Louis Dionne 02540b2f6d
[libc++] Make sure ranges algorithms and views handle boolean-testable correctly (#69378)
Before this patch, we would fail to implicitly convert the result of
predicates to bool, which means we'd potentially perform a copy or move
construction of the boolean-testable, which isn't allowed. The same
holds true for comparing iterators against sentinels, which is allowed
to return a boolean-testable type.

We already had tests aiming to ensure correct handling of these types,
but they failed to provide appropriate coverage in several cases due to
guaranteed RVO. This patch fixes the tests, adds tests for missing
algorithms and views, and fixes the actual problems in the code.

Fixes #69074
2023-11-06 21:19:49 -10:00

183 lines
6.4 KiB
C++

//===----------------------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
// <algorithm>
// UNSUPPORTED: c++03, c++11, c++14, c++17
// template<forward_iterator I, sentinel_for<I> S, class Proj = identity,
// indirect_binary_predicate<projected<I, Proj>,
// projected<I, Proj>> Pred = ranges::equal_to>
// constexpr I ranges::adjacent_find(I first, S last, Pred pred = {}, Proj proj = {});
// template<forward_range R, class Proj = identity,
// indirect_binary_predicate<projected<iterator_t<R>, Proj>,
// projected<iterator_t<R>, Proj>> Pred = ranges::equal_to>
// constexpr borrowed_iterator_t<R> ranges::adjacent_find(R&& r, Pred pred = {}, Proj proj = {});
#include <algorithm>
#include <array>
#include <cassert>
#include <cstddef>
#include <ranges>
#include "almost_satisfies_types.h"
#include "test_iterators.h"
template <class Iter, class Sent = Iter>
concept HasAdjacentFindIt = requires (Iter iter, Sent sent) { std::ranges::adjacent_find(iter, sent); };
struct NotComparable {};
static_assert(HasAdjacentFindIt<int*>);
static_assert(!HasAdjacentFindIt<ForwardIteratorNotDerivedFrom>);
static_assert(!HasAdjacentFindIt<ForwardIteratorNotIncrementable>);
static_assert(!HasAdjacentFindIt<int*, SentinelForNotSemiregular>);
static_assert(!HasAdjacentFindIt<int*, SentinelForNotWeaklyEqualityComparableWith>);
static_assert(!HasAdjacentFindIt<NotComparable*>);
template <class Range>
concept HasAdjacentFindR = requires (Range range) { std::ranges::adjacent_find(range); };
static_assert(HasAdjacentFindR<UncheckedRange<int*>>);
static_assert(!HasAdjacentFindR<ForwardRangeNotDerivedFrom>);
static_assert(!HasAdjacentFindR<ForwardRangeNotIncrementable>);
static_assert(!HasAdjacentFindR<ForwardRangeNotSentinelSemiregular>);
static_assert(!HasAdjacentFindR<ForwardRangeNotSentinelEqualityComparableWith>);
static_assert(!HasAdjacentFindR<UncheckedRange<NotComparable>>);
template <std::size_t N>
struct Data {
std::array<int, N> input;
int expected;
};
template <class Iter, class Sent, std::size_t N>
constexpr void test(Data<N> d) {
{
std::same_as<Iter> decltype(auto) ret =
std::ranges::adjacent_find(Iter(d.input.data()), Sent(Iter(d.input.data() + d.input.size())));
assert(base(ret) == d.input.data() + d.expected);
}
{
auto range = std::ranges::subrange(Iter(d.input.data()), Sent(Iter(d.input.data() + d.input.size())));
std::same_as<Iter> decltype(auto) ret = std::ranges::adjacent_find(range);
assert(base(ret) == d.input.data() + d.expected);
}
}
template <class Iter, class Sent = Iter>
constexpr void test_iterators() {
// simple test
test<Iter, Sent, 4>({.input = {1, 2, 2, 4}, .expected = 1});
// last is returned with no match
test<Iter, Sent, 4>({.input = {1, 2, 3, 4}, .expected = 4});
// first elements match
test<Iter, Sent, 4>({.input = {1, 1, 3, 4}, .expected = 0});
// the first match is returned
test<Iter, Sent, 7>({.input = {1, 1, 3, 4, 4, 4, 4}, .expected = 0});
// two element range works
test<Iter, Sent, 2>({.input = {3, 3}, .expected = 0});
// single element range works
test<Iter, Sent, 1>({.input = {1}, .expected = 1});
// empty range works
test<Iter, Sent, 0>({.input = {}, .expected = 0});
}
constexpr bool test() {
test_iterators<forward_iterator<int*>, sentinel_wrapper<forward_iterator<int*>>>();
test_iterators<forward_iterator<int*>>();
test_iterators<bidirectional_iterator<int*>>();
test_iterators<random_access_iterator<int*>>();
test_iterators<contiguous_iterator<int*>>();
test_iterators<int*>();
test_iterators<const int*>();
{ // check that ranges::dangling is returned
[[maybe_unused]] std::same_as<std::ranges::dangling> decltype(auto) ret =
std::ranges::adjacent_find(std::array{1, 2, 3, 4});
}
{ // check that the complexity requirements are met with no match
{
int predicateCount = 0;
auto pred = [&](int, int) { ++predicateCount; return false; };
auto projectionCount = 0;
auto proj = [&](int i) { ++projectionCount; return i; };
int a[] = {1, 2, 3, 4, 5};
auto ret = std::ranges::adjacent_find(a, a + 5, pred, proj);
assert(ret == a + 5);
assert(predicateCount == 4);
assert(projectionCount == 8);
}
{
int predicateCount = 0;
auto pred = [&](int, int) { ++predicateCount; return false; };
auto projectionCount = 0;
auto proj = [&](int i) { ++projectionCount; return i; };
int a[] = {1, 2, 3, 4, 5};
auto ret = std::ranges::adjacent_find(a, pred, proj);
assert(ret == a + 5);
assert(predicateCount == 4);
assert(projectionCount == 8);
}
}
{ // check that the complexity requirements are met with a match
{
int predicateCount = 0;
auto pred = [&](int i, int j) { ++predicateCount; return i == j; };
auto projectionCount = 0;
auto proj = [&](int i) { ++projectionCount; return i; };
int a[] = {1, 2, 4, 4, 5};
auto ret = std::ranges::adjacent_find(a, a + 5, pred, proj);
assert(ret == a + 2);
assert(predicateCount == 3);
assert(projectionCount == 6);
}
{
int predicateCount = 0;
auto pred = [&](int i, int j) { ++predicateCount; return i == j; };
auto projectionCount = 0;
auto proj = [&](int i) { ++projectionCount; return i; };
int a[] = {1, 2, 4, 4, 5};
auto ret = std::ranges::adjacent_find(a, pred, proj);
assert(ret == a + 2);
assert(predicateCount == 3);
assert(projectionCount == 6);
}
}
{ // check that std::invoke is used
struct S {
constexpr S(int i_) : i(i_) {}
constexpr bool compare(const S& j) const { return j.i == i; }
constexpr const S& identity() const { return *this; }
int i;
};
{
S a[] = {1, 2, 3, 4};
auto ret = std::ranges::adjacent_find(std::begin(a), std::end(a), &S::compare, &S::identity);
assert(ret == a + 4);
}
{
S a[] = {1, 2, 3, 4};
auto ret = std::ranges::adjacent_find(a, &S::compare, &S::identity);
assert(ret == a + 4);
}
}
return true;
}
int main(int, char**) {
test();
static_assert(test());
return 0;
}