
a96121089b9c94e08c6632f91f2dffc73c0ffa28 reverted a change to use a binary search on the string name table because it was too slow. This replaces it with a static string hash table based on the known set of libcall names. Microbenchmarking shows this is similarly fast to using DenseMap. It's possibly slightly slower than using StringSet, though these aren't an exact comparison. This also saves on the one time use construction of the map, so it could be better in practice. This search isn't simple set check, since it does find the range of possible matches with the same name. There's also an additional check for whether the current target supports the name. The runtime constructed set doesn't require this, since it only adds the symbols live for the target. Followed algorithm from this post http://0x80.pl/notesen/2023-04-30-lookup-in-strings.html I'm also thinking the 2 special case global symbols should just be added to RuntimeLibcalls. There are also other global references emitted in the backend that aren't tracked; we probably should just use this as a centralized database for all compiler selected symbols.
449 lines
16 KiB
C++
449 lines
16 KiB
C++
//===- IRSymtab.cpp - implementation of IR symbol tables ------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Object/IRSymtab.h"
|
|
#include "llvm/ADT/ArrayRef.h"
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
#include "llvm/ADT/SmallString.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/StringRef.h"
|
|
#include "llvm/ADT/StringSet.h"
|
|
#include "llvm/Bitcode/BitcodeReader.h"
|
|
#include "llvm/Config/llvm-config.h"
|
|
#include "llvm/IR/Comdat.h"
|
|
#include "llvm/IR/DataLayout.h"
|
|
#include "llvm/IR/GlobalAlias.h"
|
|
#include "llvm/IR/GlobalObject.h"
|
|
#include "llvm/IR/Mangler.h"
|
|
#include "llvm/IR/Metadata.h"
|
|
#include "llvm/IR/Module.h"
|
|
#include "llvm/IR/RuntimeLibcalls.h"
|
|
#include "llvm/MC/StringTableBuilder.h"
|
|
#include "llvm/Object/ModuleSymbolTable.h"
|
|
#include "llvm/Object/SymbolicFile.h"
|
|
#include "llvm/Support/Allocator.h"
|
|
#include "llvm/Support/Casting.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Error.h"
|
|
#include "llvm/Support/StringSaver.h"
|
|
#include "llvm/Support/VCSRevision.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/TargetParser/Triple.h"
|
|
#include <cassert>
|
|
#include <string>
|
|
#include <utility>
|
|
#include <vector>
|
|
|
|
using namespace llvm;
|
|
using namespace irsymtab;
|
|
|
|
static cl::opt<bool> DisableBitcodeVersionUpgrade(
|
|
"disable-bitcode-version-upgrade", cl::Hidden,
|
|
cl::desc("Disable automatic bitcode upgrade for version mismatch"));
|
|
|
|
static constexpr StringLiteral PreservedSymbols[] = {
|
|
// There are global variables, so put it here instead of in
|
|
// RuntimeLibcalls.td.
|
|
// TODO: Are there similar such variables?
|
|
"__ssp_canary_word",
|
|
"__stack_chk_guard",
|
|
};
|
|
|
|
static bool isPreservedGlobalVarName(StringRef Name) {
|
|
return PreservedSymbols[0] == Name || PreservedSymbols[1] == Name;
|
|
}
|
|
|
|
namespace {
|
|
|
|
const char *getExpectedProducerName() {
|
|
static char DefaultName[] = LLVM_VERSION_STRING
|
|
#ifdef LLVM_REVISION
|
|
" " LLVM_REVISION
|
|
#endif
|
|
;
|
|
// Allows for testing of the irsymtab writer and upgrade mechanism. This
|
|
// environment variable should not be set by users.
|
|
if (char *OverrideName = getenv("LLVM_OVERRIDE_PRODUCER"))
|
|
return OverrideName;
|
|
return DefaultName;
|
|
}
|
|
|
|
const char *kExpectedProducerName = getExpectedProducerName();
|
|
|
|
/// Stores the temporary state that is required to build an IR symbol table.
|
|
struct Builder {
|
|
SmallVector<char, 0> &Symtab;
|
|
StringTableBuilder &StrtabBuilder;
|
|
StringSaver Saver;
|
|
|
|
// This ctor initializes a StringSaver using the passed in BumpPtrAllocator.
|
|
// The StringTableBuilder does not create a copy of any strings added to it,
|
|
// so this provides somewhere to store any strings that we create.
|
|
Builder(SmallVector<char, 0> &Symtab, StringTableBuilder &StrtabBuilder,
|
|
BumpPtrAllocator &Alloc, const Triple &TT)
|
|
: Symtab(Symtab), StrtabBuilder(StrtabBuilder), Saver(Alloc), TT(TT),
|
|
Libcalls(TT) {}
|
|
|
|
DenseMap<const Comdat *, int> ComdatMap;
|
|
Mangler Mang;
|
|
const Triple &TT;
|
|
|
|
// FIXME: This shouldn't be here.
|
|
RTLIB::RuntimeLibcallsInfo Libcalls;
|
|
|
|
std::vector<storage::Comdat> Comdats;
|
|
std::vector<storage::Module> Mods;
|
|
std::vector<storage::Symbol> Syms;
|
|
std::vector<storage::Uncommon> Uncommons;
|
|
|
|
std::string COFFLinkerOpts;
|
|
raw_string_ostream COFFLinkerOptsOS{COFFLinkerOpts};
|
|
|
|
std::vector<storage::Str> DependentLibraries;
|
|
|
|
bool isPreservedLibFuncName(StringRef Name) {
|
|
return Libcalls.getSupportedLibcallImpl(Name) != RTLIB::Unsupported;
|
|
}
|
|
|
|
void setStr(storage::Str &S, StringRef Value) {
|
|
S.Offset = StrtabBuilder.add(Value);
|
|
S.Size = Value.size();
|
|
}
|
|
|
|
template <typename T>
|
|
void writeRange(storage::Range<T> &R, const std::vector<T> &Objs) {
|
|
R.Offset = Symtab.size();
|
|
R.Size = Objs.size();
|
|
Symtab.insert(Symtab.end(), reinterpret_cast<const char *>(Objs.data()),
|
|
reinterpret_cast<const char *>(Objs.data() + Objs.size()));
|
|
}
|
|
|
|
Expected<int> getComdatIndex(const Comdat *C, const Module *M);
|
|
|
|
Error addModule(Module *M);
|
|
Error addSymbol(const ModuleSymbolTable &Msymtab,
|
|
const SmallPtrSet<GlobalValue *, 4> &Used,
|
|
ModuleSymbolTable::Symbol Sym);
|
|
|
|
Error build(ArrayRef<Module *> Mods);
|
|
};
|
|
|
|
Error Builder::addModule(Module *M) {
|
|
if (M->getDataLayoutStr().empty())
|
|
return make_error<StringError>("input module has no datalayout",
|
|
inconvertibleErrorCode());
|
|
|
|
// Symbols in the llvm.used list will get the FB_Used bit and will not be
|
|
// internalized. We do this for llvm.compiler.used as well:
|
|
//
|
|
// IR symbol table tracks module-level asm symbol references but not inline
|
|
// asm. A symbol only referenced by inline asm is not in the IR symbol table,
|
|
// so we may not know that the definition (in another translation unit) is
|
|
// referenced. That definition may have __attribute__((used)) (which lowers to
|
|
// llvm.compiler.used on ELF targets) to communicate to the compiler that it
|
|
// may be used by inline asm. The usage is perfectly fine, so we treat
|
|
// llvm.compiler.used conservatively as llvm.used to work around our own
|
|
// limitation.
|
|
SmallVector<GlobalValue *, 4> UsedV;
|
|
collectUsedGlobalVariables(*M, UsedV, /*CompilerUsed=*/false);
|
|
collectUsedGlobalVariables(*M, UsedV, /*CompilerUsed=*/true);
|
|
SmallPtrSet<GlobalValue *, 4> Used(llvm::from_range, UsedV);
|
|
|
|
ModuleSymbolTable Msymtab;
|
|
Msymtab.addModule(M);
|
|
|
|
storage::Module Mod;
|
|
Mod.Begin = Syms.size();
|
|
Mod.End = Syms.size() + Msymtab.symbols().size();
|
|
Mod.UncBegin = Uncommons.size();
|
|
Mods.push_back(Mod);
|
|
|
|
if (TT.isOSBinFormatCOFF()) {
|
|
if (auto E = M->materializeMetadata())
|
|
return E;
|
|
if (NamedMDNode *LinkerOptions =
|
|
M->getNamedMetadata("llvm.linker.options")) {
|
|
for (MDNode *MDOptions : LinkerOptions->operands())
|
|
for (const MDOperand &MDOption : cast<MDNode>(MDOptions)->operands())
|
|
COFFLinkerOptsOS << " " << cast<MDString>(MDOption)->getString();
|
|
}
|
|
}
|
|
|
|
if (TT.isOSBinFormatELF()) {
|
|
if (auto E = M->materializeMetadata())
|
|
return E;
|
|
if (NamedMDNode *N = M->getNamedMetadata("llvm.dependent-libraries")) {
|
|
for (MDNode *MDOptions : N->operands()) {
|
|
const auto OperandStr =
|
|
cast<MDString>(cast<MDNode>(MDOptions)->getOperand(0))->getString();
|
|
storage::Str Specifier;
|
|
setStr(Specifier, OperandStr);
|
|
DependentLibraries.emplace_back(Specifier);
|
|
}
|
|
}
|
|
}
|
|
|
|
for (ModuleSymbolTable::Symbol Msym : Msymtab.symbols())
|
|
if (Error Err = addSymbol(Msymtab, Used, Msym))
|
|
return Err;
|
|
|
|
return Error::success();
|
|
}
|
|
|
|
Expected<int> Builder::getComdatIndex(const Comdat *C, const Module *M) {
|
|
auto P = ComdatMap.insert(std::make_pair(C, Comdats.size()));
|
|
if (P.second) {
|
|
std::string Name;
|
|
if (TT.isOSBinFormatCOFF()) {
|
|
const GlobalValue *GV = M->getNamedValue(C->getName());
|
|
if (!GV)
|
|
return make_error<StringError>("Could not find leader",
|
|
inconvertibleErrorCode());
|
|
// Internal leaders do not affect symbol resolution, therefore they do not
|
|
// appear in the symbol table.
|
|
if (GV->hasLocalLinkage()) {
|
|
P.first->second = -1;
|
|
return -1;
|
|
}
|
|
llvm::raw_string_ostream OS(Name);
|
|
Mang.getNameWithPrefix(OS, GV, false);
|
|
} else {
|
|
Name = std::string(C->getName());
|
|
}
|
|
|
|
storage::Comdat Comdat;
|
|
setStr(Comdat.Name, Saver.save(Name));
|
|
Comdat.SelectionKind = C->getSelectionKind();
|
|
Comdats.push_back(Comdat);
|
|
}
|
|
|
|
return P.first->second;
|
|
}
|
|
|
|
Error Builder::addSymbol(const ModuleSymbolTable &Msymtab,
|
|
const SmallPtrSet<GlobalValue *, 4> &Used,
|
|
ModuleSymbolTable::Symbol Msym) {
|
|
Syms.emplace_back();
|
|
storage::Symbol &Sym = Syms.back();
|
|
Sym = {};
|
|
|
|
storage::Uncommon *Unc = nullptr;
|
|
auto Uncommon = [&]() -> storage::Uncommon & {
|
|
if (Unc)
|
|
return *Unc;
|
|
Sym.Flags |= 1 << storage::Symbol::FB_has_uncommon;
|
|
Uncommons.emplace_back();
|
|
Unc = &Uncommons.back();
|
|
*Unc = {};
|
|
setStr(Unc->COFFWeakExternFallbackName, "");
|
|
setStr(Unc->SectionName, "");
|
|
return *Unc;
|
|
};
|
|
|
|
SmallString<64> Name;
|
|
{
|
|
raw_svector_ostream OS(Name);
|
|
Msymtab.printSymbolName(OS, Msym);
|
|
}
|
|
setStr(Sym.Name, Saver.save(Name.str()));
|
|
|
|
auto Flags = Msymtab.getSymbolFlags(Msym);
|
|
if (Flags & object::BasicSymbolRef::SF_Undefined)
|
|
Sym.Flags |= 1 << storage::Symbol::FB_undefined;
|
|
if (Flags & object::BasicSymbolRef::SF_Weak)
|
|
Sym.Flags |= 1 << storage::Symbol::FB_weak;
|
|
if (Flags & object::BasicSymbolRef::SF_Common)
|
|
Sym.Flags |= 1 << storage::Symbol::FB_common;
|
|
if (Flags & object::BasicSymbolRef::SF_Indirect)
|
|
Sym.Flags |= 1 << storage::Symbol::FB_indirect;
|
|
if (Flags & object::BasicSymbolRef::SF_Global)
|
|
Sym.Flags |= 1 << storage::Symbol::FB_global;
|
|
if (Flags & object::BasicSymbolRef::SF_FormatSpecific)
|
|
Sym.Flags |= 1 << storage::Symbol::FB_format_specific;
|
|
if (Flags & object::BasicSymbolRef::SF_Executable)
|
|
Sym.Flags |= 1 << storage::Symbol::FB_executable;
|
|
|
|
Sym.ComdatIndex = -1;
|
|
auto *GV = dyn_cast_if_present<GlobalValue *>(Msym);
|
|
if (!GV) {
|
|
// Undefined module asm symbols act as GC roots and are implicitly used.
|
|
if (Flags & object::BasicSymbolRef::SF_Undefined)
|
|
Sym.Flags |= 1 << storage::Symbol::FB_used;
|
|
setStr(Sym.IRName, "");
|
|
return Error::success();
|
|
}
|
|
|
|
StringRef GVName = GV->getName();
|
|
setStr(Sym.IRName, GVName);
|
|
|
|
if (Used.count(GV) || isPreservedLibFuncName(GVName) ||
|
|
isPreservedGlobalVarName(GVName))
|
|
Sym.Flags |= 1 << storage::Symbol::FB_used;
|
|
if (GV->isThreadLocal())
|
|
Sym.Flags |= 1 << storage::Symbol::FB_tls;
|
|
if (GV->hasGlobalUnnamedAddr())
|
|
Sym.Flags |= 1 << storage::Symbol::FB_unnamed_addr;
|
|
if (GV->canBeOmittedFromSymbolTable())
|
|
Sym.Flags |= 1 << storage::Symbol::FB_may_omit;
|
|
Sym.Flags |= unsigned(GV->getVisibility()) << storage::Symbol::FB_visibility;
|
|
|
|
if (Flags & object::BasicSymbolRef::SF_Common) {
|
|
auto *GVar = dyn_cast<GlobalVariable>(GV);
|
|
if (!GVar)
|
|
return make_error<StringError>("Only variables can have common linkage!",
|
|
inconvertibleErrorCode());
|
|
Uncommon().CommonSize =
|
|
GV->getDataLayout().getTypeAllocSize(GV->getValueType());
|
|
Uncommon().CommonAlign = GVar->getAlign() ? GVar->getAlign()->value() : 0;
|
|
}
|
|
|
|
const GlobalObject *GO = GV->getAliaseeObject();
|
|
if (!GO) {
|
|
if (isa<GlobalIFunc>(GV))
|
|
GO = cast<GlobalIFunc>(GV)->getResolverFunction();
|
|
if (!GO)
|
|
return make_error<StringError>("Unable to determine comdat of alias!",
|
|
inconvertibleErrorCode());
|
|
}
|
|
if (const Comdat *C = GO->getComdat()) {
|
|
Expected<int> ComdatIndexOrErr = getComdatIndex(C, GV->getParent());
|
|
if (!ComdatIndexOrErr)
|
|
return ComdatIndexOrErr.takeError();
|
|
Sym.ComdatIndex = *ComdatIndexOrErr;
|
|
}
|
|
|
|
if (TT.isOSBinFormatCOFF()) {
|
|
emitLinkerFlagsForGlobalCOFF(COFFLinkerOptsOS, GV, TT, Mang);
|
|
|
|
if ((Flags & object::BasicSymbolRef::SF_Weak) &&
|
|
(Flags & object::BasicSymbolRef::SF_Indirect)) {
|
|
auto *Fallback = dyn_cast<GlobalValue>(
|
|
cast<GlobalAlias>(GV)->getAliasee()->stripPointerCasts());
|
|
if (!Fallback)
|
|
return make_error<StringError>("Invalid weak external",
|
|
inconvertibleErrorCode());
|
|
std::string FallbackName;
|
|
raw_string_ostream OS(FallbackName);
|
|
Msymtab.printSymbolName(OS, Fallback);
|
|
OS.flush();
|
|
setStr(Uncommon().COFFWeakExternFallbackName, Saver.save(FallbackName));
|
|
}
|
|
}
|
|
|
|
if (!GO->getSection().empty())
|
|
setStr(Uncommon().SectionName, Saver.save(GO->getSection()));
|
|
|
|
return Error::success();
|
|
}
|
|
|
|
Error Builder::build(ArrayRef<Module *> IRMods) {
|
|
storage::Header Hdr;
|
|
|
|
assert(!IRMods.empty());
|
|
Hdr.Version = storage::Header::kCurrentVersion;
|
|
setStr(Hdr.Producer, kExpectedProducerName);
|
|
setStr(Hdr.TargetTriple, IRMods[0]->getTargetTriple().str());
|
|
setStr(Hdr.SourceFileName, IRMods[0]->getSourceFileName());
|
|
|
|
for (auto *M : IRMods)
|
|
if (Error Err = addModule(M))
|
|
return Err;
|
|
|
|
COFFLinkerOptsOS.flush();
|
|
setStr(Hdr.COFFLinkerOpts, Saver.save(COFFLinkerOpts));
|
|
|
|
// We are about to fill in the header's range fields, so reserve space for it
|
|
// and copy it in afterwards.
|
|
Symtab.resize(sizeof(storage::Header));
|
|
writeRange(Hdr.Modules, Mods);
|
|
writeRange(Hdr.Comdats, Comdats);
|
|
writeRange(Hdr.Symbols, Syms);
|
|
writeRange(Hdr.Uncommons, Uncommons);
|
|
writeRange(Hdr.DependentLibraries, DependentLibraries);
|
|
*reinterpret_cast<storage::Header *>(Symtab.data()) = Hdr;
|
|
return Error::success();
|
|
}
|
|
|
|
} // end anonymous namespace
|
|
|
|
Error irsymtab::build(ArrayRef<Module *> Mods, SmallVector<char, 0> &Symtab,
|
|
StringTableBuilder &StrtabBuilder,
|
|
BumpPtrAllocator &Alloc) {
|
|
const Triple &TT = Mods[0]->getTargetTriple();
|
|
return Builder(Symtab, StrtabBuilder, Alloc, TT).build(Mods);
|
|
}
|
|
|
|
// Upgrade a vector of bitcode modules created by an old version of LLVM by
|
|
// creating an irsymtab for them in the current format.
|
|
static Expected<FileContents> upgrade(ArrayRef<BitcodeModule> BMs) {
|
|
FileContents FC;
|
|
|
|
LLVMContext Ctx;
|
|
std::vector<Module *> Mods;
|
|
std::vector<std::unique_ptr<Module>> OwnedMods;
|
|
for (auto BM : BMs) {
|
|
Expected<std::unique_ptr<Module>> MOrErr =
|
|
BM.getLazyModule(Ctx, /*ShouldLazyLoadMetadata*/ true,
|
|
/*IsImporting*/ false);
|
|
if (!MOrErr)
|
|
return MOrErr.takeError();
|
|
|
|
Mods.push_back(MOrErr->get());
|
|
OwnedMods.push_back(std::move(*MOrErr));
|
|
}
|
|
|
|
StringTableBuilder StrtabBuilder(StringTableBuilder::RAW);
|
|
BumpPtrAllocator Alloc;
|
|
if (Error E = build(Mods, FC.Symtab, StrtabBuilder, Alloc))
|
|
return std::move(E);
|
|
|
|
StrtabBuilder.finalizeInOrder();
|
|
FC.Strtab.resize(StrtabBuilder.getSize());
|
|
StrtabBuilder.write((uint8_t *)FC.Strtab.data());
|
|
|
|
FC.TheReader = {{FC.Symtab.data(), FC.Symtab.size()},
|
|
{FC.Strtab.data(), FC.Strtab.size()}};
|
|
return std::move(FC);
|
|
}
|
|
|
|
Expected<FileContents> irsymtab::readBitcode(const BitcodeFileContents &BFC) {
|
|
if (BFC.Mods.empty())
|
|
return make_error<StringError>("Bitcode file does not contain any modules",
|
|
inconvertibleErrorCode());
|
|
|
|
if (!DisableBitcodeVersionUpgrade) {
|
|
if (BFC.StrtabForSymtab.empty() ||
|
|
BFC.Symtab.size() < sizeof(storage::Header))
|
|
return upgrade(BFC.Mods);
|
|
|
|
// We cannot use the regular reader to read the version and producer,
|
|
// because it will expect the header to be in the current format. The only
|
|
// thing we can rely on is that the version and producer will be present as
|
|
// the first struct elements.
|
|
auto *Hdr = reinterpret_cast<const storage::Header *>(BFC.Symtab.data());
|
|
unsigned Version = Hdr->Version;
|
|
StringRef Producer = Hdr->Producer.get(BFC.StrtabForSymtab);
|
|
if (Version != storage::Header::kCurrentVersion ||
|
|
Producer != kExpectedProducerName)
|
|
return upgrade(BFC.Mods);
|
|
}
|
|
|
|
FileContents FC;
|
|
FC.TheReader = {{BFC.Symtab.data(), BFC.Symtab.size()},
|
|
{BFC.StrtabForSymtab.data(), BFC.StrtabForSymtab.size()}};
|
|
|
|
// Finally, make sure that the number of modules in the symbol table matches
|
|
// the number of modules in the bitcode file. If they differ, it may mean that
|
|
// the bitcode file was created by binary concatenation, so we need to create
|
|
// a new symbol table from scratch.
|
|
if (FC.TheReader.getNumModules() != BFC.Mods.size())
|
|
return upgrade(std::move(BFC.Mods));
|
|
|
|
return std::move(FC);
|
|
}
|