llvm-project/clang/lib/StaticAnalyzer/Checkers/StdLibraryFunctionsChecker.cpp
Kristof Umann 76a21502fd [analyzer][NFC] Move CheckerRegistry from the Core directory to Frontend
ClangCheckerRegistry is a very non-obvious, poorly documented, weird concept.
It derives from CheckerRegistry, and is placed in lib/StaticAnalyzer/Frontend,
whereas it's base is located in lib/StaticAnalyzer/Core. It was, from what I can
imagine, used to circumvent the problem that the registry functions of the
checkers are located in the clangStaticAnalyzerCheckers library, but that
library depends on clangStaticAnalyzerCore. However, clangStaticAnalyzerFrontend
depends on both of those libraries.

One can make the observation however, that CheckerRegistry has no place in Core,
it isn't used there at all! The only place where it is used is Frontend, which
is where it ultimately belongs.

This move implies that since
include/clang/StaticAnalyzer/Checkers/ClangCheckers.h only contained a single function:

class CheckerRegistry;

void registerBuiltinCheckers(CheckerRegistry &registry);

it had to re purposed, as CheckerRegistry is no longer available to
clangStaticAnalyzerCheckers. It was renamed to BuiltinCheckerRegistration.h,
which actually describes it a lot better -- it does not contain the registration
functions for checkers, but only those generated by the tblgen files.

Differential Revision: https://reviews.llvm.org/D54436

llvm-svn: 349275
2018-12-15 16:23:51 +00:00

1059 lines
38 KiB
C++

//=== StdLibraryFunctionsChecker.cpp - Model standard functions -*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This checker improves modeling of a few simple library functions.
// It does not generate warnings.
//
// This checker provides a specification format - `FunctionSummaryTy' - and
// contains descriptions of some library functions in this format. Each
// specification contains a list of branches for splitting the program state
// upon call, and range constraints on argument and return-value symbols that
// are satisfied on each branch. This spec can be expanded to include more
// items, like external effects of the function.
//
// The main difference between this approach and the body farms technique is
// in more explicit control over how many branches are produced. For example,
// consider standard C function `ispunct(int x)', which returns a non-zero value
// iff `x' is a punctuation character, that is, when `x' is in range
// ['!', '/'] [':', '@'] U ['[', '\`'] U ['{', '~'].
// `FunctionSummaryTy' provides only two branches for this function. However,
// any attempt to describe this range with if-statements in the body farm
// would result in many more branches. Because each branch needs to be analyzed
// independently, this significantly reduces performance. Additionally,
// once we consider a branch on which `x' is in range, say, ['!', '/'],
// we assume that such branch is an important separate path through the program,
// which may lead to false positives because considering this particular path
// was not consciously intended, and therefore it might have been unreachable.
//
// This checker uses eval::Call for modeling "pure" functions, for which
// their `FunctionSummaryTy' is a precise model. This avoids unnecessary
// invalidation passes. Conflicts with other checkers are unlikely because
// if the function has no other effects, other checkers would probably never
// want to improve upon the modeling done by this checker.
//
// Non-"pure" functions, for which only partial improvement over the default
// behavior is expected, are modeled via check::PostCall, non-intrusively.
//
// The following standard C functions are currently supported:
//
// fgetc getline isdigit isupper
// fread isalnum isgraph isxdigit
// fwrite isalpha islower read
// getc isascii isprint write
// getchar isblank ispunct
// getdelim iscntrl isspace
//
//===----------------------------------------------------------------------===//
#include "clang/StaticAnalyzer/Checkers/BuiltinCheckerRegistration.h"
#include "clang/StaticAnalyzer/Core/Checker.h"
#include "clang/StaticAnalyzer/Core/CheckerManager.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
using namespace clang;
using namespace clang::ento;
namespace {
class StdLibraryFunctionsChecker : public Checker<check::PostCall, eval::Call> {
/// Below is a series of typedefs necessary to define function specs.
/// We avoid nesting types here because each additional qualifier
/// would need to be repeated in every function spec.
struct FunctionSummaryTy;
/// Specify how much the analyzer engine should entrust modeling this function
/// to us. If he doesn't, he performs additional invalidations.
enum InvalidationKindTy { NoEvalCall, EvalCallAsPure };
/// A pair of ValueRangeKindTy and IntRangeVectorTy would describe a range
/// imposed on a particular argument or return value symbol.
///
/// Given a range, should the argument stay inside or outside this range?
/// The special `ComparesToArgument' value indicates that we should
/// impose a constraint that involves other argument or return value symbols.
enum ValueRangeKindTy { OutOfRange, WithinRange, ComparesToArgument };
// The universal integral type to use in value range descriptions.
// Unsigned to make sure overflows are well-defined.
typedef uint64_t RangeIntTy;
/// Normally, describes a single range constraint, eg. {{0, 1}, {3, 4}} is
/// a non-negative integer, which less than 5 and not equal to 2. For
/// `ComparesToArgument', holds information about how exactly to compare to
/// the argument.
typedef std::vector<std::pair<RangeIntTy, RangeIntTy>> IntRangeVectorTy;
/// A reference to an argument or return value by its number.
/// ArgNo in CallExpr and CallEvent is defined as Unsigned, but
/// obviously uint32_t should be enough for all practical purposes.
typedef uint32_t ArgNoTy;
static const ArgNoTy Ret = std::numeric_limits<ArgNoTy>::max();
/// Incapsulates a single range on a single symbol within a branch.
class ValueRange {
ArgNoTy ArgNo; // Argument to which we apply the range.
ValueRangeKindTy Kind; // Kind of range definition.
IntRangeVectorTy Args; // Polymorphic arguments.
public:
ValueRange(ArgNoTy ArgNo, ValueRangeKindTy Kind,
const IntRangeVectorTy &Args)
: ArgNo(ArgNo), Kind(Kind), Args(Args) {}
ArgNoTy getArgNo() const { return ArgNo; }
ValueRangeKindTy getKind() const { return Kind; }
BinaryOperator::Opcode getOpcode() const {
assert(Kind == ComparesToArgument);
assert(Args.size() == 1);
BinaryOperator::Opcode Op =
static_cast<BinaryOperator::Opcode>(Args[0].first);
assert(BinaryOperator::isComparisonOp(Op) &&
"Only comparison ops are supported for ComparesToArgument");
return Op;
}
ArgNoTy getOtherArgNo() const {
assert(Kind == ComparesToArgument);
assert(Args.size() == 1);
return static_cast<ArgNoTy>(Args[0].second);
}
const IntRangeVectorTy &getRanges() const {
assert(Kind != ComparesToArgument);
return Args;
}
// We avoid creating a virtual apply() method because
// it makes initializer lists harder to write.
private:
ProgramStateRef
applyAsOutOfRange(ProgramStateRef State, const CallEvent &Call,
const FunctionSummaryTy &Summary) const;
ProgramStateRef
applyAsWithinRange(ProgramStateRef State, const CallEvent &Call,
const FunctionSummaryTy &Summary) const;
ProgramStateRef
applyAsComparesToArgument(ProgramStateRef State, const CallEvent &Call,
const FunctionSummaryTy &Summary) const;
public:
ProgramStateRef apply(ProgramStateRef State, const CallEvent &Call,
const FunctionSummaryTy &Summary) const {
switch (Kind) {
case OutOfRange:
return applyAsOutOfRange(State, Call, Summary);
case WithinRange:
return applyAsWithinRange(State, Call, Summary);
case ComparesToArgument:
return applyAsComparesToArgument(State, Call, Summary);
}
llvm_unreachable("Unknown ValueRange kind!");
}
};
/// The complete list of ranges that defines a single branch.
typedef std::vector<ValueRange> ValueRangeSet;
/// Includes information about function prototype (which is necessary to
/// ensure we're modeling the right function and casting values properly),
/// approach to invalidation, and a list of branches - essentially, a list
/// of list of ranges - essentially, a list of lists of lists of segments.
struct FunctionSummaryTy {
const std::vector<QualType> ArgTypes;
const QualType RetType;
const InvalidationKindTy InvalidationKind;
const std::vector<ValueRangeSet> Ranges;
private:
static void assertTypeSuitableForSummary(QualType T) {
assert(!T->isVoidType() &&
"We should have had no significant void types in the spec");
assert(T.isCanonical() &&
"We should only have canonical types in the spec");
// FIXME: lift this assert (but not the ones above!)
assert(T->isIntegralOrEnumerationType() &&
"We only support integral ranges in the spec");
}
public:
QualType getArgType(ArgNoTy ArgNo) const {
QualType T = (ArgNo == Ret) ? RetType : ArgTypes[ArgNo];
assertTypeSuitableForSummary(T);
return T;
}
/// Try our best to figure out if the call expression is the call of
/// *the* library function to which this specification applies.
bool matchesCall(const CallExpr *CE) const;
};
// The same function (as in, function identifier) may have different
// summaries assigned to it, with different argument and return value types.
// We call these "variants" of the function. This can be useful for handling
// C++ function overloads, and also it can be used when the same function
// may have different definitions on different platforms.
typedef std::vector<FunctionSummaryTy> FunctionVariantsTy;
// The map of all functions supported by the checker. It is initialized
// lazily, and it doesn't change after initialization.
typedef llvm::StringMap<FunctionVariantsTy> FunctionSummaryMapTy;
mutable FunctionSummaryMapTy FunctionSummaryMap;
// Auxiliary functions to support ArgNoTy within all structures
// in a unified manner.
static QualType getArgType(const FunctionSummaryTy &Summary, ArgNoTy ArgNo) {
return Summary.getArgType(ArgNo);
}
static QualType getArgType(const CallEvent &Call, ArgNoTy ArgNo) {
return ArgNo == Ret ? Call.getResultType().getCanonicalType()
: Call.getArgExpr(ArgNo)->getType().getCanonicalType();
}
static QualType getArgType(const CallExpr *CE, ArgNoTy ArgNo) {
return ArgNo == Ret ? CE->getType().getCanonicalType()
: CE->getArg(ArgNo)->getType().getCanonicalType();
}
static SVal getArgSVal(const CallEvent &Call, ArgNoTy ArgNo) {
return ArgNo == Ret ? Call.getReturnValue() : Call.getArgSVal(ArgNo);
}
public:
void checkPostCall(const CallEvent &Call, CheckerContext &C) const;
bool evalCall(const CallExpr *CE, CheckerContext &C) const;
private:
Optional<FunctionSummaryTy> findFunctionSummary(const FunctionDecl *FD,
const CallExpr *CE,
CheckerContext &C) const;
void initFunctionSummaries(BasicValueFactory &BVF) const;
};
} // end of anonymous namespace
ProgramStateRef StdLibraryFunctionsChecker::ValueRange::applyAsOutOfRange(
ProgramStateRef State, const CallEvent &Call,
const FunctionSummaryTy &Summary) const {
ProgramStateManager &Mgr = State->getStateManager();
SValBuilder &SVB = Mgr.getSValBuilder();
BasicValueFactory &BVF = SVB.getBasicValueFactory();
ConstraintManager &CM = Mgr.getConstraintManager();
QualType T = getArgType(Summary, getArgNo());
SVal V = getArgSVal(Call, getArgNo());
if (auto N = V.getAs<NonLoc>()) {
const IntRangeVectorTy &R = getRanges();
size_t E = R.size();
for (size_t I = 0; I != E; ++I) {
const llvm::APSInt &Min = BVF.getValue(R[I].first, T);
const llvm::APSInt &Max = BVF.getValue(R[I].second, T);
assert(Min <= Max);
State = CM.assumeInclusiveRange(State, *N, Min, Max, false);
if (!State)
break;
}
}
return State;
}
ProgramStateRef
StdLibraryFunctionsChecker::ValueRange::applyAsWithinRange(
ProgramStateRef State, const CallEvent &Call,
const FunctionSummaryTy &Summary) const {
ProgramStateManager &Mgr = State->getStateManager();
SValBuilder &SVB = Mgr.getSValBuilder();
BasicValueFactory &BVF = SVB.getBasicValueFactory();
ConstraintManager &CM = Mgr.getConstraintManager();
QualType T = getArgType(Summary, getArgNo());
SVal V = getArgSVal(Call, getArgNo());
// "WithinRange R" is treated as "outside [T_MIN, T_MAX] \ R".
// We cut off [T_MIN, min(R) - 1] and [max(R) + 1, T_MAX] if necessary,
// and then cut away all holes in R one by one.
if (auto N = V.getAs<NonLoc>()) {
const IntRangeVectorTy &R = getRanges();
size_t E = R.size();
const llvm::APSInt &MinusInf = BVF.getMinValue(T);
const llvm::APSInt &PlusInf = BVF.getMaxValue(T);
const llvm::APSInt &Left = BVF.getValue(R[0].first - 1ULL, T);
if (Left != PlusInf) {
assert(MinusInf <= Left);
State = CM.assumeInclusiveRange(State, *N, MinusInf, Left, false);
if (!State)
return nullptr;
}
const llvm::APSInt &Right = BVF.getValue(R[E - 1].second + 1ULL, T);
if (Right != MinusInf) {
assert(Right <= PlusInf);
State = CM.assumeInclusiveRange(State, *N, Right, PlusInf, false);
if (!State)
return nullptr;
}
for (size_t I = 1; I != E; ++I) {
const llvm::APSInt &Min = BVF.getValue(R[I - 1].second + 1ULL, T);
const llvm::APSInt &Max = BVF.getValue(R[I].first - 1ULL, T);
assert(Min <= Max);
State = CM.assumeInclusiveRange(State, *N, Min, Max, false);
if (!State)
return nullptr;
}
}
return State;
}
ProgramStateRef
StdLibraryFunctionsChecker::ValueRange::applyAsComparesToArgument(
ProgramStateRef State, const CallEvent &Call,
const FunctionSummaryTy &Summary) const {
ProgramStateManager &Mgr = State->getStateManager();
SValBuilder &SVB = Mgr.getSValBuilder();
QualType CondT = SVB.getConditionType();
QualType T = getArgType(Summary, getArgNo());
SVal V = getArgSVal(Call, getArgNo());
BinaryOperator::Opcode Op = getOpcode();
ArgNoTy OtherArg = getOtherArgNo();
SVal OtherV = getArgSVal(Call, OtherArg);
QualType OtherT = getArgType(Call, OtherArg);
// Note: we avoid integral promotion for comparison.
OtherV = SVB.evalCast(OtherV, T, OtherT);
if (auto CompV = SVB.evalBinOp(State, Op, V, OtherV, CondT)
.getAs<DefinedOrUnknownSVal>())
State = State->assume(*CompV, true);
return State;
}
void StdLibraryFunctionsChecker::checkPostCall(const CallEvent &Call,
CheckerContext &C) const {
const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(Call.getDecl());
if (!FD)
return;
const CallExpr *CE = dyn_cast_or_null<CallExpr>(Call.getOriginExpr());
if (!CE)
return;
Optional<FunctionSummaryTy> FoundSummary = findFunctionSummary(FD, CE, C);
if (!FoundSummary)
return;
// Now apply ranges.
const FunctionSummaryTy &Summary = *FoundSummary;
ProgramStateRef State = C.getState();
for (const auto &VRS: Summary.Ranges) {
ProgramStateRef NewState = State;
for (const auto &VR: VRS) {
NewState = VR.apply(NewState, Call, Summary);
if (!NewState)
break;
}
if (NewState && NewState != State)
C.addTransition(NewState);
}
}
bool StdLibraryFunctionsChecker::evalCall(const CallExpr *CE,
CheckerContext &C) const {
const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CE->getCalleeDecl());
if (!FD)
return false;
Optional<FunctionSummaryTy> FoundSummary = findFunctionSummary(FD, CE, C);
if (!FoundSummary)
return false;
const FunctionSummaryTy &Summary = *FoundSummary;
switch (Summary.InvalidationKind) {
case EvalCallAsPure: {
ProgramStateRef State = C.getState();
const LocationContext *LC = C.getLocationContext();
SVal V = C.getSValBuilder().conjureSymbolVal(
CE, LC, CE->getType().getCanonicalType(), C.blockCount());
State = State->BindExpr(CE, LC, V);
C.addTransition(State);
return true;
}
case NoEvalCall:
// Summary tells us to avoid performing eval::Call. The function is possibly
// evaluated by another checker, or evaluated conservatively.
return false;
}
llvm_unreachable("Unknown invalidation kind!");
}
bool StdLibraryFunctionsChecker::FunctionSummaryTy::matchesCall(
const CallExpr *CE) const {
// Check number of arguments:
if (CE->getNumArgs() != ArgTypes.size())
return false;
// Check return type if relevant:
if (!RetType.isNull() && RetType != CE->getType().getCanonicalType())
return false;
// Check argument types when relevant:
for (size_t I = 0, E = ArgTypes.size(); I != E; ++I) {
QualType FormalT = ArgTypes[I];
// Null type marks irrelevant arguments.
if (FormalT.isNull())
continue;
assertTypeSuitableForSummary(FormalT);
QualType ActualT = StdLibraryFunctionsChecker::getArgType(CE, I);
assert(ActualT.isCanonical());
if (ActualT != FormalT)
return false;
}
return true;
}
Optional<StdLibraryFunctionsChecker::FunctionSummaryTy>
StdLibraryFunctionsChecker::findFunctionSummary(const FunctionDecl *FD,
const CallExpr *CE,
CheckerContext &C) const {
// Note: we cannot always obtain FD from CE
// (eg. virtual call, or call by pointer).
assert(CE);
if (!FD)
return None;
SValBuilder &SVB = C.getSValBuilder();
BasicValueFactory &BVF = SVB.getBasicValueFactory();
initFunctionSummaries(BVF);
IdentifierInfo *II = FD->getIdentifier();
if (!II)
return None;
StringRef Name = II->getName();
if (Name.empty() || !C.isCLibraryFunction(FD, Name))
return None;
auto FSMI = FunctionSummaryMap.find(Name);
if (FSMI == FunctionSummaryMap.end())
return None;
// Verify that function signature matches the spec in advance.
// Otherwise we might be modeling the wrong function.
// Strict checking is important because we will be conducting
// very integral-type-sensitive operations on arguments and
// return values.
const FunctionVariantsTy &SpecVariants = FSMI->second;
for (const FunctionSummaryTy &Spec : SpecVariants)
if (Spec.matchesCall(CE))
return Spec;
return None;
}
void StdLibraryFunctionsChecker::initFunctionSummaries(
BasicValueFactory &BVF) const {
if (!FunctionSummaryMap.empty())
return;
ASTContext &ACtx = BVF.getContext();
// These types are useful for writing specifications quickly,
// New specifications should probably introduce more types.
// Some types are hard to obtain from the AST, eg. "ssize_t".
// In such cases it should be possible to provide multiple variants
// of function summary for common cases (eg. ssize_t could be int or long
// or long long, so three summary variants would be enough).
// Of course, function variants are also useful for C++ overloads.
QualType Irrelevant; // A placeholder, whenever we do not care about the type.
QualType IntTy = ACtx.IntTy;
QualType LongTy = ACtx.LongTy;
QualType LongLongTy = ACtx.LongLongTy;
QualType SizeTy = ACtx.getSizeType();
RangeIntTy IntMax = BVF.getMaxValue(IntTy).getLimitedValue();
RangeIntTy LongMax = BVF.getMaxValue(LongTy).getLimitedValue();
RangeIntTy LongLongMax = BVF.getMaxValue(LongLongTy).getLimitedValue();
// We are finally ready to define specifications for all supported functions.
//
// The signature needs to have the correct number of arguments.
// However, we insert `Irrelevant' when the type is insignificant.
//
// Argument ranges should always cover all variants. If return value
// is completely unknown, omit it from the respective range set.
//
// All types in the spec need to be canonical.
//
// Every item in the list of range sets represents a particular
// execution path the analyzer would need to explore once
// the call is modeled - a new program state is constructed
// for every range set, and each range line in the range set
// corresponds to a specific constraint within this state.
//
// Upon comparing to another argument, the other argument is casted
// to the current argument's type. This avoids proper promotion but
// seems useful. For example, read() receives size_t argument,
// and its return value, which is of type ssize_t, cannot be greater
// than this argument. If we made a promotion, and the size argument
// is equal to, say, 10, then we'd impose a range of [0, 10] on the
// return value, however the correct range is [-1, 10].
//
// Please update the list of functions in the header after editing!
//
// The format is as follows:
//
//{ "function name",
// { spec:
// { argument types list, ... },
// return type, purity, { range set list:
// { range list:
// { argument index, within or out of, {{from, to}, ...} },
// { argument index, compares to argument, {{how, which}} },
// ...
// }
// }
// }
//}
#define SUMMARY_WITH_VARIANTS(identifier) {#identifier, {
#define END_SUMMARY_WITH_VARIANTS }},
#define VARIANT(argument_types, return_type, invalidation_approach) \
{ argument_types, return_type, invalidation_approach, {
#define END_VARIANT } },
#define SUMMARY(identifier, argument_types, return_type, \
invalidation_approach) \
{ #identifier, { { argument_types, return_type, invalidation_approach, {
#define END_SUMMARY } } } },
#define ARGUMENT_TYPES(...) { __VA_ARGS__ }
#define RETURN_TYPE(x) x
#define INVALIDATION_APPROACH(x) x
#define CASE {
#define END_CASE },
#define ARGUMENT_CONDITION(argument_number, condition_kind) \
{ argument_number, condition_kind, {
#define END_ARGUMENT_CONDITION }},
#define RETURN_VALUE_CONDITION(condition_kind) \
{ Ret, condition_kind, {
#define END_RETURN_VALUE_CONDITION }},
#define ARG_NO(x) x##U
#define RANGE(x, y) { x, y },
#define SINGLE_VALUE(x) RANGE(x, x)
#define IS_LESS_THAN(arg) { BO_LE, arg }
FunctionSummaryMap = {
// The isascii() family of functions.
SUMMARY(isalnum, ARGUMENT_TYPES(IntTy), RETURN_TYPE(IntTy),
INVALIDATION_APPROACH(EvalCallAsPure))
CASE // Boils down to isupper() or islower() or isdigit()
ARGUMENT_CONDITION(ARG_NO(0), WithinRange)
RANGE('0', '9')
RANGE('A', 'Z')
RANGE('a', 'z')
END_ARGUMENT_CONDITION
RETURN_VALUE_CONDITION(OutOfRange)
SINGLE_VALUE(0)
END_RETURN_VALUE_CONDITION
END_CASE
CASE // The locale-specific range.
ARGUMENT_CONDITION(ARG_NO(0), WithinRange)
RANGE(128, 255)
END_ARGUMENT_CONDITION
// No post-condition. We are completely unaware of
// locale-specific return values.
END_CASE
CASE
ARGUMENT_CONDITION(ARG_NO(0), OutOfRange)
RANGE('0', '9')
RANGE('A', 'Z')
RANGE('a', 'z')
RANGE(128, 255)
END_ARGUMENT_CONDITION
RETURN_VALUE_CONDITION(WithinRange)
SINGLE_VALUE(0)
END_RETURN_VALUE_CONDITION
END_CASE
END_SUMMARY
SUMMARY(isalpha, ARGUMENT_TYPES(IntTy), RETURN_TYPE(IntTy),
INVALIDATION_APPROACH(EvalCallAsPure))
CASE // isupper() or islower(). Note that 'Z' is less than 'a'.
ARGUMENT_CONDITION(ARG_NO(0), WithinRange)
RANGE('A', 'Z')
RANGE('a', 'z')
END_ARGUMENT_CONDITION
RETURN_VALUE_CONDITION(OutOfRange)
SINGLE_VALUE(0)
END_RETURN_VALUE_CONDITION
END_CASE
CASE // The locale-specific range.
ARGUMENT_CONDITION(ARG_NO(0), WithinRange)
RANGE(128, 255)
END_ARGUMENT_CONDITION
END_CASE
CASE // Other.
ARGUMENT_CONDITION(ARG_NO(0), OutOfRange)
RANGE('A', 'Z')
RANGE('a', 'z')
RANGE(128, 255)
END_ARGUMENT_CONDITION
RETURN_VALUE_CONDITION(WithinRange)
SINGLE_VALUE(0)
END_RETURN_VALUE_CONDITION
END_CASE
END_SUMMARY
SUMMARY(isascii, ARGUMENT_TYPES(IntTy), RETURN_TYPE(IntTy),
INVALIDATION_APPROACH(EvalCallAsPure))
CASE // Is ASCII.
ARGUMENT_CONDITION(ARG_NO(0), WithinRange)
RANGE(0, 127)
END_ARGUMENT_CONDITION
RETURN_VALUE_CONDITION(OutOfRange)
SINGLE_VALUE(0)
END_RETURN_VALUE_CONDITION
END_CASE
CASE
ARGUMENT_CONDITION(ARG_NO(0), OutOfRange)
RANGE(0, 127)
END_ARGUMENT_CONDITION
RETURN_VALUE_CONDITION(WithinRange)
SINGLE_VALUE(0)
END_RETURN_VALUE_CONDITION
END_CASE
END_SUMMARY
SUMMARY(isblank, ARGUMENT_TYPES(IntTy), RETURN_TYPE(IntTy),
INVALIDATION_APPROACH(EvalCallAsPure))
CASE
ARGUMENT_CONDITION(ARG_NO(0), WithinRange)
SINGLE_VALUE('\t')
SINGLE_VALUE(' ')
END_ARGUMENT_CONDITION
RETURN_VALUE_CONDITION(OutOfRange)
SINGLE_VALUE(0)
END_RETURN_VALUE_CONDITION
END_CASE
CASE
ARGUMENT_CONDITION(ARG_NO(0), OutOfRange)
SINGLE_VALUE('\t')
SINGLE_VALUE(' ')
END_ARGUMENT_CONDITION
RETURN_VALUE_CONDITION(WithinRange)
SINGLE_VALUE(0)
END_RETURN_VALUE_CONDITION
END_CASE
END_SUMMARY
SUMMARY(iscntrl, ARGUMENT_TYPES(IntTy), RETURN_TYPE(IntTy),
INVALIDATION_APPROACH(EvalCallAsPure))
CASE // 0..31 or 127
ARGUMENT_CONDITION(ARG_NO(0), WithinRange)
RANGE(0, 32)
SINGLE_VALUE(127)
END_ARGUMENT_CONDITION
RETURN_VALUE_CONDITION(OutOfRange)
SINGLE_VALUE(0)
END_RETURN_VALUE_CONDITION
END_CASE
CASE
ARGUMENT_CONDITION(ARG_NO(0), OutOfRange)
RANGE(0, 32)
SINGLE_VALUE(127)
END_ARGUMENT_CONDITION
RETURN_VALUE_CONDITION(WithinRange)
SINGLE_VALUE(0)
END_RETURN_VALUE_CONDITION
END_CASE
END_SUMMARY
SUMMARY(isdigit, ARGUMENT_TYPES(IntTy), RETURN_TYPE(IntTy),
INVALIDATION_APPROACH(EvalCallAsPure))
CASE // Is a digit.
ARGUMENT_CONDITION(ARG_NO(0), WithinRange)
RANGE('0', '9')
END_ARGUMENT_CONDITION
RETURN_VALUE_CONDITION(OutOfRange)
SINGLE_VALUE(0)
END_RETURN_VALUE_CONDITION
END_CASE
CASE
ARGUMENT_CONDITION(ARG_NO(0), OutOfRange)
RANGE('0', '9')
END_ARGUMENT_CONDITION
RETURN_VALUE_CONDITION(WithinRange)
SINGLE_VALUE(0)
END_RETURN_VALUE_CONDITION
END_CASE
END_SUMMARY
SUMMARY(isgraph, ARGUMENT_TYPES(IntTy), RETURN_TYPE(IntTy),
INVALIDATION_APPROACH(EvalCallAsPure))
CASE
ARGUMENT_CONDITION(ARG_NO(0), WithinRange)
RANGE(33, 126)
END_ARGUMENT_CONDITION
RETURN_VALUE_CONDITION(OutOfRange)
SINGLE_VALUE(0)
END_RETURN_VALUE_CONDITION
END_CASE
CASE
ARGUMENT_CONDITION(ARG_NO(0), OutOfRange)
RANGE(33, 126)
END_ARGUMENT_CONDITION
RETURN_VALUE_CONDITION(WithinRange)
SINGLE_VALUE(0)
END_RETURN_VALUE_CONDITION
END_CASE
END_SUMMARY
SUMMARY(islower, ARGUMENT_TYPES(IntTy), RETURN_TYPE(IntTy),
INVALIDATION_APPROACH(EvalCallAsPure))
CASE // Is certainly lowercase.
ARGUMENT_CONDITION(ARG_NO(0), WithinRange)
RANGE('a', 'z')
END_ARGUMENT_CONDITION
RETURN_VALUE_CONDITION(OutOfRange)
SINGLE_VALUE(0)
END_RETURN_VALUE_CONDITION
END_CASE
CASE // Is ascii but not lowercase.
ARGUMENT_CONDITION(ARG_NO(0), WithinRange)
RANGE(0, 127)
END_ARGUMENT_CONDITION
ARGUMENT_CONDITION(ARG_NO(0), OutOfRange)
RANGE('a', 'z')
END_ARGUMENT_CONDITION
RETURN_VALUE_CONDITION(WithinRange)
SINGLE_VALUE(0)
END_RETURN_VALUE_CONDITION
END_CASE
CASE // The locale-specific range.
ARGUMENT_CONDITION(ARG_NO(0), WithinRange)
RANGE(128, 255)
END_ARGUMENT_CONDITION
END_CASE
CASE // Is not an unsigned char.
ARGUMENT_CONDITION(ARG_NO(0), OutOfRange)
RANGE(0, 255)
END_ARGUMENT_CONDITION
RETURN_VALUE_CONDITION(WithinRange)
SINGLE_VALUE(0)
END_RETURN_VALUE_CONDITION
END_CASE
END_SUMMARY
SUMMARY(isprint, ARGUMENT_TYPES(IntTy), RETURN_TYPE(IntTy),
INVALIDATION_APPROACH(EvalCallAsPure))
CASE
ARGUMENT_CONDITION(ARG_NO(0), WithinRange)
RANGE(32, 126)
END_ARGUMENT_CONDITION
RETURN_VALUE_CONDITION(OutOfRange)
SINGLE_VALUE(0)
END_RETURN_VALUE_CONDITION
END_CASE
CASE
ARGUMENT_CONDITION(ARG_NO(0), OutOfRange)
RANGE(32, 126)
END_ARGUMENT_CONDITION
RETURN_VALUE_CONDITION(WithinRange)
SINGLE_VALUE(0)
END_RETURN_VALUE_CONDITION
END_CASE
END_SUMMARY
SUMMARY(ispunct, ARGUMENT_TYPES(IntTy), RETURN_TYPE(IntTy),
INVALIDATION_APPROACH(EvalCallAsPure))
CASE
ARGUMENT_CONDITION(ARG_NO(0), WithinRange)
RANGE('!', '/')
RANGE(':', '@')
RANGE('[', '`')
RANGE('{', '~')
END_ARGUMENT_CONDITION
RETURN_VALUE_CONDITION(OutOfRange)
SINGLE_VALUE(0)
END_RETURN_VALUE_CONDITION
END_CASE
CASE
ARGUMENT_CONDITION(ARG_NO(0), OutOfRange)
RANGE('!', '/')
RANGE(':', '@')
RANGE('[', '`')
RANGE('{', '~')
END_ARGUMENT_CONDITION
RETURN_VALUE_CONDITION(WithinRange)
SINGLE_VALUE(0)
END_RETURN_VALUE_CONDITION
END_CASE
END_SUMMARY
SUMMARY(isspace, ARGUMENT_TYPES(IntTy), RETURN_TYPE(IntTy),
INVALIDATION_APPROACH(EvalCallAsPure))
CASE // Space, '\f', '\n', '\r', '\t', '\v'.
ARGUMENT_CONDITION(ARG_NO(0), WithinRange)
RANGE(9, 13)
SINGLE_VALUE(' ')
END_ARGUMENT_CONDITION
RETURN_VALUE_CONDITION(OutOfRange)
SINGLE_VALUE(0)
END_RETURN_VALUE_CONDITION
END_CASE
CASE // The locale-specific range.
ARGUMENT_CONDITION(ARG_NO(0), WithinRange)
RANGE(128, 255)
END_ARGUMENT_CONDITION
END_CASE
CASE
ARGUMENT_CONDITION(ARG_NO(0), OutOfRange)
RANGE(9, 13)
SINGLE_VALUE(' ')
RANGE(128, 255)
END_ARGUMENT_CONDITION
RETURN_VALUE_CONDITION(WithinRange)
SINGLE_VALUE(0)
END_RETURN_VALUE_CONDITION
END_CASE
END_SUMMARY
SUMMARY(isupper, ARGUMENT_TYPES(IntTy), RETURN_TYPE (IntTy),
INVALIDATION_APPROACH(EvalCallAsPure))
CASE // Is certainly uppercase.
ARGUMENT_CONDITION(ARG_NO(0), WithinRange)
RANGE('A', 'Z')
END_ARGUMENT_CONDITION
RETURN_VALUE_CONDITION(OutOfRange)
SINGLE_VALUE(0)
END_RETURN_VALUE_CONDITION
END_CASE
CASE // The locale-specific range.
ARGUMENT_CONDITION(ARG_NO(0), WithinRange)
RANGE(128, 255)
END_ARGUMENT_CONDITION
END_CASE
CASE // Other.
ARGUMENT_CONDITION(ARG_NO(0), OutOfRange)
RANGE('A', 'Z') RANGE(128, 255)
END_ARGUMENT_CONDITION
RETURN_VALUE_CONDITION(WithinRange)
SINGLE_VALUE(0)
END_RETURN_VALUE_CONDITION
END_CASE
END_SUMMARY
SUMMARY(isxdigit, ARGUMENT_TYPES(IntTy), RETURN_TYPE(IntTy),
INVALIDATION_APPROACH(EvalCallAsPure))
CASE
ARGUMENT_CONDITION(ARG_NO(0), WithinRange)
RANGE('0', '9')
RANGE('A', 'F')
RANGE('a', 'f')
END_ARGUMENT_CONDITION
RETURN_VALUE_CONDITION(OutOfRange)
SINGLE_VALUE(0)
END_RETURN_VALUE_CONDITION
END_CASE
CASE
ARGUMENT_CONDITION(ARG_NO(0), OutOfRange)
RANGE('0', '9')
RANGE('A', 'F')
RANGE('a', 'f')
END_ARGUMENT_CONDITION
RETURN_VALUE_CONDITION(WithinRange)
SINGLE_VALUE(0)
END_RETURN_VALUE_CONDITION
END_CASE
END_SUMMARY
// The getc() family of functions that returns either a char or an EOF.
SUMMARY(getc, ARGUMENT_TYPES(Irrelevant), RETURN_TYPE(IntTy),
INVALIDATION_APPROACH(NoEvalCall))
CASE // FIXME: EOF is assumed to be defined as -1.
RETURN_VALUE_CONDITION(WithinRange)
RANGE(-1, 255)
END_RETURN_VALUE_CONDITION
END_CASE
END_SUMMARY
SUMMARY(fgetc, ARGUMENT_TYPES(Irrelevant), RETURN_TYPE(IntTy),
INVALIDATION_APPROACH(NoEvalCall))
CASE // FIXME: EOF is assumed to be defined as -1.
RETURN_VALUE_CONDITION(WithinRange)
RANGE(-1, 255)
END_RETURN_VALUE_CONDITION
END_CASE
END_SUMMARY
SUMMARY(getchar, ARGUMENT_TYPES(), RETURN_TYPE(IntTy),
INVALIDATION_APPROACH(NoEvalCall))
CASE // FIXME: EOF is assumed to be defined as -1.
RETURN_VALUE_CONDITION(WithinRange)
RANGE(-1, 255)
END_RETURN_VALUE_CONDITION
END_CASE
END_SUMMARY
// read()-like functions that never return more than buffer size.
// We are not sure how ssize_t is defined on every platform, so we provide
// three variants that should cover common cases.
SUMMARY_WITH_VARIANTS(read)
VARIANT(ARGUMENT_TYPES(Irrelevant, Irrelevant, SizeTy),
RETURN_TYPE(IntTy), INVALIDATION_APPROACH(NoEvalCall))
CASE
RETURN_VALUE_CONDITION(ComparesToArgument)
IS_LESS_THAN(ARG_NO(2))
END_RETURN_VALUE_CONDITION
RETURN_VALUE_CONDITION(WithinRange)
RANGE(-1, IntMax)
END_RETURN_VALUE_CONDITION
END_CASE
END_VARIANT
VARIANT(ARGUMENT_TYPES(Irrelevant, Irrelevant, SizeTy),
RETURN_TYPE(LongTy), INVALIDATION_APPROACH(NoEvalCall))
CASE
RETURN_VALUE_CONDITION(ComparesToArgument)
IS_LESS_THAN(ARG_NO(2))
END_RETURN_VALUE_CONDITION
RETURN_VALUE_CONDITION(WithinRange)
RANGE(-1, LongMax)
END_RETURN_VALUE_CONDITION
END_CASE
END_VARIANT
VARIANT(ARGUMENT_TYPES(Irrelevant, Irrelevant, SizeTy),
RETURN_TYPE(LongLongTy), INVALIDATION_APPROACH(NoEvalCall))
CASE
RETURN_VALUE_CONDITION(ComparesToArgument)
IS_LESS_THAN(ARG_NO(2))
END_RETURN_VALUE_CONDITION
RETURN_VALUE_CONDITION(WithinRange)
RANGE(-1, LongLongMax)
END_RETURN_VALUE_CONDITION
END_CASE
END_VARIANT
END_SUMMARY_WITH_VARIANTS
SUMMARY_WITH_VARIANTS(write)
// Again, due to elusive nature of ssize_t, we have duplicate
// our summaries to cover different variants.
VARIANT(ARGUMENT_TYPES(Irrelevant, Irrelevant, SizeTy),
RETURN_TYPE(IntTy), INVALIDATION_APPROACH(NoEvalCall))
CASE
RETURN_VALUE_CONDITION(ComparesToArgument)
IS_LESS_THAN(ARG_NO(2))
END_RETURN_VALUE_CONDITION
RETURN_VALUE_CONDITION(WithinRange)
RANGE(-1, IntMax)
END_RETURN_VALUE_CONDITION
END_CASE
END_VARIANT
VARIANT(ARGUMENT_TYPES(Irrelevant, Irrelevant, SizeTy),
RETURN_TYPE(LongTy), INVALIDATION_APPROACH(NoEvalCall))
CASE
RETURN_VALUE_CONDITION(ComparesToArgument)
IS_LESS_THAN(ARG_NO(2))
END_RETURN_VALUE_CONDITION
RETURN_VALUE_CONDITION(WithinRange)
RANGE(-1, LongMax)
END_RETURN_VALUE_CONDITION
END_CASE
END_VARIANT
VARIANT(ARGUMENT_TYPES(Irrelevant, Irrelevant, SizeTy),
RETURN_TYPE(LongLongTy), INVALIDATION_APPROACH(NoEvalCall))
CASE
RETURN_VALUE_CONDITION(ComparesToArgument)
IS_LESS_THAN(ARG_NO(2))
END_RETURN_VALUE_CONDITION
RETURN_VALUE_CONDITION(WithinRange)
RANGE(-1, LongLongMax)
END_RETURN_VALUE_CONDITION
END_CASE
END_VARIANT
END_SUMMARY_WITH_VARIANTS
SUMMARY(fread,
ARGUMENT_TYPES(Irrelevant, Irrelevant, SizeTy, Irrelevant),
RETURN_TYPE(SizeTy), INVALIDATION_APPROACH(NoEvalCall))
CASE
RETURN_VALUE_CONDITION(ComparesToArgument)
IS_LESS_THAN(ARG_NO(2))
END_RETURN_VALUE_CONDITION
END_CASE
END_SUMMARY
SUMMARY(fwrite,
ARGUMENT_TYPES(Irrelevant, Irrelevant, SizeTy, Irrelevant),
RETURN_TYPE(SizeTy), INVALIDATION_APPROACH(NoEvalCall))
CASE
RETURN_VALUE_CONDITION(ComparesToArgument)
IS_LESS_THAN(ARG_NO(2))
END_RETURN_VALUE_CONDITION
END_CASE
END_SUMMARY
// getline()-like functions either fail or read at least the delimiter.
SUMMARY_WITH_VARIANTS(getline)
VARIANT(ARGUMENT_TYPES(Irrelevant, Irrelevant, Irrelevant),
RETURN_TYPE(IntTy), INVALIDATION_APPROACH(NoEvalCall))
CASE
RETURN_VALUE_CONDITION(WithinRange)
SINGLE_VALUE(-1)
RANGE(1, IntMax)
END_RETURN_VALUE_CONDITION
END_CASE
END_VARIANT
VARIANT(ARGUMENT_TYPES(Irrelevant, Irrelevant, Irrelevant),
RETURN_TYPE(LongTy), INVALIDATION_APPROACH(NoEvalCall))
CASE
RETURN_VALUE_CONDITION(WithinRange)
SINGLE_VALUE(-1)
RANGE(1, LongMax)
END_RETURN_VALUE_CONDITION
END_CASE
END_VARIANT
VARIANT(ARGUMENT_TYPES(Irrelevant, Irrelevant, Irrelevant),
RETURN_TYPE(LongLongTy), INVALIDATION_APPROACH(NoEvalCall))
CASE
RETURN_VALUE_CONDITION(WithinRange)
SINGLE_VALUE(-1)
RANGE(1, LongLongMax)
END_RETURN_VALUE_CONDITION
END_CASE
END_VARIANT
END_SUMMARY_WITH_VARIANTS
SUMMARY_WITH_VARIANTS(getdelim)
VARIANT(ARGUMENT_TYPES(Irrelevant, Irrelevant, Irrelevant, Irrelevant),
RETURN_TYPE(IntTy), INVALIDATION_APPROACH(NoEvalCall))
CASE
RETURN_VALUE_CONDITION(WithinRange)
SINGLE_VALUE(-1)
RANGE(1, IntMax)
END_RETURN_VALUE_CONDITION
END_CASE
END_VARIANT
VARIANT(ARGUMENT_TYPES(Irrelevant, Irrelevant, Irrelevant, Irrelevant),
RETURN_TYPE(LongTy), INVALIDATION_APPROACH(NoEvalCall))
CASE
RETURN_VALUE_CONDITION(WithinRange)
SINGLE_VALUE(-1)
RANGE(1, LongMax)
END_RETURN_VALUE_CONDITION
END_CASE
END_VARIANT
VARIANT(ARGUMENT_TYPES(Irrelevant, Irrelevant, Irrelevant, Irrelevant),
RETURN_TYPE(LongLongTy), INVALIDATION_APPROACH(NoEvalCall))
CASE
RETURN_VALUE_CONDITION(WithinRange)
SINGLE_VALUE(-1)
RANGE(1, LongLongMax)
END_RETURN_VALUE_CONDITION
END_CASE
END_VARIANT
END_SUMMARY_WITH_VARIANTS
};
}
void ento::registerStdCLibraryFunctionsChecker(CheckerManager &mgr) {
// If this checker grows large enough to support C++, Objective-C, or other
// standard libraries, we could use multiple register...Checker() functions,
// which would register various checkers with the help of the same Checker
// class, turning on different function summaries.
mgr.registerChecker<StdLibraryFunctionsChecker>();
}