|
|
|
/// Sparse conversion rule for a reshape operator.
|
|
template <typename ReshapeOp>
|
|
class SparseReshapeConverter : public OpConversionPattern<ReshapeOp> {
|
|
public:
|
|
using OpAdaptor = typename OpConversionPattern<ReshapeOp>::OpAdaptor;
|
|
using OpConversionPattern<ReshapeOp>::OpConversionPattern;
|
|
LogicalResult
|
|
matchAndRewrite(ReshapeOp op, OpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
return genSparse2SparseReshape(op, adaptor, rewriter);
|
|
}
|
|
};
|
|
|
|
/// Sparse conversion rule for the new operator.
|
|
class SparseTensorNewConverter : public OpConversionPattern<NewOp> {
|
|
public:
|
|
using OpConversionPattern::OpConversionPattern;
|
|
LogicalResult
|
|
matchAndRewrite(NewOp op, OpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
Location loc = op.getLoc();
|
|
const auto stt = getSparseTensorType(op);
|
|
if (!stt.hasEncoding())
|
|
return failure();
|
|
const Dimension dimRank = stt.getDimRank();
|
|
const Level lvlRank = stt.getLvlRank();
|
|
// Construct the dimShape.
|
|
SmallVector<Value> dimShapeValues = getDimShape(rewriter, loc, stt);
|
|
Value dimShapeBuffer = allocaBuffer(rewriter, loc, dimShapeValues);
|
|
// Allocate `SparseTensorReader` and perform all initial setup that
|
|
// does not depend on lvlSizes (nor dimToLvl, lvlToDim, etc).
|
|
Type opaqueTp = getOpaquePointerType(rewriter);
|
|
Value valTp =
|
|
constantPrimaryTypeEncoding(rewriter, loc, stt.getElementType());
|
|
Value reader =
|
|
createFuncCall(rewriter, loc, "createCheckedSparseTensorReader",
|
|
opaqueTp,
|
|
{adaptor.getOperands()[0], dimShapeBuffer, valTp},
|
|
EmitCInterface::On)
|
|
.getResult(0);
|
|
// Construct the lvlSizes. If the dimShape is static, then it's
|
|
// identical to dimSizes: so we can compute lvlSizes entirely at
|
|
// compile-time. If dimShape is dynamic, then we'll need to generate
|
|
// code for computing lvlSizes from the `reader`'s actual dimSizes.
|
|
//
|
|
// TODO: For now we're still assuming `dimToLvl` is a permutation.
|
|
// But since we're computing lvlSizes here (rather than in the runtime),
|
|
// we can easily generalize that simply by adjusting this code.
|
|
//
|
|
// FIXME: reduce redundancy vs `NewCallParams::genBuffers`.
|
|
Value dimSizesBuffer;
|
|
if (stt.hasDynamicDimShape()) {
|
|
Type indexTp = rewriter.getIndexType();
|
|
auto memTp = MemRefType::get({ShapedType::kDynamic}, indexTp);
|
|
dimSizesBuffer =
|
|
createFuncCall(rewriter, loc, "getSparseTensorReaderDimSizes", memTp,
|
|
reader, EmitCInterface::On)
|
|
.getResult(0);
|
|
}
|
|
Value lvlSizesBuffer;
|
|
Value lvlToDimBuffer;
|
|
Value dimToLvlBuffer;
|
|
if (!stt.isIdentity()) {
|
|
const auto dimToLvl = stt.getDimToLvl();
|
|
assert(dimToLvl.isPermutation() && "Got non-permutation");
|
|
// We preinitialize `dimToLvlValues` since we need random-access writing.
|
|
// And we preinitialize the others for stylistic consistency.
|
|
SmallVector<Value> lvlSizeValues(lvlRank);
|
|
SmallVector<Value> lvlToDimValues(lvlRank);
|
|
SmallVector<Value> dimToLvlValues(dimRank);
|
|
for (Level l = 0; l < lvlRank; l++) {
|
|
// The `d`th source variable occurs in the `l`th result position.
|
|
Dimension d = dimToLvl.getDimPosition(l);
|
|
Value lvl = constantIndex(rewriter, loc, l);
|
|
Value dim = constantIndex(rewriter, loc, d);
|
|
dimToLvlValues[d] = lvl;
|
|
lvlToDimValues[l] = dim;
|
|
lvlSizeValues[l] =
|
|
stt.isDynamicDim(d)
|
|
? rewriter.create<memref::LoadOp>(loc, dimSizesBuffer, dim)
|
|
: dimShapeValues[d];
|
|
}
|
|
lvlSizesBuffer = allocaBuffer(rewriter, loc, lvlSizeValues);
|
|
lvlToDimBuffer = allocaBuffer(rewriter, loc, lvlToDimValues);
|
|
dimToLvlBuffer = allocaBuffer(rewriter, loc, dimToLvlValues);
|
|
} else {
|
|
// The `SparseTensorType` ctor already ensures `dimRank == lvlRank`
|
|
// when `isIdentity`; so no need to re-assert it here.
|
|
SmallVector<Value> iotaValues;
|
|
iotaValues.reserve(lvlRank);
|
|
for (Level l = 0; l < lvlRank; l++)
|
|
iotaValues.push_back(constantIndex(rewriter, loc, l));
|
|
lvlSizesBuffer = dimSizesBuffer ? dimSizesBuffer : dimShapeBuffer;
|
|
dimToLvlBuffer = lvlToDimBuffer = allocaBuffer(rewriter, loc, iotaValues);
|
|
}
|
|
// Use the `reader` to parse the file.
|
|
SmallVector<Value, 8> params{
|
|
reader,
|
|
lvlSizesBuffer,
|
|
genLvlTypesBuffer(rewriter, loc, stt),
|
|
lvlToDimBuffer,
|
|
dimToLvlBuffer,
|
|
constantPosTypeEncoding(rewriter, loc, stt.getEncoding()),
|
|
constantCrdTypeEncoding(rewriter, loc, stt.getEncoding()),
|
|
valTp};
|
|
Value tensor = createFuncCall(rewriter, loc, "newSparseTensorFromReader",
|
|
opaqueTp, params, EmitCInterface::On)
|
|
.getResult(0);
|
|
// Free the memory for `reader`.
|
|
createFuncCall(rewriter, loc, "delSparseTensorReader", {}, {reader},
|
|
EmitCInterface::Off);
|
|
rewriter.replaceOp(op, tensor);
|
|
return success();
|
|
}
|
|
};
|
|
|
|
/// Sparse conversion rule for the alloc operator.
|
|
class SparseTensorAllocConverter
|
|
: public OpConversionPattern<bufferization::AllocTensorOp> {
|
|
public:
|
|
using OpConversionPattern::OpConversionPattern;
|
|
LogicalResult
|
|
matchAndRewrite(bufferization::AllocTensorOp op, OpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
if (op.getCopy())
|
|
return rewriter.notifyMatchFailure(op,
|
|
"sparse tensor copy not implemented");
|
|
Location loc = op.getLoc();
|
|
const auto stt = getSparseTensorType(op);
|
|
if (!stt.hasEncoding())
|
|
return failure();
|
|
// Gather all dimension sizes as SSA values.
|
|
const Dimension dimRank = stt.getDimRank();
|
|
SmallVector<Value> dimSizes;
|
|
dimSizes.reserve(dimRank);
|
|
unsigned operandCtr = 0;
|
|
for (Dimension d = 0; d < dimRank; ++d) {
|
|
dimSizes.push_back(
|
|
stt.isDynamicDim(d)
|
|
? adaptor.getOperands()[operandCtr++]
|
|
: constantIndex(rewriter, loc, op.getStaticSize(d)));
|
|
}
|
|
// Generate the call to construct empty tensor. The sizes are
|
|
// explicitly defined by the arguments to the alloc operator.
|
|
rewriter.replaceOp(op, NewCallParams(rewriter, loc)
|
|
.genBuffers(stt, dimSizes)
|
|
.genNewCall(Action::kEmpty));
|
|
return success();
|
|
}
|
|
};
|
|
|
|
/// Sparse conversion rule for the convert operator.
|
|
class SparseTensorConvertConverter : public OpConversionPattern<ConvertOp> {
|
|
public:
|
|
using OpConversionPattern::OpConversionPattern;
|
|
SparseTensorConvertConverter(MLIRContext *context,
|
|
SparseTensorConversionOptions o)
|
|
: OpConversionPattern<ConvertOp>(context), options(o) {}
|
|
SparseTensorConvertConverter(TypeConverter &typeConv, MLIRContext *context,
|
|
SparseTensorConversionOptions o)
|
|
: OpConversionPattern<ConvertOp>(typeConv, context), options(o) {}
|
|
|
|
LogicalResult
|
|
matchAndRewrite(ConvertOp op, OpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
const Location loc = op->getLoc();
|
|
const auto srcTp = getSparseTensorType(op.getSource());
|
|
const auto dstTp = getSparseTensorType(op);
|
|
if (!srcTp.hasEncoding() && !dstTp.hasEncoding())
|
|
return failure();
|
|
|
|
const Dimension dimRank = srcTp.getDimRank();
|
|
const Type elemTp = srcTp.getElementType();
|
|
const Value src = adaptor.getOperands()[0];
|
|
if (srcTp.hasEncoding() && dstTp.hasEncoding()) {
|
|
const auto srcEnc = srcTp.getEncoding();
|
|
const auto dstEnc = dstTp.getEncoding();
|
|
// This is a sparse => sparse conversion, which is handled as follows:
|
|
// t = src->toCOO(); ; src to COO in dst order
|
|
// dst = newSparseTensor(t)
|
|
// Using the coordinate scheme as an intermediate does not always
|
|
// yield the fastest conversion but avoids the need for a full
|
|
// O(N^2) conversion matrix.
|
|
if (dstEnc == srcEnc) {
|
|
rewriter.replaceOp(op, adaptor.getOperands()); // hidden nop cast
|
|
return success();
|
|
}
|
|
NewCallParams params(rewriter, loc);
|
|
SmallVector<Value> dimSizes = getDimSizes(rewriter, loc, srcTp, src);
|
|
bool useDirectConversion;
|
|
switch (options.sparseToSparseStrategy) {
|
|
case SparseToSparseConversionStrategy::kViaCOO:
|
|
useDirectConversion = false;
|
|
break;
|
|
case SparseToSparseConversionStrategy::kDirect:
|
|
useDirectConversion = true;
|
|
assert(canUseDirectConversion(dstEnc.getLvlTypes()) &&
|
|
"Unsupported target for direct sparse-to-sparse conversion");
|
|
break;
|
|
case SparseToSparseConversionStrategy::kAuto:
|
|
useDirectConversion = canUseDirectConversion(dstEnc.getLvlTypes());
|
|
break;
|
|
}
|
|
if (useDirectConversion) {
|
|
rewriter.replaceOp(
|
|
op, params.genBuffers(srcTp.withEncoding(dstEnc), dimSizes)
|
|
.genNewCall(Action::kSparseToSparse, src));
|
|
} else { // use via-COO conversion.
|
|
// Set up encoding with right mix of src and dst so that the two
|
|
// method calls can share most parameters, while still providing
|
|
// the correct sparsity information to either of them.
|
|
const auto mixedEnc =
|
|
dstEnc.withBitWidths(srcEnc.getPosWidth(), srcEnc.getCrdWidth());
|
|
// TODO: This is the only place where `kToCOO` (or `kToIterator`)
|
|
// is called with a non-identity permutation. Is there any clean
|
|
// way to push the permutation over to the `kFromCOO` side instead?
|
|
Value coo = params.genBuffers(srcTp.withEncoding(mixedEnc), dimSizes)
|
|
.genNewCall(Action::kToCOO, src);
|
|
Value dst = params.setTemplateTypes(srcTp.withEncoding(dstEnc))
|
|
.genNewCall(Action::kFromCOO, coo);
|
|
genDelCOOCall(rewriter, loc, elemTp, coo);
|
|
rewriter.replaceOp(op, dst);
|
|
}
|
|
return success();
|
|
}
|
|
if (srcTp.hasEncoding() && !dstTp.hasEncoding()) {
|
|
const auto srcEnc = srcTp.getEncoding();
|
|
// This is sparse => dense conversion, which is handled as follows:
|
|
// dst = new Tensor(0);
|
|
// iter = new SparseTensorIterator(src);
|
|
// while (elem = iter->getNext()) {
|
|
// dst[elem.coords] = elem.value;
|
|
// }
|
|
// delete iter;
|
|
//
|
|
// Fabricate a no-permutation encoding for NewCallParams
|
|
// The position/coordinate types must be those of `src`.
|
|
// The dimLevelTypes aren't actually used by Action::kToIterator.
|
|
const auto dstEnc = SparseTensorEncodingAttr::get(
|
|
op->getContext(),
|
|
SmallVector<DimLevelType>(dimRank, DimLevelType::Dense), AffineMap(),
|
|
srcEnc.getPosWidth(), srcEnc.getCrdWidth());
|
|
SmallVector<Value> dimSizes = getDimSizes(rewriter, loc, srcTp, src);
|
|
Value iter = NewCallParams(rewriter, loc)
|
|
.genBuffers(dstTp.withEncoding(dstEnc), dimSizes)
|
|
.genNewCall(Action::kToIterator, src);
|
|
const Type iTp = rewriter.getIndexType();
|
|
Value dimCoords = genAlloca(rewriter, loc, dimRank, iTp);
|
|
Value elemPtr = genAllocaScalar(rewriter, loc, elemTp);
|
|
Block *insertionBlock = rewriter.getInsertionBlock();
|
|
// TODO: Dense buffers should be allocated/deallocated via the callback
|
|
// in BufferizationOptions.
|
|
Value dst = allocDenseTensor(rewriter, loc, dstTp, dimSizes);
|
|
const SmallVector<Value> noArgs;
|
|
const SmallVector<Type> noTypes;
|
|
auto whileOp = rewriter.create<scf::WhileOp>(loc, noTypes, noArgs);
|
|
Block *before = rewriter.createBlock(&whileOp.getBefore(), {}, noTypes);
|
|
rewriter.setInsertionPointToEnd(before);
|
|
Value cond = genGetNextCall(rewriter, loc, iter, dimCoords, elemPtr);
|
|
rewriter.create<scf::ConditionOp>(loc, cond, before->getArguments());
|
|
Block *after = rewriter.createBlock(&whileOp.getAfter(), {}, noTypes);
|
|
rewriter.setInsertionPointToStart(after);
|
|
const auto dcvs = loadAll(rewriter, loc, dimRank, dimCoords);
|
|
insertScalarIntoDenseTensor(rewriter, loc, elemPtr, dst, dcvs);
|
|
rewriter.create<scf::YieldOp>(loc);
|
|
rewriter.setInsertionPointAfter(whileOp);
|
|
genDelIteratorCall(rewriter, loc, elemTp, iter);
|
|
rewriter.replaceOpWithNewOp<bufferization::ToTensorOp>(
|
|
op, dstTp.getRankedTensorType(), dst);
|
|
// Deallocate the buffer.
|
|
if (bufferization::allocationDoesNotEscape(op->getOpResult(0))) {
|
|
rewriter.setInsertionPoint(insertionBlock->getTerminator());
|
|
deallocDenseTensor(rewriter, loc, dst);
|
|
}
|
|
return success();
|
|
}
|
|
assert(!srcTp.hasEncoding() && dstTp.hasEncoding());
|
|
// This is a dense => sparse conversion or a sparse constant in COO =>
|
|
// sparse conversion, which is handled as follows:
|
|
// t = newSparseCOO()
|
|
// ...code to fill the COO tensor t...
|
|
// s = newSparseTensor(t)
|
|
//
|
|
// To fill the COO tensor from a dense tensor:
|
|
// for i1 in dim1
|
|
// ..
|
|
// for ik in dimk
|
|
// val = a[i1,..,ik]
|
|
// if val != 0
|
|
// t->add(val, [i1,..,ik], [p1,..,pk])
|
|
//
|
|
// To fill the COO tensor from a sparse constant in COO format:
|
|
// for i in range(NNZ)
|
|
// val = values[i]
|
|
// [i1,..,ik] = coordinates[i]
|
|
// t->add(val, [i1,..,ik], [p1,..,pk])
|
|
//
|
|
// Note that the dense tensor traversal code is actually implemented
|
|
// using MLIR IR to avoid having to expose too much low-level
|
|
// memref traversal details to the runtime support library.
|
|
// Also note that the code below only generates the "new" ops and
|
|
// the loop-nest per se; whereas the entire body of the innermost
|
|
// loop is generated by genAddElt().
|
|
SmallVector<Value> dimSizes;
|
|
sizesFromSrc(rewriter, dimSizes, loc, src);
|
|
NewCallParams params(rewriter, loc);
|
|
Value coo =
|
|
params.genBuffers(dstTp, dimSizes).genNewCall(Action::kEmptyCOO);
|
|
const Type iTp = rewriter.getIndexType();
|
|
Value dimCoords = genAlloca(rewriter, loc, dimRank, iTp);
|
|
Value dimToLvl = params.getDimToLvl();
|
|
Value elemPtr = genAllocaScalar(rewriter, loc, elemTp);
|
|
genDenseTensorOrSparseConstantIterLoop(
|
|
rewriter, loc, src, dimRank,
|
|
[&](OpBuilder &builder, Location loc, Value val, ValueRange dcvs) {
|
|
assert(dcvs.size() == static_cast<size_t>(dimRank));
|
|
storeAll(builder, loc, dimCoords, dcvs);
|
|
builder.create<memref::StoreOp>(loc, val, elemPtr);
|
|
genAddEltCall(builder, loc, elemTp, coo, elemPtr, dimCoords,
|
|
dimToLvl);
|
|
});
|
|
// Final call to construct sparse tensor storage.
|
|
Value dst = params.genNewCall(Action::kFromCOO, coo);
|
|
genDelCOOCall(rewriter, loc, elemTp, coo);
|
|
rewriter.replaceOp(op, dst);
|
|
return success();
|
|
}
|
|
|
|
private:
|
|
/// Options to control sparse code generation.
|
|
SparseTensorConversionOptions options;
|
|
};
|
|
|
|
/// Sparse conversion rule for the dealloc operator.
|
|
class SparseTensorDeallocConverter
|
|
: public OpConversionPattern<bufferization::DeallocTensorOp> {
|
|
public:
|
|
using OpConversionPattern::OpConversionPattern;
|
|
LogicalResult
|
|
matchAndRewrite(bufferization::DeallocTensorOp op, OpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
if (!getSparseTensorType(op.getTensor()).hasEncoding())
|
|
return failure();
|
|
StringRef name = "delSparseTensor";
|
|
createFuncCall(rewriter, op->getLoc(), name, {}, adaptor.getOperands(),
|
|
EmitCInterface::Off);
|
|
rewriter.eraseOp(op);
|
|
return success();
|
|
}
|
|
};
|
|
|
|
/// Sparse conversion rule for position accesses.
|
|
class SparseTensorToPositionsConverter
|
|
: public OpConversionPattern<ToPositionsOp> {
|
|
public:
|
|
using OpConversionPattern::OpConversionPattern;
|
|
LogicalResult
|
|
matchAndRewrite(ToPositionsOp op, OpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
Type resTp = op.getType();
|
|
Type posTp = cast<ShapedType>(resTp).getElementType();
|
|
SmallString<17> name{"sparsePositions", overheadTypeFunctionSuffix(posTp)};
|
|
Value lvl = constantIndex(rewriter, op->getLoc(), op.getLevel());
|
|
replaceOpWithFuncCall(rewriter, op, name, resTp, {adaptor.getTensor(), lvl},
|
|
EmitCInterface::On);
|
|
return success();
|
|
}
|
|
};
|
|
|
|
/// Sparse conversion rule for coordinate accesses.
|
|
class SparseTensorToCoordinatesConverter
|
|
: public OpConversionPattern<ToCoordinatesOp> {
|
|
public:
|
|
using OpConversionPattern::OpConversionPattern;
|
|
LogicalResult
|
|
matchAndRewrite(ToCoordinatesOp op, OpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
// TODO: use `SparseTensorType::getCrdType` instead.
|
|
Type resType = op.getType();
|
|
const Type crdTp = cast<ShapedType>(resType).getElementType();
|
|
SmallString<19> name{"sparseCoordinates",
|
|
overheadTypeFunctionSuffix(crdTp)};
|
|
Location loc = op->getLoc();
|
|
Value lvl = constantIndex(rewriter, loc, op.getLevel());
|
|
|
|
// The function returns a MemRef without a layout.
|
|
MemRefType callRetType = get1DMemRefType(crdTp, false);
|
|
SmallVector<Value> operands{adaptor.getTensor(), lvl};
|
|
auto fn = getFunc(op->getParentOfType<ModuleOp>(), name, callRetType,
|
|
operands, EmitCInterface::On);
|
|
Value callRet =
|
|
rewriter.create<func::CallOp>(loc, callRetType, fn, operands)
|
|
.getResult(0);
|
|
|
|
// Cast the MemRef type to the type expected by the users, though these
|
|
// two types should be compatible at runtime.
|
|
if (resType != callRetType)
|
|
callRet = rewriter.create<memref::CastOp>(loc, resType, callRet);
|
|
rewriter.replaceOp(op, callRet);
|
|
|
|
return success();
|
|
}
|
|
};
|
|
|
|
/// Sparse conversion rule for value accesses.
|
|
class SparseTensorToValuesConverter : public OpConversionPattern<ToValuesOp> {
|
|
public:
|
|
using OpConversionPattern::OpConversionPattern;
|
|
LogicalResult
|
|
matchAndRewrite(ToValuesOp op, OpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
auto resType = cast<ShapedType>(op.getType());
|
|
rewriter.replaceOp(op, genValuesCall(rewriter, op.getLoc(), resType,
|
|
adaptor.getOperands()));
|
|
return success();
|
|
}
|
|
};
|
|
|
|
/// Sparse conversion rule for number of entries operator.
|
|
class SparseNumberOfEntriesConverter
|
|
: public OpConversionPattern<NumberOfEntriesOp> {
|
|
public:
|
|
using OpConversionPattern::OpConversionPattern;
|
|
LogicalResult
|
|
matchAndRewrite(NumberOfEntriesOp op, OpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
Location loc = op.getLoc();
|
|
// Query values array size for the actually stored values size.
|
|
Type eltType = cast<ShapedType>(op.getTensor().getType()).getElementType();
|
|
auto resTp = MemRefType::get({ShapedType::kDynamic}, eltType);
|
|
Value values = genValuesCall(rewriter, loc, resTp, adaptor.getOperands());
|
|
rewriter.replaceOpWithNewOp<memref::DimOp>(op, values,
|
|
constantIndex(rewriter, loc, 0));
|
|
return success();
|
|
}
|
|
};
|
|
|
|
/// Sparse conversion rule for tensor rematerialization.
|
|
class SparseTensorLoadConverter : public OpConversionPattern<LoadOp> {
|
|
public:
|
|
using OpConversionPattern::OpConversionPattern;
|
|
LogicalResult
|
|
matchAndRewrite(LoadOp op, OpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
if (op.getHasInserts()) {
|
|
// Finalize any pending insertions.
|
|
StringRef name = "endInsert";
|
|
createFuncCall(rewriter, op->getLoc(), name, {}, adaptor.getOperands(),
|
|
EmitCInterface::Off);
|
|
}
|
|
rewriter.replaceOp(op, adaptor.getOperands());
|
|
return success();
|
|
}
|
|
};
|
|
|
|
/// Sparse conversion rule for the insertion operator.
|
|
class SparseTensorInsertConverter : public OpConversionPattern<InsertOp> {
|
|
public:
|
|
using OpConversionPattern::OpConversionPattern;
|
|
LogicalResult
|
|
matchAndRewrite(InsertOp op, OpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
// Note that the current regime only allows for strict lexicographic
|
|
// coordinate order. All values are passed by reference through stack
|
|
// allocated memrefs.
|
|
Location loc = op->getLoc();
|
|
const auto stt = getSparseTensorType(op.getTensor());
|
|
const auto elemTp = stt.getElementType();
|
|
const Level lvlRank = stt.getLvlRank();
|
|
auto lvlCoords = genAlloca(rewriter, loc, lvlRank, rewriter.getIndexType());
|
|
auto vref = genAllocaScalar(rewriter, loc, elemTp);
|
|
storeAll(rewriter, loc, lvlCoords, adaptor.getLvlCoords());
|
|
rewriter.create<memref::StoreOp>(loc, adaptor.getValue(), vref);
|
|
SmallString<12> name{"lexInsert", primaryTypeFunctionSuffix(elemTp)};
|
|
createFuncCall(rewriter, loc, name, {},
|
|
{adaptor.getTensor(), lvlCoords, vref}, EmitCInterface::On);
|
|
rewriter.replaceOp(op, adaptor.getTensor());
|
|
return success();
|
|
}
|
|
};
|
|
|
|
/// Sparse conversion rule for the expand operator.
|
|
class SparseTensorExpandConverter : public OpConversionPattern<ExpandOp> {
|
|
public:
|
|
using OpConversionPattern::OpConversionPattern;
|
|
LogicalResult
|
|
matchAndRewrite(ExpandOp op, OpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
Location loc = op->getLoc();
|
|
const auto srcTp = getSparseTensorType(op.getTensor());
|
|
Type eltType = srcTp.getElementType();
|
|
Type boolType = rewriter.getIntegerType(1);
|
|
Type idxType = rewriter.getIndexType();
|
|
// All initialization should be done on entry of the loop nest.
|
|
rewriter.setInsertionPointAfter(op.getTensor().getDefiningOp());
|
|
// Get the cardinality of valid coordinates for the innermost level.
|
|
Value sz = createOrFoldLvlCall(rewriter, loc, srcTp, adaptor.getTensor(),
|
|
srcTp.getLvlRank() - 1);
|
|
// Allocate temporary buffers for values, filled-switch, and coordinates.
|
|
// We do not use stack buffers for this, since the expanded size may
|
|
// be rather large (as it envelops a single expanded dense dimension).
|
|
Value values = genAlloc(rewriter, loc, sz, eltType);
|
|
Value filled = genAlloc(rewriter, loc, sz, boolType);
|
|
Value lastLvlCoordinates = genAlloc(rewriter, loc, sz, idxType);
|
|
Value zero = constantZero(rewriter, loc, idxType);
|
|
// Reset the values/filled-switch to all-zero/false. Note that this
|
|
// introduces an O(N) operation into the computation, but this reset
|
|
// operation is amortized over the innermost loops for the access
|
|
// pattern expansion. As noted in the operation doc, we would like
|
|
// to amortize this setup cost even between kernels.
|
|
rewriter.create<linalg::FillOp>(
|
|
loc, ValueRange{constantZero(rewriter, loc, eltType)},
|
|
ValueRange{values});
|
|
rewriter.create<linalg::FillOp>(
|
|
loc, ValueRange{constantZero(rewriter, loc, boolType)},
|
|
ValueRange{filled});
|
|
// Replace expansion op with these buffers and initial coordinate.
|
|
assert(op.getNumResults() == 4);
|
|
rewriter.replaceOp(op, {values, filled, lastLvlCoordinates, zero});
|
|
return success();
|
|
}
|
|
};
|
|
|
|
/// Sparse conversion rule for the compress operator.
|
|
class SparseTensorCompressConverter : public OpConversionPattern<CompressOp> {
|
|
public:
|
|
using OpConversionPattern::OpConversionPattern;
|
|
LogicalResult
|
|
matchAndRewrite(CompressOp op, OpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
Location loc = op->getLoc();
|
|
// Note that this method call resets the values/filled-switch back to
|
|
// all-zero/false by only iterating over the set elements, so the
|
|
// complexity remains proportional to the sparsity of the expanded
|
|
// access pattern.
|
|
Value values = adaptor.getValues();
|
|
Value filled = adaptor.getFilled();
|
|
Value added = adaptor.getAdded();
|
|
Value count = adaptor.getCount();
|
|
Value tensor = adaptor.getTensor();
|
|
const auto stt = getSparseTensorType(op.getTensor());
|
|
const Type elemTp = stt.getElementType();
|
|
const Level lvlRank = stt.getLvlRank();
|
|
auto lvlCoords = genAlloca(rewriter, loc, lvlRank, rewriter.getIndexType());
|
|
storeAll(rewriter, loc, lvlCoords, adaptor.getLvlCoords());
|
|
SmallString<12> name{"expInsert", primaryTypeFunctionSuffix(elemTp)};
|
|
createFuncCall(rewriter, loc, name, {},
|
|
{tensor, lvlCoords, values, filled, added, count},
|
|
EmitCInterface::On);
|
|
rewriter.replaceOp(op, adaptor.getTensor());
|
|
// Deallocate the buffers on exit of the loop nest.
|
|
Operation *parent = getTop(op);
|
|
rewriter.setInsertionPointAfter(parent);
|
|
rewriter.create<memref::DeallocOp>(loc, values);
|
|
rewriter.create<memref::DeallocOp>(loc, filled);
|
|
rewriter.create<memref::DeallocOp>(loc, added);
|
|
return success();
|
|
}
|
|
};
|
|
|
|
/// Sparse conversion rule for the concatenate operator.
|
|
class SparseTensorConcatConverter : public OpConversionPattern<ConcatenateOp> {
|
|
public:
|
|
using OpConversionPattern::OpConversionPattern;
|
|
LogicalResult
|
|
matchAndRewrite(ConcatenateOp op, OpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
// The conversion works as follow:
|
|
// (1). When output is sparse and not all dims are dense, and mix of inputs:
|
|
// a_sparse = concat (b_dense, c_sparse, ....)
|
|
// =>
|
|
// coo_for_a = newSparseCOO(shapeOf(a))
|
|
// for i, j, k // dense input
|
|
// coo->add(adjustForOffset(i,j,k), b[i,j,k])
|
|
//
|
|
// for elem in sparse_input
|
|
// coo->add(adjustForOffset(elem.coords), elem.value)
|
|
// ...
|
|
// a = newSparseTensor(coo_for_a)
|
|
// return a
|
|
//
|
|
// (2). When output is dense or annotated all dense, and mix of inputs:
|
|
// a_dense = concat (b_dense, c_sparse, ....)
|
|
// =>
|
|
// a = malloc(shapeOf(a)) or newSparseAllDense(shapeOf(a))
|
|
// for i, j, k // dense input
|
|
// a[ adjustForOffset(i,j,k) ] = b[i,j,k]
|
|
//
|
|
// for elem in sparse_input
|
|
// a[ adjustForOffset(elem.coords) ] = elem.value
|
|
// return a
|
|
Location loc = op.getLoc();
|
|
const auto dstTp = getSparseTensorType(op);
|
|
const auto dstEnc = dstTp.getEncoding();
|
|
const Type elemTp = dstTp.getElementType();
|
|
const Dimension concatDim = op.getDimension();
|
|
const Dimension dimRank = dstTp.getDimRank();
|
|
|
|
Value dst; // destination tensor
|
|
Value dstDimToLvl; // destination tensor permutation (if sparse out)
|
|
// A pointer to the value being inserted (if dense => sparse)
|
|
Value elemPtr;
|
|
// Memory that holds the dim-coords for destination tensor (if sparse out)
|
|
Value dstDimCoords;
|
|
// The offset applied to the dimension to be concated (starting from 0)
|
|
Value offset = constantIndex(rewriter, loc, 0);
|
|
|
|
SmallVector<Value> dimSizes;
|
|
concatDimSizesFromInputs(rewriter, loc, dstTp, op.getInputs(), concatDim,
|
|
dimSizes);
|
|
|
|
NewCallParams params(rewriter, loc);
|
|
const bool allDense = dstTp.hasEncoding() && dstTp.isAllDense();
|
|
Value dstTensor;
|
|
if (dstTp.hasEncoding()) {
|
|
// Start a new COO or an initialized annotated all dense sparse tensor.
|
|
dst = params.genBuffers(dstTp, dimSizes)
|
|
.genNewCall(allDense ? Action::kEmpty : Action::kEmptyCOO);
|
|
dstDimCoords = genAlloca(rewriter, loc, dimRank, rewriter.getIndexType());
|
|
if (allDense) {
|
|
dstTensor = dst;
|
|
// Get the values buffer for the sparse tensor and reshape it to the
|
|
// corresponding dense tensor shape.
|
|
dst = genValuesCall(rewriter, loc,
|
|
MemRefType::get({ShapedType::kDynamic}, elemTp),
|
|
{dst});
|
|
// Pass the `dstDimCoords` buffer for `reshapeValuesToLevels`
|
|
// to reuse for storing level-sizes (yes, "level-sizes").
|
|
// This is safe to do because `dstTp` is a dense-tensor type,
|
|
// and therefore lvlRank == dimRank.
|
|
dst = reshapeValuesToLevels(rewriter, loc, dstEnc, dimSizes, dst,
|
|
dstDimCoords);
|
|
} else {
|
|
dstDimToLvl = params.getDimToLvl();
|
|
elemPtr = genAllocaScalar(rewriter, loc, elemTp);
|
|
}
|
|
} else {
|
|
// TODO: Dense buffers should be allocated/deallocated via the callback
|
|
// in BufferizationOptions.
|
|
dst = allocDenseTensor(rewriter, loc, dstTp, dimSizes);
|
|
}
|
|
const Level lvlRank = dstTp.getLvlRank();
|
|
const auto dcvs2lcvs = [&](ValueRange dcvs) -> SmallVector<Value> {
|
|
SmallVector<Value> lcvs;
|
|
lcvs.reserve(lvlRank);
|
|
for (Level l = 0; l < lvlRank; l++)
|
|
// FIXME: `toOrigDim` is deprecated
|
|
lcvs.push_back(dcvs[toOrigDim(dstEnc, l)]);
|
|
return lcvs;
|
|
};
|
|
for (const auto &it : llvm::zip(op.getInputs(), adaptor.getInputs())) {
|
|
Value orignalOp = std::get<0>(it); // Input (with encoding) from Op
|
|
Value adaptedOp = std::get<1>(it); // Input (type converted) from adaptor
|
|
const auto srcTp = getSparseTensorType(orignalOp);
|
|
if (srcTp.hasEncoding()) {
|
|
genSparseCOOIterationLoop(
|
|
rewriter, loc, adaptedOp, srcTp,
|
|
[&](OpBuilder &builder, Location loc, Value dimCoords,
|
|
Value elemPtr) -> void {
|
|
const auto dcvs =
|
|
loadAll(builder, loc, dimRank, dimCoords, concatDim, offset);
|
|
if (dstTp.hasEncoding() && !allDense) {
|
|
// Case: sparse => sparse, except for annotated all dense.
|
|
storeAll(builder, loc, dstDimCoords, dcvs);
|
|
genAddEltCall(builder, loc, elemTp, dst, elemPtr, dstDimCoords,
|
|
dstDimToLvl);
|
|
} else {
|
|
// Case: sparse => dense, or annotated all dense.
|
|
const auto lcvs = allDense ? dcvs2lcvs(dcvs) : dcvs;
|
|
insertScalarIntoDenseTensor(builder, loc, elemPtr, dst, lcvs);
|
|
}
|
|
});
|
|
} else {
|
|
genDenseTensorIterationLoop(
|
|
rewriter, loc, adaptedOp, srcTp,
|
|
[&](OpBuilder &builder, Location loc, ValueRange dcvs) -> void {
|
|
if (dstTp.hasEncoding() && !allDense) {
|
|
// Case: dense => sparse, except for annotated all dense.
|
|
assert(dcvs.size() == static_cast<size_t>(dimRank));
|
|
storeAll(builder, loc, dstDimCoords, dcvs, concatDim, offset);
|
|
Value val = genValueForDense(builder, loc, adaptedOp, dcvs);
|
|
builder.create<memref::StoreOp>(loc, val, elemPtr);
|
|
genAddEltCall(builder, loc, elemTp, dst, elemPtr, dstDimCoords,
|
|
dstDimToLvl);
|
|
} else {
|
|
// Case: dense => dense, or annotated all dense.
|
|
Value val = genValueForDense(builder, loc, adaptedOp, dcvs);
|
|
// Despite the name, this isn't actually level-cvs until
|
|
// after the `dcvs2lcvs` call.
|
|
SmallVector<Value> lcvs(dcvs);
|
|
// Apply offset.
|
|
lcvs[concatDim] =
|
|
builder.create<arith::AddIOp>(loc, lcvs[concatDim], offset);
|
|
if (allDense)
|
|
lcvs = dcvs2lcvs(lcvs);
|
|
builder.create<memref::StoreOp>(loc, val, dst, lcvs);
|
|
}
|
|
});
|
|
}
|
|
// Accumulate offset.
|
|
// TODO: avoid calling sparseDimSize multiple times by caching the result!
|
|
Value curDim =
|
|
createOrFoldDimCall(rewriter, loc, srcTp, adaptedOp, concatDim);
|
|
offset = rewriter.create<arith::AddIOp>(loc, offset, curDim);
|
|
}
|
|
if (!dstTp.hasEncoding()) {
|
|
rewriter.replaceOpWithNewOp<bufferization::ToTensorOp>(
|
|
op, dstTp.getRankedTensorType(), dst);
|
|
} else if (allDense) {
|
|
rewriter.replaceOp(op, dstTensor);
|
|
} else {
|
|
// In sparse output case, the destination holds the COO.
|
|
Value coo = dst;
|
|
dst = params.genNewCall(Action::kFromCOO, coo);
|
|
// Release resources.
|
|
genDelCOOCall(rewriter, loc, elemTp, coo);
|
|
rewriter.replaceOp(op, dst);
|
|
}
|
|
return success();
|
|
}
|
|
};
|
|
|
|
/// Sparse conversion rule for the output operator.
|
|
class SparseTensorOutConverter : public OpConversionPattern<OutOp> {
|
|
public:
|
|
using OpConversionPattern::OpConversionPattern;
|
|
LogicalResult
|
|
matchAndRewrite(OutOp op, OpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
const Location loc = op->getLoc();
|
|
const auto srcTp = getSparseTensorType(op.getTensor());
|
|
// Convert to default permuted COO.
|
|
Value src = adaptor.getOperands()[0];
|
|
SmallVector<Value> dimSizes = getDimSizes(rewriter, loc, srcTp, src);
|
|
Value coo = NewCallParams(rewriter, loc)
|
|
.genBuffers(srcTp.withoutDimToLvl(), dimSizes)
|
|
.genNewCall(Action::kToCOO, src);
|
|
// Then output the tensor to external file with coordinates in the
|
|
// externally visible lexicographic coordinate order. A sort is
|
|
// required if the source was not in that order yet (note that the
|
|
// sort can be dropped altogether if external format does not care
|
|
// about the order at all, but here we assume it does).
|
|
const Value sort = constantI1(rewriter, loc, !srcTp.isIdentity());
|
|
SmallVector<Value, 3> outParams{coo, adaptor.getOperands()[1], sort};
|
|
const Type elemTp = srcTp.getElementType();
|
|
SmallString<18> name{"outSparseTensor", primaryTypeFunctionSuffix(elemTp)};
|
|
createFuncCall(rewriter, loc, name, {}, outParams, EmitCInterface::Off);
|
|
genDelCOOCall(rewriter, loc, elemTp, coo);
|
|
rewriter.eraseOp(op);
|
|
return success();
|
|
}
|
|
};
|
|
|
|
} // namespace
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Sparse tensor type conversion into opaque pointer.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
mlir::SparseTensorTypeToPtrConverter::SparseTensorTypeToPtrConverter() {
|
|
addConversion([](Type type) { return type; });
|
|
addConversion(convertSparseTensorTypes);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Public method for populating conversion rules.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// Populates the given patterns list with conversion rules required for
|
|
/// the sparsification of linear algebra operations.
|
|
void mlir::populateSparseTensorConversionPatterns(
|
|
TypeConverter &typeConverter, RewritePatternSet &patterns,
|
|
const SparseTensorConversionOptions &options) {
|
|
patterns
|
|
.add<SparseReturnConverter, SparseTensorToDimSizeConverter,
|
|
SparseCastConverter, SparseTensorNewConverter,
|
|
SparseReshapeConverter<tensor::ExpandShapeOp>,
|
|
SparseReshapeConverter<tensor::CollapseShapeOp>,
|
|
SparseTensorConcatConverter, SparseTensorAllocConverter,
|
|
SparseTensorDeallocConverter, SparseTensorToPositionsConverter,
|
|
SparseTensorToCoordinatesConverter, SparseTensorToValuesConverter,
|
|
SparseNumberOfEntriesConverter, SparseTensorLoadConverter,
|
|
SparseTensorInsertConverter, SparseTensorExpandConverter,
|
|
SparseTensorCompressConverter, SparseTensorOutConverter>(
|
|
typeConverter, patterns.getContext());
|
|
|
|
patterns.add<SparseTensorConvertConverter>(typeConverter,
|
|
patterns.getContext(), options);
|
|
}
|