
I'm planning to use IndexedMemProfData in MemProfReader and beyond. Before I do so, this patch renames the members of IndexedMemProfData as MemProfData.FrameData is a bit mouthful with "Data" repeated twice. Note that MemProfReader currently has a trio -- IdToFrame, CSIdToCallStack, and FunctionProfileData. Replacing them with an instance of IndexedMemProfData allows us to use the move semantics from the reader to the writer context. More importantly, treating the profile data as one package makes the maintenance easier. In the past, forgetting to update a place dealing with the trio has resulted in a bug where we totally forgot to emit call stacks into the indexed profile.
1170 lines
43 KiB
C++
1170 lines
43 KiB
C++
//===- InstrProfWriter.cpp - Instrumented profiling writer ----------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file contains support for writing profiling data for clang's
|
|
// instrumentation based PGO and coverage.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/ProfileData/InstrProfWriter.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/SetVector.h"
|
|
#include "llvm/ADT/StringRef.h"
|
|
#include "llvm/IR/ProfileSummary.h"
|
|
#include "llvm/ProfileData/InstrProf.h"
|
|
#include "llvm/ProfileData/MemProf.h"
|
|
#include "llvm/ProfileData/ProfileCommon.h"
|
|
#include "llvm/Support/Compression.h"
|
|
#include "llvm/Support/Endian.h"
|
|
#include "llvm/Support/EndianStream.h"
|
|
#include "llvm/Support/Error.h"
|
|
#include "llvm/Support/FormatVariadic.h"
|
|
#include "llvm/Support/MemoryBuffer.h"
|
|
#include "llvm/Support/OnDiskHashTable.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include <cstdint>
|
|
#include <memory>
|
|
#include <string>
|
|
#include <tuple>
|
|
#include <utility>
|
|
#include <vector>
|
|
|
|
using namespace llvm;
|
|
|
|
// A struct to define how the data stream should be patched. For Indexed
|
|
// profiling, only uint64_t data type is needed.
|
|
struct PatchItem {
|
|
uint64_t Pos; // Where to patch.
|
|
uint64_t *D; // Pointer to an array of source data.
|
|
int N; // Number of elements in \c D array.
|
|
};
|
|
|
|
namespace llvm {
|
|
|
|
// A wrapper class to abstract writer stream with support of bytes
|
|
// back patching.
|
|
class ProfOStream {
|
|
public:
|
|
ProfOStream(raw_fd_ostream &FD)
|
|
: IsFDOStream(true), OS(FD), LE(FD, llvm::endianness::little) {}
|
|
ProfOStream(raw_string_ostream &STR)
|
|
: IsFDOStream(false), OS(STR), LE(STR, llvm::endianness::little) {}
|
|
|
|
[[nodiscard]] uint64_t tell() const { return OS.tell(); }
|
|
void write(uint64_t V) { LE.write<uint64_t>(V); }
|
|
void write32(uint32_t V) { LE.write<uint32_t>(V); }
|
|
void writeByte(uint8_t V) { LE.write<uint8_t>(V); }
|
|
|
|
// \c patch can only be called when all data is written and flushed.
|
|
// For raw_string_ostream, the patch is done on the target string
|
|
// directly and it won't be reflected in the stream's internal buffer.
|
|
void patch(ArrayRef<PatchItem> P) {
|
|
using namespace support;
|
|
|
|
if (IsFDOStream) {
|
|
raw_fd_ostream &FDOStream = static_cast<raw_fd_ostream &>(OS);
|
|
const uint64_t LastPos = FDOStream.tell();
|
|
for (const auto &K : P) {
|
|
FDOStream.seek(K.Pos);
|
|
for (int I = 0; I < K.N; I++)
|
|
write(K.D[I]);
|
|
}
|
|
// Reset the stream to the last position after patching so that users
|
|
// don't accidentally overwrite data. This makes it consistent with
|
|
// the string stream below which replaces the data directly.
|
|
FDOStream.seek(LastPos);
|
|
} else {
|
|
raw_string_ostream &SOStream = static_cast<raw_string_ostream &>(OS);
|
|
std::string &Data = SOStream.str(); // with flush
|
|
for (const auto &K : P) {
|
|
for (int I = 0; I < K.N; I++) {
|
|
uint64_t Bytes =
|
|
endian::byte_swap<uint64_t, llvm::endianness::little>(K.D[I]);
|
|
Data.replace(K.Pos + I * sizeof(uint64_t), sizeof(uint64_t),
|
|
(const char *)&Bytes, sizeof(uint64_t));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// If \c OS is an instance of \c raw_fd_ostream, this field will be
|
|
// true. Otherwise, \c OS will be an raw_string_ostream.
|
|
bool IsFDOStream;
|
|
raw_ostream &OS;
|
|
support::endian::Writer LE;
|
|
};
|
|
|
|
class InstrProfRecordWriterTrait {
|
|
public:
|
|
using key_type = StringRef;
|
|
using key_type_ref = StringRef;
|
|
|
|
using data_type = const InstrProfWriter::ProfilingData *const;
|
|
using data_type_ref = const InstrProfWriter::ProfilingData *const;
|
|
|
|
using hash_value_type = uint64_t;
|
|
using offset_type = uint64_t;
|
|
|
|
llvm::endianness ValueProfDataEndianness = llvm::endianness::little;
|
|
InstrProfSummaryBuilder *SummaryBuilder;
|
|
InstrProfSummaryBuilder *CSSummaryBuilder;
|
|
|
|
InstrProfRecordWriterTrait() = default;
|
|
|
|
static hash_value_type ComputeHash(key_type_ref K) {
|
|
return IndexedInstrProf::ComputeHash(K);
|
|
}
|
|
|
|
static std::pair<offset_type, offset_type>
|
|
EmitKeyDataLength(raw_ostream &Out, key_type_ref K, data_type_ref V) {
|
|
using namespace support;
|
|
|
|
endian::Writer LE(Out, llvm::endianness::little);
|
|
|
|
offset_type N = K.size();
|
|
LE.write<offset_type>(N);
|
|
|
|
offset_type M = 0;
|
|
for (const auto &ProfileData : *V) {
|
|
const InstrProfRecord &ProfRecord = ProfileData.second;
|
|
M += sizeof(uint64_t); // The function hash
|
|
M += sizeof(uint64_t); // The size of the Counts vector
|
|
M += ProfRecord.Counts.size() * sizeof(uint64_t);
|
|
M += sizeof(uint64_t); // The size of the Bitmap vector
|
|
M += ProfRecord.BitmapBytes.size() * sizeof(uint64_t);
|
|
|
|
// Value data
|
|
M += ValueProfData::getSize(ProfileData.second);
|
|
}
|
|
LE.write<offset_type>(M);
|
|
|
|
return std::make_pair(N, M);
|
|
}
|
|
|
|
void EmitKey(raw_ostream &Out, key_type_ref K, offset_type N) {
|
|
Out.write(K.data(), N);
|
|
}
|
|
|
|
void EmitData(raw_ostream &Out, key_type_ref, data_type_ref V, offset_type) {
|
|
using namespace support;
|
|
|
|
endian::Writer LE(Out, llvm::endianness::little);
|
|
for (const auto &ProfileData : *V) {
|
|
const InstrProfRecord &ProfRecord = ProfileData.second;
|
|
if (NamedInstrProfRecord::hasCSFlagInHash(ProfileData.first))
|
|
CSSummaryBuilder->addRecord(ProfRecord);
|
|
else
|
|
SummaryBuilder->addRecord(ProfRecord);
|
|
|
|
LE.write<uint64_t>(ProfileData.first); // Function hash
|
|
LE.write<uint64_t>(ProfRecord.Counts.size());
|
|
for (uint64_t I : ProfRecord.Counts)
|
|
LE.write<uint64_t>(I);
|
|
|
|
LE.write<uint64_t>(ProfRecord.BitmapBytes.size());
|
|
for (uint64_t I : ProfRecord.BitmapBytes)
|
|
LE.write<uint64_t>(I);
|
|
|
|
// Write value data
|
|
std::unique_ptr<ValueProfData> VDataPtr =
|
|
ValueProfData::serializeFrom(ProfileData.second);
|
|
uint32_t S = VDataPtr->getSize();
|
|
VDataPtr->swapBytesFromHost(ValueProfDataEndianness);
|
|
Out.write((const char *)VDataPtr.get(), S);
|
|
}
|
|
}
|
|
};
|
|
|
|
} // end namespace llvm
|
|
|
|
InstrProfWriter::InstrProfWriter(
|
|
bool Sparse, uint64_t TemporalProfTraceReservoirSize,
|
|
uint64_t MaxTemporalProfTraceLength, bool WritePrevVersion,
|
|
memprof::IndexedVersion MemProfVersionRequested, bool MemProfFullSchema)
|
|
: Sparse(Sparse), MaxTemporalProfTraceLength(MaxTemporalProfTraceLength),
|
|
TemporalProfTraceReservoirSize(TemporalProfTraceReservoirSize),
|
|
InfoObj(new InstrProfRecordWriterTrait()),
|
|
WritePrevVersion(WritePrevVersion),
|
|
MemProfVersionRequested(MemProfVersionRequested),
|
|
MemProfFullSchema(MemProfFullSchema) {}
|
|
|
|
InstrProfWriter::~InstrProfWriter() { delete InfoObj; }
|
|
|
|
// Internal interface for testing purpose only.
|
|
void InstrProfWriter::setValueProfDataEndianness(llvm::endianness Endianness) {
|
|
InfoObj->ValueProfDataEndianness = Endianness;
|
|
}
|
|
|
|
void InstrProfWriter::setOutputSparse(bool Sparse) {
|
|
this->Sparse = Sparse;
|
|
}
|
|
|
|
void InstrProfWriter::addRecord(NamedInstrProfRecord &&I, uint64_t Weight,
|
|
function_ref<void(Error)> Warn) {
|
|
auto Name = I.Name;
|
|
auto Hash = I.Hash;
|
|
addRecord(Name, Hash, std::move(I), Weight, Warn);
|
|
}
|
|
|
|
void InstrProfWriter::overlapRecord(NamedInstrProfRecord &&Other,
|
|
OverlapStats &Overlap,
|
|
OverlapStats &FuncLevelOverlap,
|
|
const OverlapFuncFilters &FuncFilter) {
|
|
auto Name = Other.Name;
|
|
auto Hash = Other.Hash;
|
|
Other.accumulateCounts(FuncLevelOverlap.Test);
|
|
if (!FunctionData.contains(Name)) {
|
|
Overlap.addOneUnique(FuncLevelOverlap.Test);
|
|
return;
|
|
}
|
|
if (FuncLevelOverlap.Test.CountSum < 1.0f) {
|
|
Overlap.Overlap.NumEntries += 1;
|
|
return;
|
|
}
|
|
auto &ProfileDataMap = FunctionData[Name];
|
|
bool NewFunc;
|
|
ProfilingData::iterator Where;
|
|
std::tie(Where, NewFunc) =
|
|
ProfileDataMap.insert(std::make_pair(Hash, InstrProfRecord()));
|
|
if (NewFunc) {
|
|
Overlap.addOneMismatch(FuncLevelOverlap.Test);
|
|
return;
|
|
}
|
|
InstrProfRecord &Dest = Where->second;
|
|
|
|
uint64_t ValueCutoff = FuncFilter.ValueCutoff;
|
|
if (!FuncFilter.NameFilter.empty() && Name.contains(FuncFilter.NameFilter))
|
|
ValueCutoff = 0;
|
|
|
|
Dest.overlap(Other, Overlap, FuncLevelOverlap, ValueCutoff);
|
|
}
|
|
|
|
void InstrProfWriter::addRecord(StringRef Name, uint64_t Hash,
|
|
InstrProfRecord &&I, uint64_t Weight,
|
|
function_ref<void(Error)> Warn) {
|
|
auto &ProfileDataMap = FunctionData[Name];
|
|
|
|
bool NewFunc;
|
|
ProfilingData::iterator Where;
|
|
std::tie(Where, NewFunc) =
|
|
ProfileDataMap.insert(std::make_pair(Hash, InstrProfRecord()));
|
|
InstrProfRecord &Dest = Where->second;
|
|
|
|
auto MapWarn = [&](instrprof_error E) {
|
|
Warn(make_error<InstrProfError>(E));
|
|
};
|
|
|
|
if (NewFunc) {
|
|
// We've never seen a function with this name and hash, add it.
|
|
Dest = std::move(I);
|
|
if (Weight > 1)
|
|
Dest.scale(Weight, 1, MapWarn);
|
|
} else {
|
|
// We're updating a function we've seen before.
|
|
Dest.merge(I, Weight, MapWarn);
|
|
}
|
|
|
|
Dest.sortValueData();
|
|
}
|
|
|
|
void InstrProfWriter::addMemProfRecord(
|
|
const Function::GUID Id, const memprof::IndexedMemProfRecord &Record) {
|
|
auto [Iter, Inserted] = MemProfData.Records.insert({Id, Record});
|
|
// If we inserted a new record then we are done.
|
|
if (Inserted) {
|
|
return;
|
|
}
|
|
memprof::IndexedMemProfRecord &Existing = Iter->second;
|
|
Existing.merge(Record);
|
|
}
|
|
|
|
bool InstrProfWriter::addMemProfFrame(const memprof::FrameId Id,
|
|
const memprof::Frame &Frame,
|
|
function_ref<void(Error)> Warn) {
|
|
auto [Iter, Inserted] = MemProfData.Frames.insert({Id, Frame});
|
|
// If a mapping already exists for the current frame id and it does not
|
|
// match the new mapping provided then reset the existing contents and bail
|
|
// out. We don't support the merging of memprof data whose Frame -> Id
|
|
// mapping across profiles is inconsistent.
|
|
if (!Inserted && Iter->second != Frame) {
|
|
Warn(make_error<InstrProfError>(instrprof_error::malformed,
|
|
"frame to id mapping mismatch"));
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool InstrProfWriter::addMemProfCallStack(
|
|
const memprof::CallStackId CSId,
|
|
const llvm::SmallVector<memprof::FrameId> &CallStack,
|
|
function_ref<void(Error)> Warn) {
|
|
auto [Iter, Inserted] = MemProfData.CallStacks.insert({CSId, CallStack});
|
|
// If a mapping already exists for the current call stack id and it does not
|
|
// match the new mapping provided then reset the existing contents and bail
|
|
// out. We don't support the merging of memprof data whose CallStack -> Id
|
|
// mapping across profiles is inconsistent.
|
|
if (!Inserted && Iter->second != CallStack) {
|
|
Warn(make_error<InstrProfError>(instrprof_error::malformed,
|
|
"call stack to id mapping mismatch"));
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
void InstrProfWriter::addBinaryIds(ArrayRef<llvm::object::BuildID> BIs) {
|
|
llvm::append_range(BinaryIds, BIs);
|
|
}
|
|
|
|
void InstrProfWriter::addTemporalProfileTrace(TemporalProfTraceTy Trace) {
|
|
assert(Trace.FunctionNameRefs.size() <= MaxTemporalProfTraceLength);
|
|
assert(!Trace.FunctionNameRefs.empty());
|
|
if (TemporalProfTraceStreamSize < TemporalProfTraceReservoirSize) {
|
|
// Simply append the trace if we have not yet hit our reservoir size limit.
|
|
TemporalProfTraces.push_back(std::move(Trace));
|
|
} else {
|
|
// Otherwise, replace a random trace in the stream.
|
|
std::uniform_int_distribution<uint64_t> Distribution(
|
|
0, TemporalProfTraceStreamSize);
|
|
uint64_t RandomIndex = Distribution(RNG);
|
|
if (RandomIndex < TemporalProfTraces.size())
|
|
TemporalProfTraces[RandomIndex] = std::move(Trace);
|
|
}
|
|
++TemporalProfTraceStreamSize;
|
|
}
|
|
|
|
void InstrProfWriter::addTemporalProfileTraces(
|
|
SmallVectorImpl<TemporalProfTraceTy> &SrcTraces, uint64_t SrcStreamSize) {
|
|
for (auto &Trace : SrcTraces)
|
|
if (Trace.FunctionNameRefs.size() > MaxTemporalProfTraceLength)
|
|
Trace.FunctionNameRefs.resize(MaxTemporalProfTraceLength);
|
|
llvm::erase_if(SrcTraces, [](auto &T) { return T.FunctionNameRefs.empty(); });
|
|
// Assume that the source has the same reservoir size as the destination to
|
|
// avoid needing to record it in the indexed profile format.
|
|
bool IsDestSampled =
|
|
(TemporalProfTraceStreamSize > TemporalProfTraceReservoirSize);
|
|
bool IsSrcSampled = (SrcStreamSize > TemporalProfTraceReservoirSize);
|
|
if (!IsDestSampled && IsSrcSampled) {
|
|
// If one of the traces are sampled, ensure that it belongs to Dest.
|
|
std::swap(TemporalProfTraces, SrcTraces);
|
|
std::swap(TemporalProfTraceStreamSize, SrcStreamSize);
|
|
std::swap(IsDestSampled, IsSrcSampled);
|
|
}
|
|
if (!IsSrcSampled) {
|
|
// If the source stream is not sampled, we add each source trace normally.
|
|
for (auto &Trace : SrcTraces)
|
|
addTemporalProfileTrace(std::move(Trace));
|
|
return;
|
|
}
|
|
// Otherwise, we find the traces that would have been removed if we added
|
|
// the whole source stream.
|
|
SmallSetVector<uint64_t, 8> IndicesToReplace;
|
|
for (uint64_t I = 0; I < SrcStreamSize; I++) {
|
|
std::uniform_int_distribution<uint64_t> Distribution(
|
|
0, TemporalProfTraceStreamSize);
|
|
uint64_t RandomIndex = Distribution(RNG);
|
|
if (RandomIndex < TemporalProfTraces.size())
|
|
IndicesToReplace.insert(RandomIndex);
|
|
++TemporalProfTraceStreamSize;
|
|
}
|
|
// Then we insert a random sample of the source traces.
|
|
llvm::shuffle(SrcTraces.begin(), SrcTraces.end(), RNG);
|
|
for (const auto &[Index, Trace] : llvm::zip(IndicesToReplace, SrcTraces))
|
|
TemporalProfTraces[Index] = std::move(Trace);
|
|
}
|
|
|
|
void InstrProfWriter::mergeRecordsFromWriter(InstrProfWriter &&IPW,
|
|
function_ref<void(Error)> Warn) {
|
|
for (auto &I : IPW.FunctionData)
|
|
for (auto &Func : I.getValue())
|
|
addRecord(I.getKey(), Func.first, std::move(Func.second), 1, Warn);
|
|
|
|
BinaryIds.reserve(BinaryIds.size() + IPW.BinaryIds.size());
|
|
for (auto &I : IPW.BinaryIds)
|
|
addBinaryIds(I);
|
|
|
|
addTemporalProfileTraces(IPW.TemporalProfTraces,
|
|
IPW.TemporalProfTraceStreamSize);
|
|
|
|
MemProfData.Frames.reserve(IPW.MemProfData.Frames.size());
|
|
for (auto &[FrameId, Frame] : IPW.MemProfData.Frames) {
|
|
// If we weren't able to add the frame mappings then it doesn't make sense
|
|
// to try to merge the records from this profile.
|
|
if (!addMemProfFrame(FrameId, Frame, Warn))
|
|
return;
|
|
}
|
|
|
|
MemProfData.CallStacks.reserve(IPW.MemProfData.CallStacks.size());
|
|
for (auto &[CSId, CallStack] : IPW.MemProfData.CallStacks) {
|
|
if (!addMemProfCallStack(CSId, CallStack, Warn))
|
|
return;
|
|
}
|
|
|
|
MemProfData.Records.reserve(IPW.MemProfData.Records.size());
|
|
for (auto &[GUID, Record] : IPW.MemProfData.Records) {
|
|
addMemProfRecord(GUID, Record);
|
|
}
|
|
}
|
|
|
|
bool InstrProfWriter::shouldEncodeData(const ProfilingData &PD) {
|
|
if (!Sparse)
|
|
return true;
|
|
for (const auto &Func : PD) {
|
|
const InstrProfRecord &IPR = Func.second;
|
|
if (llvm::any_of(IPR.Counts, [](uint64_t Count) { return Count > 0; }))
|
|
return true;
|
|
if (llvm::any_of(IPR.BitmapBytes, [](uint8_t Byte) { return Byte > 0; }))
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static void setSummary(IndexedInstrProf::Summary *TheSummary,
|
|
ProfileSummary &PS) {
|
|
using namespace IndexedInstrProf;
|
|
|
|
const std::vector<ProfileSummaryEntry> &Res = PS.getDetailedSummary();
|
|
TheSummary->NumSummaryFields = Summary::NumKinds;
|
|
TheSummary->NumCutoffEntries = Res.size();
|
|
TheSummary->set(Summary::MaxFunctionCount, PS.getMaxFunctionCount());
|
|
TheSummary->set(Summary::MaxBlockCount, PS.getMaxCount());
|
|
TheSummary->set(Summary::MaxInternalBlockCount, PS.getMaxInternalCount());
|
|
TheSummary->set(Summary::TotalBlockCount, PS.getTotalCount());
|
|
TheSummary->set(Summary::TotalNumBlocks, PS.getNumCounts());
|
|
TheSummary->set(Summary::TotalNumFunctions, PS.getNumFunctions());
|
|
for (unsigned I = 0; I < Res.size(); I++)
|
|
TheSummary->setEntry(I, Res[I]);
|
|
}
|
|
|
|
// Serialize Schema.
|
|
static void writeMemProfSchema(ProfOStream &OS,
|
|
const memprof::MemProfSchema &Schema) {
|
|
OS.write(static_cast<uint64_t>(Schema.size()));
|
|
for (const auto Id : Schema)
|
|
OS.write(static_cast<uint64_t>(Id));
|
|
}
|
|
|
|
// Serialize MemProfRecordData. Return RecordTableOffset.
|
|
static uint64_t writeMemProfRecords(
|
|
ProfOStream &OS,
|
|
llvm::MapVector<GlobalValue::GUID, memprof::IndexedMemProfRecord>
|
|
&MemProfRecordData,
|
|
memprof::MemProfSchema *Schema, memprof::IndexedVersion Version,
|
|
llvm::DenseMap<memprof::CallStackId, memprof::LinearCallStackId>
|
|
*MemProfCallStackIndexes = nullptr) {
|
|
memprof::RecordWriterTrait RecordWriter(Schema, Version,
|
|
MemProfCallStackIndexes);
|
|
OnDiskChainedHashTableGenerator<memprof::RecordWriterTrait>
|
|
RecordTableGenerator;
|
|
for (auto &[GUID, Record] : MemProfRecordData) {
|
|
// Insert the key (func hash) and value (memprof record).
|
|
RecordTableGenerator.insert(GUID, Record, RecordWriter);
|
|
}
|
|
// Release the memory of this MapVector as it is no longer needed.
|
|
MemProfRecordData.clear();
|
|
|
|
// The call to Emit invokes RecordWriterTrait::EmitData which destructs
|
|
// the memprof record copies owned by the RecordTableGenerator. This works
|
|
// because the RecordTableGenerator is not used after this point.
|
|
return RecordTableGenerator.Emit(OS.OS, RecordWriter);
|
|
}
|
|
|
|
// Serialize MemProfFrameData. Return FrameTableOffset.
|
|
static uint64_t writeMemProfFrames(
|
|
ProfOStream &OS,
|
|
llvm::MapVector<memprof::FrameId, memprof::Frame> &MemProfFrameData) {
|
|
OnDiskChainedHashTableGenerator<memprof::FrameWriterTrait>
|
|
FrameTableGenerator;
|
|
for (auto &[FrameId, Frame] : MemProfFrameData) {
|
|
// Insert the key (frame id) and value (frame contents).
|
|
FrameTableGenerator.insert(FrameId, Frame);
|
|
}
|
|
// Release the memory of this MapVector as it is no longer needed.
|
|
MemProfFrameData.clear();
|
|
|
|
return FrameTableGenerator.Emit(OS.OS);
|
|
}
|
|
|
|
// Serialize MemProfFrameData. Return the mapping from FrameIds to their
|
|
// indexes within the frame array.
|
|
static llvm::DenseMap<memprof::FrameId, memprof::LinearFrameId>
|
|
writeMemProfFrameArray(
|
|
ProfOStream &OS,
|
|
llvm::MapVector<memprof::FrameId, memprof::Frame> &MemProfFrameData,
|
|
llvm::DenseMap<memprof::FrameId, memprof::FrameStat> &FrameHistogram) {
|
|
// Mappings from FrameIds to array indexes.
|
|
llvm::DenseMap<memprof::FrameId, memprof::LinearFrameId> MemProfFrameIndexes;
|
|
|
|
// Compute the order in which we serialize Frames. The order does not matter
|
|
// in terms of correctness, but we still compute it for deserialization
|
|
// performance. Specifically, if we serialize frequently used Frames one
|
|
// after another, we have better cache utilization. For two Frames that
|
|
// appear equally frequently, we break a tie by serializing the one that tends
|
|
// to appear earlier in call stacks. We implement the tie-breaking mechanism
|
|
// by computing the sum of indexes within call stacks for each Frame. If we
|
|
// still have a tie, then we just resort to compare two FrameIds, which is
|
|
// just for stability of output.
|
|
std::vector<std::pair<memprof::FrameId, const memprof::Frame *>> FrameIdOrder;
|
|
FrameIdOrder.reserve(MemProfFrameData.size());
|
|
for (const auto &[Id, Frame] : MemProfFrameData)
|
|
FrameIdOrder.emplace_back(Id, &Frame);
|
|
assert(MemProfFrameData.size() == FrameIdOrder.size());
|
|
llvm::sort(FrameIdOrder,
|
|
[&](const std::pair<memprof::FrameId, const memprof::Frame *> &L,
|
|
const std::pair<memprof::FrameId, const memprof::Frame *> &R) {
|
|
const auto &SL = FrameHistogram[L.first];
|
|
const auto &SR = FrameHistogram[R.first];
|
|
// Popular FrameIds should come first.
|
|
if (SL.Count != SR.Count)
|
|
return SL.Count > SR.Count;
|
|
// If they are equally popular, then the one that tends to appear
|
|
// earlier in call stacks should come first.
|
|
if (SL.PositionSum != SR.PositionSum)
|
|
return SL.PositionSum < SR.PositionSum;
|
|
// Compare their FrameIds for sort stability.
|
|
return L.first < R.first;
|
|
});
|
|
|
|
// Serialize all frames while creating mappings from linear IDs to FrameIds.
|
|
uint64_t Index = 0;
|
|
MemProfFrameIndexes.reserve(FrameIdOrder.size());
|
|
for (const auto &[Id, F] : FrameIdOrder) {
|
|
F->serialize(OS.OS);
|
|
MemProfFrameIndexes.insert({Id, Index});
|
|
++Index;
|
|
}
|
|
assert(MemProfFrameData.size() == Index);
|
|
assert(MemProfFrameData.size() == MemProfFrameIndexes.size());
|
|
|
|
// Release the memory of this MapVector as it is no longer needed.
|
|
MemProfFrameData.clear();
|
|
|
|
return MemProfFrameIndexes;
|
|
}
|
|
|
|
static uint64_t writeMemProfCallStacks(
|
|
ProfOStream &OS,
|
|
llvm::MapVector<memprof::CallStackId, llvm::SmallVector<memprof::FrameId>>
|
|
&MemProfCallStackData) {
|
|
OnDiskChainedHashTableGenerator<memprof::CallStackWriterTrait>
|
|
CallStackTableGenerator;
|
|
for (auto &[CSId, CallStack] : MemProfCallStackData)
|
|
CallStackTableGenerator.insert(CSId, CallStack);
|
|
// Release the memory of this vector as it is no longer needed.
|
|
MemProfCallStackData.clear();
|
|
|
|
return CallStackTableGenerator.Emit(OS.OS);
|
|
}
|
|
|
|
static llvm::DenseMap<memprof::CallStackId, memprof::LinearCallStackId>
|
|
writeMemProfCallStackArray(
|
|
ProfOStream &OS,
|
|
llvm::MapVector<memprof::CallStackId, llvm::SmallVector<memprof::FrameId>>
|
|
&MemProfCallStackData,
|
|
llvm::DenseMap<memprof::FrameId, memprof::LinearFrameId>
|
|
&MemProfFrameIndexes,
|
|
llvm::DenseMap<memprof::FrameId, memprof::FrameStat> &FrameHistogram) {
|
|
llvm::DenseMap<memprof::CallStackId, memprof::LinearCallStackId>
|
|
MemProfCallStackIndexes;
|
|
|
|
memprof::CallStackRadixTreeBuilder Builder;
|
|
Builder.build(std::move(MemProfCallStackData), MemProfFrameIndexes,
|
|
FrameHistogram);
|
|
for (auto I : Builder.getRadixArray())
|
|
OS.write32(I);
|
|
MemProfCallStackIndexes = Builder.takeCallStackPos();
|
|
|
|
// Release the memory of this vector as it is no longer needed.
|
|
MemProfCallStackData.clear();
|
|
|
|
return MemProfCallStackIndexes;
|
|
}
|
|
|
|
// Write out MemProf Version0 as follows:
|
|
// uint64_t RecordTableOffset = RecordTableGenerator.Emit
|
|
// uint64_t FramePayloadOffset = Offset for the frame payload
|
|
// uint64_t FrameTableOffset = FrameTableGenerator.Emit
|
|
// uint64_t Num schema entries
|
|
// uint64_t Schema entry 0
|
|
// uint64_t Schema entry 1
|
|
// ....
|
|
// uint64_t Schema entry N - 1
|
|
// OnDiskChainedHashTable MemProfRecordData
|
|
// OnDiskChainedHashTable MemProfFrameData
|
|
static Error writeMemProfV0(ProfOStream &OS,
|
|
memprof::IndexedMemProfData &MemProfData) {
|
|
uint64_t HeaderUpdatePos = OS.tell();
|
|
OS.write(0ULL); // Reserve space for the memprof record table offset.
|
|
OS.write(0ULL); // Reserve space for the memprof frame payload offset.
|
|
OS.write(0ULL); // Reserve space for the memprof frame table offset.
|
|
|
|
auto Schema = memprof::getFullSchema();
|
|
writeMemProfSchema(OS, Schema);
|
|
|
|
uint64_t RecordTableOffset =
|
|
writeMemProfRecords(OS, MemProfData.Records, &Schema, memprof::Version0);
|
|
|
|
uint64_t FramePayloadOffset = OS.tell();
|
|
uint64_t FrameTableOffset = writeMemProfFrames(OS, MemProfData.Frames);
|
|
|
|
uint64_t Header[] = {RecordTableOffset, FramePayloadOffset, FrameTableOffset};
|
|
OS.patch({{HeaderUpdatePos, Header, std::size(Header)}});
|
|
|
|
return Error::success();
|
|
}
|
|
|
|
// Write out MemProf Version1 as follows:
|
|
// uint64_t Version (NEW in V1)
|
|
// uint64_t RecordTableOffset = RecordTableGenerator.Emit
|
|
// uint64_t FramePayloadOffset = Offset for the frame payload
|
|
// uint64_t FrameTableOffset = FrameTableGenerator.Emit
|
|
// uint64_t Num schema entries
|
|
// uint64_t Schema entry 0
|
|
// uint64_t Schema entry 1
|
|
// ....
|
|
// uint64_t Schema entry N - 1
|
|
// OnDiskChainedHashTable MemProfRecordData
|
|
// OnDiskChainedHashTable MemProfFrameData
|
|
static Error writeMemProfV1(ProfOStream &OS,
|
|
memprof::IndexedMemProfData &MemProfData) {
|
|
OS.write(memprof::Version1);
|
|
uint64_t HeaderUpdatePos = OS.tell();
|
|
OS.write(0ULL); // Reserve space for the memprof record table offset.
|
|
OS.write(0ULL); // Reserve space for the memprof frame payload offset.
|
|
OS.write(0ULL); // Reserve space for the memprof frame table offset.
|
|
|
|
auto Schema = memprof::getFullSchema();
|
|
writeMemProfSchema(OS, Schema);
|
|
|
|
uint64_t RecordTableOffset =
|
|
writeMemProfRecords(OS, MemProfData.Records, &Schema, memprof::Version1);
|
|
|
|
uint64_t FramePayloadOffset = OS.tell();
|
|
uint64_t FrameTableOffset = writeMemProfFrames(OS, MemProfData.Frames);
|
|
|
|
uint64_t Header[] = {RecordTableOffset, FramePayloadOffset, FrameTableOffset};
|
|
OS.patch({{HeaderUpdatePos, Header, std::size(Header)}});
|
|
|
|
return Error::success();
|
|
}
|
|
|
|
// Write out MemProf Version2 as follows:
|
|
// uint64_t Version
|
|
// uint64_t RecordTableOffset = RecordTableGenerator.Emit
|
|
// uint64_t FramePayloadOffset = Offset for the frame payload
|
|
// uint64_t FrameTableOffset = FrameTableGenerator.Emit
|
|
// uint64_t CallStackPayloadOffset = Offset for the call stack payload (NEW V2)
|
|
// uint64_t CallStackTableOffset = CallStackTableGenerator.Emit (NEW in V2)
|
|
// uint64_t Num schema entries
|
|
// uint64_t Schema entry 0
|
|
// uint64_t Schema entry 1
|
|
// ....
|
|
// uint64_t Schema entry N - 1
|
|
// OnDiskChainedHashTable MemProfRecordData
|
|
// OnDiskChainedHashTable MemProfFrameData
|
|
// OnDiskChainedHashTable MemProfCallStackData (NEW in V2)
|
|
static Error writeMemProfV2(ProfOStream &OS,
|
|
memprof::IndexedMemProfData &MemProfData,
|
|
bool MemProfFullSchema) {
|
|
OS.write(memprof::Version2);
|
|
uint64_t HeaderUpdatePos = OS.tell();
|
|
OS.write(0ULL); // Reserve space for the memprof record table offset.
|
|
OS.write(0ULL); // Reserve space for the memprof frame payload offset.
|
|
OS.write(0ULL); // Reserve space for the memprof frame table offset.
|
|
OS.write(0ULL); // Reserve space for the memprof call stack payload offset.
|
|
OS.write(0ULL); // Reserve space for the memprof call stack table offset.
|
|
|
|
auto Schema = memprof::getHotColdSchema();
|
|
if (MemProfFullSchema)
|
|
Schema = memprof::getFullSchema();
|
|
writeMemProfSchema(OS, Schema);
|
|
|
|
uint64_t RecordTableOffset =
|
|
writeMemProfRecords(OS, MemProfData.Records, &Schema, memprof::Version2);
|
|
|
|
uint64_t FramePayloadOffset = OS.tell();
|
|
uint64_t FrameTableOffset = writeMemProfFrames(OS, MemProfData.Frames);
|
|
|
|
uint64_t CallStackPayloadOffset = OS.tell();
|
|
uint64_t CallStackTableOffset =
|
|
writeMemProfCallStacks(OS, MemProfData.CallStacks);
|
|
|
|
uint64_t Header[] = {
|
|
RecordTableOffset, FramePayloadOffset, FrameTableOffset,
|
|
CallStackPayloadOffset, CallStackTableOffset,
|
|
};
|
|
OS.patch({{HeaderUpdatePos, Header, std::size(Header)}});
|
|
|
|
return Error::success();
|
|
}
|
|
|
|
// Write out MemProf Version3 as follows:
|
|
// uint64_t Version
|
|
// uint64_t CallStackPayloadOffset = Offset for the call stack payload
|
|
// uint64_t RecordPayloadOffset = Offset for the record payload
|
|
// uint64_t RecordTableOffset = RecordTableGenerator.Emit
|
|
// uint64_t Num schema entries
|
|
// uint64_t Schema entry 0
|
|
// uint64_t Schema entry 1
|
|
// ....
|
|
// uint64_t Schema entry N - 1
|
|
// Frames serialized one after another
|
|
// Call stacks encoded as a radix tree
|
|
// OnDiskChainedHashTable MemProfRecordData
|
|
static Error writeMemProfV3(ProfOStream &OS,
|
|
memprof::IndexedMemProfData &MemProfData,
|
|
bool MemProfFullSchema) {
|
|
OS.write(memprof::Version3);
|
|
uint64_t HeaderUpdatePos = OS.tell();
|
|
OS.write(0ULL); // Reserve space for the memprof call stack payload offset.
|
|
OS.write(0ULL); // Reserve space for the memprof record payload offset.
|
|
OS.write(0ULL); // Reserve space for the memprof record table offset.
|
|
|
|
auto Schema = memprof::getHotColdSchema();
|
|
if (MemProfFullSchema)
|
|
Schema = memprof::getFullSchema();
|
|
writeMemProfSchema(OS, Schema);
|
|
|
|
llvm::DenseMap<memprof::FrameId, memprof::FrameStat> FrameHistogram =
|
|
memprof::computeFrameHistogram(MemProfData.CallStacks);
|
|
assert(MemProfData.Frames.size() == FrameHistogram.size());
|
|
|
|
llvm::DenseMap<memprof::FrameId, memprof::LinearFrameId> MemProfFrameIndexes =
|
|
writeMemProfFrameArray(OS, MemProfData.Frames, FrameHistogram);
|
|
|
|
uint64_t CallStackPayloadOffset = OS.tell();
|
|
llvm::DenseMap<memprof::CallStackId, memprof::LinearCallStackId>
|
|
MemProfCallStackIndexes = writeMemProfCallStackArray(
|
|
OS, MemProfData.CallStacks, MemProfFrameIndexes, FrameHistogram);
|
|
|
|
uint64_t RecordPayloadOffset = OS.tell();
|
|
uint64_t RecordTableOffset =
|
|
writeMemProfRecords(OS, MemProfData.Records, &Schema, memprof::Version3,
|
|
&MemProfCallStackIndexes);
|
|
|
|
uint64_t Header[] = {
|
|
CallStackPayloadOffset,
|
|
RecordPayloadOffset,
|
|
RecordTableOffset,
|
|
};
|
|
OS.patch({{HeaderUpdatePos, Header, std::size(Header)}});
|
|
|
|
return Error::success();
|
|
}
|
|
|
|
// Write out the MemProf data in a requested version.
|
|
static Error writeMemProf(ProfOStream &OS,
|
|
memprof::IndexedMemProfData &MemProfData,
|
|
memprof::IndexedVersion MemProfVersionRequested,
|
|
bool MemProfFullSchema) {
|
|
switch (MemProfVersionRequested) {
|
|
case memprof::Version0:
|
|
return writeMemProfV0(OS, MemProfData);
|
|
case memprof::Version1:
|
|
return writeMemProfV1(OS, MemProfData);
|
|
case memprof::Version2:
|
|
return writeMemProfV2(OS, MemProfData, MemProfFullSchema);
|
|
case memprof::Version3:
|
|
return writeMemProfV3(OS, MemProfData, MemProfFullSchema);
|
|
}
|
|
|
|
return make_error<InstrProfError>(
|
|
instrprof_error::unsupported_version,
|
|
formatv("MemProf version {} not supported; "
|
|
"requires version between {} and {}, inclusive",
|
|
MemProfVersionRequested, memprof::MinimumSupportedVersion,
|
|
memprof::MaximumSupportedVersion));
|
|
}
|
|
|
|
uint64_t InstrProfWriter::writeHeader(const IndexedInstrProf::Header &Header,
|
|
const bool WritePrevVersion,
|
|
ProfOStream &OS) {
|
|
// Only write out the first four fields.
|
|
for (int I = 0; I < 4; I++)
|
|
OS.write(reinterpret_cast<const uint64_t *>(&Header)[I]);
|
|
|
|
// Remember the offset of the remaining fields to allow back patching later.
|
|
auto BackPatchStartOffset = OS.tell();
|
|
|
|
// Reserve the space for back patching later.
|
|
OS.write(0); // HashOffset
|
|
OS.write(0); // MemProfOffset
|
|
OS.write(0); // BinaryIdOffset
|
|
OS.write(0); // TemporalProfTracesOffset
|
|
if (!WritePrevVersion)
|
|
OS.write(0); // VTableNamesOffset
|
|
|
|
return BackPatchStartOffset;
|
|
}
|
|
|
|
Error InstrProfWriter::writeVTableNames(ProfOStream &OS) {
|
|
std::vector<std::string> VTableNameStrs;
|
|
for (StringRef VTableName : VTableNames.keys())
|
|
VTableNameStrs.push_back(VTableName.str());
|
|
|
|
std::string CompressedVTableNames;
|
|
if (!VTableNameStrs.empty())
|
|
if (Error E = collectGlobalObjectNameStrings(
|
|
VTableNameStrs, compression::zlib::isAvailable(),
|
|
CompressedVTableNames))
|
|
return E;
|
|
|
|
const uint64_t CompressedStringLen = CompressedVTableNames.length();
|
|
|
|
// Record the length of compressed string.
|
|
OS.write(CompressedStringLen);
|
|
|
|
// Write the chars in compressed strings.
|
|
for (auto &c : CompressedVTableNames)
|
|
OS.writeByte(static_cast<uint8_t>(c));
|
|
|
|
// Pad up to a multiple of 8.
|
|
// InstrProfReader could read bytes according to 'CompressedStringLen'.
|
|
const uint64_t PaddedLength = alignTo(CompressedStringLen, 8);
|
|
|
|
for (uint64_t K = CompressedStringLen; K < PaddedLength; K++)
|
|
OS.writeByte(0);
|
|
|
|
return Error::success();
|
|
}
|
|
|
|
Error InstrProfWriter::writeImpl(ProfOStream &OS) {
|
|
using namespace IndexedInstrProf;
|
|
using namespace support;
|
|
|
|
OnDiskChainedHashTableGenerator<InstrProfRecordWriterTrait> Generator;
|
|
|
|
InstrProfSummaryBuilder ISB(ProfileSummaryBuilder::DefaultCutoffs);
|
|
InfoObj->SummaryBuilder = &ISB;
|
|
InstrProfSummaryBuilder CSISB(ProfileSummaryBuilder::DefaultCutoffs);
|
|
InfoObj->CSSummaryBuilder = &CSISB;
|
|
|
|
// Populate the hash table generator.
|
|
SmallVector<std::pair<StringRef, const ProfilingData *>> OrderedData;
|
|
for (const auto &I : FunctionData)
|
|
if (shouldEncodeData(I.getValue()))
|
|
OrderedData.emplace_back((I.getKey()), &I.getValue());
|
|
llvm::sort(OrderedData, less_first());
|
|
for (const auto &I : OrderedData)
|
|
Generator.insert(I.first, I.second);
|
|
|
|
// Write the header.
|
|
IndexedInstrProf::Header Header;
|
|
Header.Version = WritePrevVersion
|
|
? IndexedInstrProf::ProfVersion::Version11
|
|
: IndexedInstrProf::ProfVersion::CurrentVersion;
|
|
// The WritePrevVersion handling will either need to be removed or updated
|
|
// if the version is advanced beyond 12.
|
|
static_assert(IndexedInstrProf::ProfVersion::CurrentVersion ==
|
|
IndexedInstrProf::ProfVersion::Version12);
|
|
if (static_cast<bool>(ProfileKind & InstrProfKind::IRInstrumentation))
|
|
Header.Version |= VARIANT_MASK_IR_PROF;
|
|
if (static_cast<bool>(ProfileKind & InstrProfKind::ContextSensitive))
|
|
Header.Version |= VARIANT_MASK_CSIR_PROF;
|
|
if (static_cast<bool>(ProfileKind &
|
|
InstrProfKind::FunctionEntryInstrumentation))
|
|
Header.Version |= VARIANT_MASK_INSTR_ENTRY;
|
|
if (static_cast<bool>(ProfileKind & InstrProfKind::SingleByteCoverage))
|
|
Header.Version |= VARIANT_MASK_BYTE_COVERAGE;
|
|
if (static_cast<bool>(ProfileKind & InstrProfKind::FunctionEntryOnly))
|
|
Header.Version |= VARIANT_MASK_FUNCTION_ENTRY_ONLY;
|
|
if (static_cast<bool>(ProfileKind & InstrProfKind::MemProf))
|
|
Header.Version |= VARIANT_MASK_MEMPROF;
|
|
if (static_cast<bool>(ProfileKind & InstrProfKind::TemporalProfile))
|
|
Header.Version |= VARIANT_MASK_TEMPORAL_PROF;
|
|
|
|
const uint64_t BackPatchStartOffset =
|
|
writeHeader(Header, WritePrevVersion, OS);
|
|
|
|
// Reserve space to write profile summary data.
|
|
uint32_t NumEntries = ProfileSummaryBuilder::DefaultCutoffs.size();
|
|
uint32_t SummarySize = Summary::getSize(Summary::NumKinds, NumEntries);
|
|
// Remember the summary offset.
|
|
uint64_t SummaryOffset = OS.tell();
|
|
for (unsigned I = 0; I < SummarySize / sizeof(uint64_t); I++)
|
|
OS.write(0);
|
|
uint64_t CSSummaryOffset = 0;
|
|
uint64_t CSSummarySize = 0;
|
|
if (static_cast<bool>(ProfileKind & InstrProfKind::ContextSensitive)) {
|
|
CSSummaryOffset = OS.tell();
|
|
CSSummarySize = SummarySize / sizeof(uint64_t);
|
|
for (unsigned I = 0; I < CSSummarySize; I++)
|
|
OS.write(0);
|
|
}
|
|
|
|
// Write the hash table.
|
|
uint64_t HashTableStart = Generator.Emit(OS.OS, *InfoObj);
|
|
|
|
// Write the MemProf profile data if we have it.
|
|
uint64_t MemProfSectionStart = 0;
|
|
if (static_cast<bool>(ProfileKind & InstrProfKind::MemProf)) {
|
|
MemProfSectionStart = OS.tell();
|
|
if (auto E = writeMemProf(OS, MemProfData, MemProfVersionRequested,
|
|
MemProfFullSchema))
|
|
return E;
|
|
}
|
|
|
|
// BinaryIdSection has two parts:
|
|
// 1. uint64_t BinaryIdsSectionSize
|
|
// 2. list of binary ids that consist of:
|
|
// a. uint64_t BinaryIdLength
|
|
// b. uint8_t BinaryIdData
|
|
// c. uint8_t Padding (if necessary)
|
|
uint64_t BinaryIdSectionStart = OS.tell();
|
|
// Calculate size of binary section.
|
|
uint64_t BinaryIdsSectionSize = 0;
|
|
|
|
// Remove duplicate binary ids.
|
|
llvm::sort(BinaryIds);
|
|
BinaryIds.erase(llvm::unique(BinaryIds), BinaryIds.end());
|
|
|
|
for (const auto &BI : BinaryIds) {
|
|
// Increment by binary id length data type size.
|
|
BinaryIdsSectionSize += sizeof(uint64_t);
|
|
// Increment by binary id data length, aligned to 8 bytes.
|
|
BinaryIdsSectionSize += alignToPowerOf2(BI.size(), sizeof(uint64_t));
|
|
}
|
|
// Write binary ids section size.
|
|
OS.write(BinaryIdsSectionSize);
|
|
|
|
for (const auto &BI : BinaryIds) {
|
|
uint64_t BILen = BI.size();
|
|
// Write binary id length.
|
|
OS.write(BILen);
|
|
// Write binary id data.
|
|
for (unsigned K = 0; K < BILen; K++)
|
|
OS.writeByte(BI[K]);
|
|
// Write padding if necessary.
|
|
uint64_t PaddingSize = alignToPowerOf2(BILen, sizeof(uint64_t)) - BILen;
|
|
for (unsigned K = 0; K < PaddingSize; K++)
|
|
OS.writeByte(0);
|
|
}
|
|
|
|
uint64_t VTableNamesSectionStart = OS.tell();
|
|
|
|
if (!WritePrevVersion)
|
|
if (Error E = writeVTableNames(OS))
|
|
return E;
|
|
|
|
uint64_t TemporalProfTracesSectionStart = 0;
|
|
if (static_cast<bool>(ProfileKind & InstrProfKind::TemporalProfile)) {
|
|
TemporalProfTracesSectionStart = OS.tell();
|
|
OS.write(TemporalProfTraces.size());
|
|
OS.write(TemporalProfTraceStreamSize);
|
|
for (auto &Trace : TemporalProfTraces) {
|
|
OS.write(Trace.Weight);
|
|
OS.write(Trace.FunctionNameRefs.size());
|
|
for (auto &NameRef : Trace.FunctionNameRefs)
|
|
OS.write(NameRef);
|
|
}
|
|
}
|
|
|
|
// Allocate space for data to be serialized out.
|
|
std::unique_ptr<IndexedInstrProf::Summary> TheSummary =
|
|
IndexedInstrProf::allocSummary(SummarySize);
|
|
// Compute the Summary and copy the data to the data
|
|
// structure to be serialized out (to disk or buffer).
|
|
std::unique_ptr<ProfileSummary> PS = ISB.getSummary();
|
|
setSummary(TheSummary.get(), *PS);
|
|
InfoObj->SummaryBuilder = nullptr;
|
|
|
|
// For Context Sensitive summary.
|
|
std::unique_ptr<IndexedInstrProf::Summary> TheCSSummary = nullptr;
|
|
if (static_cast<bool>(ProfileKind & InstrProfKind::ContextSensitive)) {
|
|
TheCSSummary = IndexedInstrProf::allocSummary(SummarySize);
|
|
std::unique_ptr<ProfileSummary> CSPS = CSISB.getSummary();
|
|
setSummary(TheCSSummary.get(), *CSPS);
|
|
}
|
|
InfoObj->CSSummaryBuilder = nullptr;
|
|
|
|
SmallVector<uint64_t, 8> HeaderOffsets = {HashTableStart, MemProfSectionStart,
|
|
BinaryIdSectionStart,
|
|
TemporalProfTracesSectionStart};
|
|
if (!WritePrevVersion)
|
|
HeaderOffsets.push_back(VTableNamesSectionStart);
|
|
|
|
PatchItem PatchItems[] = {
|
|
// Patch the Header fields
|
|
{BackPatchStartOffset, HeaderOffsets.data(), (int)HeaderOffsets.size()},
|
|
// Patch the summary data.
|
|
{SummaryOffset, reinterpret_cast<uint64_t *>(TheSummary.get()),
|
|
(int)(SummarySize / sizeof(uint64_t))},
|
|
{CSSummaryOffset, reinterpret_cast<uint64_t *>(TheCSSummary.get()),
|
|
(int)CSSummarySize}};
|
|
|
|
OS.patch(PatchItems);
|
|
|
|
for (const auto &I : FunctionData)
|
|
for (const auto &F : I.getValue())
|
|
if (Error E = validateRecord(F.second))
|
|
return E;
|
|
|
|
return Error::success();
|
|
}
|
|
|
|
Error InstrProfWriter::write(raw_fd_ostream &OS) {
|
|
// Write the hash table.
|
|
ProfOStream POS(OS);
|
|
return writeImpl(POS);
|
|
}
|
|
|
|
Error InstrProfWriter::write(raw_string_ostream &OS) {
|
|
ProfOStream POS(OS);
|
|
return writeImpl(POS);
|
|
}
|
|
|
|
std::unique_ptr<MemoryBuffer> InstrProfWriter::writeBuffer() {
|
|
std::string Data;
|
|
raw_string_ostream OS(Data);
|
|
// Write the hash table.
|
|
if (Error E = write(OS))
|
|
return nullptr;
|
|
// Return this in an aligned memory buffer.
|
|
return MemoryBuffer::getMemBufferCopy(Data);
|
|
}
|
|
|
|
static const char *ValueProfKindStr[] = {
|
|
#define VALUE_PROF_KIND(Enumerator, Value, Descr) #Enumerator,
|
|
#include "llvm/ProfileData/InstrProfData.inc"
|
|
};
|
|
|
|
Error InstrProfWriter::validateRecord(const InstrProfRecord &Func) {
|
|
for (uint32_t VK = 0; VK <= IPVK_Last; VK++) {
|
|
if (VK == IPVK_IndirectCallTarget || VK == IPVK_VTableTarget)
|
|
continue;
|
|
uint32_t NS = Func.getNumValueSites(VK);
|
|
for (uint32_t S = 0; S < NS; S++) {
|
|
DenseSet<uint64_t> SeenValues;
|
|
for (const auto &V : Func.getValueArrayForSite(VK, S))
|
|
if (!SeenValues.insert(V.Value).second)
|
|
return make_error<InstrProfError>(instrprof_error::invalid_prof);
|
|
}
|
|
}
|
|
|
|
return Error::success();
|
|
}
|
|
|
|
void InstrProfWriter::writeRecordInText(StringRef Name, uint64_t Hash,
|
|
const InstrProfRecord &Func,
|
|
InstrProfSymtab &Symtab,
|
|
raw_fd_ostream &OS) {
|
|
OS << Name << "\n";
|
|
OS << "# Func Hash:\n" << Hash << "\n";
|
|
OS << "# Num Counters:\n" << Func.Counts.size() << "\n";
|
|
OS << "# Counter Values:\n";
|
|
for (uint64_t Count : Func.Counts)
|
|
OS << Count << "\n";
|
|
|
|
if (Func.BitmapBytes.size() > 0) {
|
|
OS << "# Num Bitmap Bytes:\n$" << Func.BitmapBytes.size() << "\n";
|
|
OS << "# Bitmap Byte Values:\n";
|
|
for (uint8_t Byte : Func.BitmapBytes) {
|
|
OS << "0x";
|
|
OS.write_hex(Byte);
|
|
OS << "\n";
|
|
}
|
|
OS << "\n";
|
|
}
|
|
|
|
uint32_t NumValueKinds = Func.getNumValueKinds();
|
|
if (!NumValueKinds) {
|
|
OS << "\n";
|
|
return;
|
|
}
|
|
|
|
OS << "# Num Value Kinds:\n" << Func.getNumValueKinds() << "\n";
|
|
for (uint32_t VK = 0; VK < IPVK_Last + 1; VK++) {
|
|
uint32_t NS = Func.getNumValueSites(VK);
|
|
if (!NS)
|
|
continue;
|
|
OS << "# ValueKind = " << ValueProfKindStr[VK] << ":\n" << VK << "\n";
|
|
OS << "# NumValueSites:\n" << NS << "\n";
|
|
for (uint32_t S = 0; S < NS; S++) {
|
|
auto VD = Func.getValueArrayForSite(VK, S);
|
|
OS << VD.size() << "\n";
|
|
for (const auto &V : VD) {
|
|
if (VK == IPVK_IndirectCallTarget || VK == IPVK_VTableTarget)
|
|
OS << Symtab.getFuncOrVarNameIfDefined(V.Value) << ":" << V.Count
|
|
<< "\n";
|
|
else
|
|
OS << V.Value << ":" << V.Count << "\n";
|
|
}
|
|
}
|
|
}
|
|
|
|
OS << "\n";
|
|
}
|
|
|
|
Error InstrProfWriter::writeText(raw_fd_ostream &OS) {
|
|
// Check CS first since it implies an IR level profile.
|
|
if (static_cast<bool>(ProfileKind & InstrProfKind::ContextSensitive))
|
|
OS << "# CSIR level Instrumentation Flag\n:csir\n";
|
|
else if (static_cast<bool>(ProfileKind & InstrProfKind::IRInstrumentation))
|
|
OS << "# IR level Instrumentation Flag\n:ir\n";
|
|
|
|
if (static_cast<bool>(ProfileKind &
|
|
InstrProfKind::FunctionEntryInstrumentation))
|
|
OS << "# Always instrument the function entry block\n:entry_first\n";
|
|
if (static_cast<bool>(ProfileKind & InstrProfKind::SingleByteCoverage))
|
|
OS << "# Instrument block coverage\n:single_byte_coverage\n";
|
|
InstrProfSymtab Symtab;
|
|
|
|
using FuncPair = detail::DenseMapPair<uint64_t, InstrProfRecord>;
|
|
using RecordType = std::pair<StringRef, FuncPair>;
|
|
SmallVector<RecordType, 4> OrderedFuncData;
|
|
|
|
for (const auto &I : FunctionData) {
|
|
if (shouldEncodeData(I.getValue())) {
|
|
if (Error E = Symtab.addFuncName(I.getKey()))
|
|
return E;
|
|
for (const auto &Func : I.getValue())
|
|
OrderedFuncData.push_back(std::make_pair(I.getKey(), Func));
|
|
}
|
|
}
|
|
|
|
for (const auto &VTableName : VTableNames)
|
|
if (Error E = Symtab.addVTableName(VTableName.getKey()))
|
|
return E;
|
|
|
|
if (static_cast<bool>(ProfileKind & InstrProfKind::TemporalProfile))
|
|
writeTextTemporalProfTraceData(OS, Symtab);
|
|
|
|
llvm::sort(OrderedFuncData, [](const RecordType &A, const RecordType &B) {
|
|
return std::tie(A.first, A.second.first) <
|
|
std::tie(B.first, B.second.first);
|
|
});
|
|
|
|
for (const auto &record : OrderedFuncData) {
|
|
const StringRef &Name = record.first;
|
|
const FuncPair &Func = record.second;
|
|
writeRecordInText(Name, Func.first, Func.second, Symtab, OS);
|
|
}
|
|
|
|
for (const auto &record : OrderedFuncData) {
|
|
const FuncPair &Func = record.second;
|
|
if (Error E = validateRecord(Func.second))
|
|
return E;
|
|
}
|
|
|
|
return Error::success();
|
|
}
|
|
|
|
void InstrProfWriter::writeTextTemporalProfTraceData(raw_fd_ostream &OS,
|
|
InstrProfSymtab &Symtab) {
|
|
OS << ":temporal_prof_traces\n";
|
|
OS << "# Num Temporal Profile Traces:\n" << TemporalProfTraces.size() << "\n";
|
|
OS << "# Temporal Profile Trace Stream Size:\n"
|
|
<< TemporalProfTraceStreamSize << "\n";
|
|
for (auto &Trace : TemporalProfTraces) {
|
|
OS << "# Weight:\n" << Trace.Weight << "\n";
|
|
for (auto &NameRef : Trace.FunctionNameRefs)
|
|
OS << Symtab.getFuncOrVarName(NameRef) << ",";
|
|
OS << "\n";
|
|
}
|
|
OS << "\n";
|
|
}
|