llvm-project/llvm/lib/IR/RuntimeLibcalls.cpp
Matt Arsenault 779f7243c8
XCore: Declare libcalls used for align 4 memcpy (#144976)
This usage was hidden in XCoreSelectionDAGInfo and bypassed
the usual libcall system, so define these for later use.
2025-06-27 17:50:01 +09:00

621 lines
28 KiB
C++

//===- RuntimeLibcalls.cpp - Interface for runtime libcalls -----*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "llvm/IR/RuntimeLibcalls.h"
#include "llvm/Support/CommandLine.h"
using namespace llvm;
using namespace RTLIB;
#define GET_INIT_RUNTIME_LIBCALL_UTILS
#define GET_INIT_RUNTIME_LIBCALL_NAMES
#include "llvm/IR/RuntimeLibcalls.inc"
#undef GET_INIT_RUNTIME_LIBCALL_UTILS
#undef GET_INIT_RUNTIME_LIBCALL_NAMES
static cl::opt<bool>
HexagonEnableFastMathRuntimeCalls("hexagon-fast-math", cl::Hidden,
cl::desc("Enable Fast Math processing"));
static void setAArch64LibcallNames(RuntimeLibcallsInfo &Info,
const Triple &TT) {
#define LCALLNAMES(A, B, N) \
Info.setLibcallImpl(A##N##_RELAX, B##N##_relax); \
Info.setLibcallImpl(A##N##_ACQ, B##N##_acq); \
Info.setLibcallImpl(A##N##_REL, B##N##_rel); \
Info.setLibcallImpl(A##N##_ACQ_REL, B##N##_acq_rel);
#define LCALLNAME4(A, B) \
LCALLNAMES(A, B, 1) \
LCALLNAMES(A, B, 2) LCALLNAMES(A, B, 4) LCALLNAMES(A, B, 8)
#define LCALLNAME5(A, B) \
LCALLNAMES(A, B, 1) \
LCALLNAMES(A, B, 2) \
LCALLNAMES(A, B, 4) LCALLNAMES(A, B, 8) LCALLNAMES(A, B, 16)
if (TT.isWindowsArm64EC()) {
LCALLNAME5(RTLIB::OUTLINE_ATOMIC_CAS, RTLIB::arm64ec___aarch64_cas)
LCALLNAME4(RTLIB::OUTLINE_ATOMIC_SWP, RTLIB::arm64ec___aarch64_swp)
LCALLNAME4(RTLIB::OUTLINE_ATOMIC_LDADD, RTLIB::arm64ec___aarch64_ldadd)
LCALLNAME4(RTLIB::OUTLINE_ATOMIC_LDSET, RTLIB::arm64ec___aarch64_ldset)
LCALLNAME4(RTLIB::OUTLINE_ATOMIC_LDCLR, RTLIB::arm64ec___aarch64_ldclr)
LCALLNAME4(RTLIB::OUTLINE_ATOMIC_LDEOR, RTLIB::arm64ec___aarch64_ldeor)
} else {
LCALLNAME5(RTLIB::OUTLINE_ATOMIC_CAS, RTLIB::__aarch64_cas)
LCALLNAME4(RTLIB::OUTLINE_ATOMIC_SWP, RTLIB::__aarch64_swp)
LCALLNAME4(RTLIB::OUTLINE_ATOMIC_LDADD, RTLIB::__aarch64_ldadd)
LCALLNAME4(RTLIB::OUTLINE_ATOMIC_LDSET, RTLIB::__aarch64_ldset)
LCALLNAME4(RTLIB::OUTLINE_ATOMIC_LDCLR, RTLIB::__aarch64_ldclr)
LCALLNAME4(RTLIB::OUTLINE_ATOMIC_LDEOR, RTLIB::__aarch64_ldeor)
}
#undef LCALLNAMES
#undef LCALLNAME4
#undef LCALLNAME5
}
static void setARMLibcallNames(RuntimeLibcallsInfo &Info, const Triple &TT,
FloatABI::ABIType FloatABIType,
EABI EABIVersion) {
if (!TT.isOSDarwin() && !TT.isiOS() && !TT.isWatchOS() && !TT.isDriverKit()) {
CallingConv::ID DefaultCC = FloatABIType == FloatABI::Hard
? CallingConv::ARM_AAPCS_VFP
: CallingConv::ARM_AAPCS;
for (RTLIB::Libcall LC : RTLIB::libcalls())
Info.setLibcallCallingConv(LC, DefaultCC);
}
// Register based DivRem for AEABI (RTABI 4.2)
if (TT.isTargetAEABI() || TT.isAndroid() || TT.isTargetGNUAEABI() ||
TT.isTargetMuslAEABI() || TT.isOSWindows()) {
if (TT.isOSWindows()) {
const struct {
const RTLIB::Libcall Op;
const RTLIB::LibcallImpl Impl;
const CallingConv::ID CC;
} LibraryCalls[] = {
{RTLIB::SDIVREM_I32, RTLIB::__rt_sdiv, CallingConv::ARM_AAPCS},
{RTLIB::SDIVREM_I64, RTLIB::__rt_sdiv64, CallingConv::ARM_AAPCS},
{RTLIB::UDIVREM_I32, RTLIB::__rt_udiv, CallingConv::ARM_AAPCS},
{RTLIB::UDIVREM_I64, RTLIB::__rt_udiv64, CallingConv::ARM_AAPCS},
};
for (const auto &LC : LibraryCalls) {
Info.setLibcallImpl(LC.Op, LC.Impl);
Info.setLibcallCallingConv(LC.Op, LC.CC);
}
} else {
const struct {
const RTLIB::Libcall Op;
const RTLIB::LibcallImpl Impl;
const CallingConv::ID CC;
} LibraryCalls[] = {
{RTLIB::SDIVREM_I32, RTLIB::__aeabi_idivmod, CallingConv::ARM_AAPCS},
{RTLIB::SDIVREM_I64, RTLIB::__aeabi_ldivmod, CallingConv::ARM_AAPCS},
{RTLIB::UDIVREM_I32, RTLIB::__aeabi_uidivmod, CallingConv::ARM_AAPCS},
{RTLIB::UDIVREM_I64, RTLIB::__aeabi_uldivmod, CallingConv::ARM_AAPCS},
};
for (const auto &LC : LibraryCalls) {
Info.setLibcallImpl(LC.Op, LC.Impl);
Info.setLibcallCallingConv(LC.Op, LC.CC);
}
}
}
if (TT.isOSWindows()) {
static const struct {
const RTLIB::Libcall Op;
const RTLIB::LibcallImpl Impl;
const CallingConv::ID CC;
} LibraryCalls[] = {
{RTLIB::FPTOSINT_F32_I64, RTLIB::__stoi64, CallingConv::ARM_AAPCS_VFP},
{RTLIB::FPTOSINT_F64_I64, RTLIB::__dtoi64, CallingConv::ARM_AAPCS_VFP},
{RTLIB::FPTOUINT_F32_I64, RTLIB::__stou64, CallingConv::ARM_AAPCS_VFP},
{RTLIB::FPTOUINT_F64_I64, RTLIB::__dtou64, CallingConv::ARM_AAPCS_VFP},
{RTLIB::SINTTOFP_I64_F32, RTLIB::__i64tos, CallingConv::ARM_AAPCS_VFP},
{RTLIB::SINTTOFP_I64_F64, RTLIB::__i64tod, CallingConv::ARM_AAPCS_VFP},
{RTLIB::UINTTOFP_I64_F32, RTLIB::__u64tos, CallingConv::ARM_AAPCS_VFP},
{RTLIB::UINTTOFP_I64_F64, RTLIB::__u64tod, CallingConv::ARM_AAPCS_VFP},
};
for (const auto &LC : LibraryCalls) {
Info.setLibcallImpl(LC.Op, LC.Impl);
Info.setLibcallCallingConv(LC.Op, LC.CC);
}
}
// Use divmod compiler-rt calls for iOS 5.0 and later.
if (TT.isOSBinFormatMachO() && (!TT.isiOS() || !TT.isOSVersionLT(5, 0))) {
Info.setLibcallImpl(RTLIB::SDIVREM_I32, RTLIB::__divmodsi4);
Info.setLibcallImpl(RTLIB::UDIVREM_I32, RTLIB::__udivmodsi4);
}
}
static void setMSP430Libcalls(RuntimeLibcallsInfo &Info, const Triple &TT) {
// EABI Libcalls - EABI Section 6.2
const struct {
const RTLIB::Libcall Op;
const RTLIB::LibcallImpl Impl;
} LibraryCalls[] = {
// Floating point conversions - EABI Table 6
{RTLIB::FPROUND_F64_F32, RTLIB::__mspabi_cvtdf},
{RTLIB::FPEXT_F32_F64, RTLIB::__mspabi_cvtfd},
// The following is NOT implemented in libgcc
//{ RTLIB::FPTOSINT_F64_I16, RTLIB::__mspabi_fixdi },
{RTLIB::FPTOSINT_F64_I32, RTLIB::__mspabi_fixdli},
{RTLIB::FPTOSINT_F64_I64, RTLIB::__mspabi_fixdlli},
// The following is NOT implemented in libgcc
//{ RTLIB::FPTOUINT_F64_I16, RTLIB::__mspabi_fixdu },
{RTLIB::FPTOUINT_F64_I32, RTLIB::__mspabi_fixdul},
{RTLIB::FPTOUINT_F64_I64, RTLIB::__mspabi_fixdull},
// The following is NOT implemented in libgcc
//{ RTLIB::FPTOSINT_F32_I16, RTLIB::__mspabi_fixfi },
{RTLIB::FPTOSINT_F32_I32, RTLIB::__mspabi_fixfli},
{RTLIB::FPTOSINT_F32_I64, RTLIB::__mspabi_fixflli},
// The following is NOT implemented in libgcc
//{ RTLIB::FPTOUINT_F32_I16, RTLIB::__mspabi_fixfu },
{RTLIB::FPTOUINT_F32_I32, RTLIB::__mspabi_fixful},
{RTLIB::FPTOUINT_F32_I64, RTLIB::__mspabi_fixfull},
// TODO The following IS implemented in libgcc
//{ RTLIB::SINTTOFP_I16_F64, RTLIB::__mspabi_fltid },
{RTLIB::SINTTOFP_I32_F64, RTLIB::__mspabi_fltlid},
// TODO The following IS implemented in libgcc but is not in the EABI
{RTLIB::SINTTOFP_I64_F64, RTLIB::__mspabi_fltllid},
// TODO The following IS implemented in libgcc
//{ RTLIB::UINTTOFP_I16_F64, RTLIB::__mspabi_fltud },
{RTLIB::UINTTOFP_I32_F64, RTLIB::__mspabi_fltuld},
// The following IS implemented in libgcc but is not in the EABI
{RTLIB::UINTTOFP_I64_F64, RTLIB::__mspabi_fltulld},
// TODO The following IS implemented in libgcc
//{ RTLIB::SINTTOFP_I16_F32, RTLIB::__mspabi_fltif },
{RTLIB::SINTTOFP_I32_F32, RTLIB::__mspabi_fltlif},
// TODO The following IS implemented in libgcc but is not in the EABI
{RTLIB::SINTTOFP_I64_F32, RTLIB::__mspabi_fltllif},
// TODO The following IS implemented in libgcc
//{ RTLIB::UINTTOFP_I16_F32, RTLIB::__mspabi_fltuf },
{RTLIB::UINTTOFP_I32_F32, RTLIB::__mspabi_fltulf},
// The following IS implemented in libgcc but is not in the EABI
{RTLIB::UINTTOFP_I64_F32, RTLIB::__mspabi_fltullf},
// Floating point comparisons - EABI Table 7
{RTLIB::OEQ_F64, RTLIB::__mspabi_cmpd__oeq},
{RTLIB::UNE_F64, RTLIB::__mspabi_cmpd__une},
{RTLIB::OGE_F64, RTLIB::__mspabi_cmpd__oge},
{RTLIB::OLT_F64, RTLIB::__mspabi_cmpd__olt},
{RTLIB::OLE_F64, RTLIB::__mspabi_cmpd__ole},
{RTLIB::OGT_F64, RTLIB::__mspabi_cmpd__ogt},
{RTLIB::OEQ_F32, RTLIB::__mspabi_cmpf__oeq},
{RTLIB::UNE_F32, RTLIB::__mspabi_cmpf__une},
{RTLIB::OGE_F32, RTLIB::__mspabi_cmpf__oge},
{RTLIB::OLT_F32, RTLIB::__mspabi_cmpf__olt},
{RTLIB::OLE_F32, RTLIB::__mspabi_cmpf__ole},
{RTLIB::OGT_F32, RTLIB::__mspabi_cmpf__ogt},
// Floating point arithmetic - EABI Table 8
{RTLIB::ADD_F64, RTLIB::__mspabi_addd},
{RTLIB::ADD_F32, RTLIB::__mspabi_addf},
{RTLIB::DIV_F64, RTLIB::__mspabi_divd},
{RTLIB::DIV_F32, RTLIB::__mspabi_divf},
{RTLIB::MUL_F64, RTLIB::__mspabi_mpyd},
{RTLIB::MUL_F32, RTLIB::__mspabi_mpyf},
{RTLIB::SUB_F64, RTLIB::__mspabi_subd},
{RTLIB::SUB_F32, RTLIB::__mspabi_subf},
// The following are NOT implemented in libgcc
// { RTLIB::NEG_F64, RTLIB::__mspabi_negd },
// { RTLIB::NEG_F32, RTLIB::__mspabi_negf },
// Universal Integer Operations - EABI Table 9
{RTLIB::SDIV_I16, RTLIB::__mspabi_divi},
{RTLIB::SDIV_I32, RTLIB::__mspabi_divli},
{RTLIB::SDIV_I64, RTLIB::__mspabi_divlli},
{RTLIB::UDIV_I16, RTLIB::__mspabi_divu},
{RTLIB::UDIV_I32, RTLIB::__mspabi_divul},
{RTLIB::UDIV_I64, RTLIB::__mspabi_divull},
{RTLIB::SREM_I16, RTLIB::__mspabi_remi},
{RTLIB::SREM_I32, RTLIB::__mspabi_remli},
{RTLIB::SREM_I64, RTLIB::__mspabi_remlli},
{RTLIB::UREM_I16, RTLIB::__mspabi_remu},
{RTLIB::UREM_I32, RTLIB::__mspabi_remul},
{RTLIB::UREM_I64, RTLIB::__mspabi_remull},
// Bitwise Operations - EABI Table 10
// TODO: __mspabi_[srli/srai/slli] ARE implemented in libgcc
{RTLIB::SRL_I32, RTLIB::__mspabi_srll},
{RTLIB::SRA_I32, RTLIB::__mspabi_sral},
{RTLIB::SHL_I32, RTLIB::__mspabi_slll},
// __mspabi_[srlll/srall/sllll/rlli/rlll] are NOT implemented in libgcc
};
for (const auto &LC : LibraryCalls)
Info.setLibcallImpl(LC.Op, LC.Impl);
// Several of the runtime library functions use a special calling conv
Info.setLibcallCallingConv(RTLIB::UDIV_I64, CallingConv::MSP430_BUILTIN);
Info.setLibcallCallingConv(RTLIB::UREM_I64, CallingConv::MSP430_BUILTIN);
Info.setLibcallCallingConv(RTLIB::SDIV_I64, CallingConv::MSP430_BUILTIN);
Info.setLibcallCallingConv(RTLIB::SREM_I64, CallingConv::MSP430_BUILTIN);
Info.setLibcallCallingConv(RTLIB::ADD_F64, CallingConv::MSP430_BUILTIN);
Info.setLibcallCallingConv(RTLIB::SUB_F64, CallingConv::MSP430_BUILTIN);
Info.setLibcallCallingConv(RTLIB::MUL_F64, CallingConv::MSP430_BUILTIN);
Info.setLibcallCallingConv(RTLIB::DIV_F64, CallingConv::MSP430_BUILTIN);
Info.setLibcallCallingConv(RTLIB::OEQ_F64, CallingConv::MSP430_BUILTIN);
Info.setLibcallCallingConv(RTLIB::UNE_F64, CallingConv::MSP430_BUILTIN);
Info.setLibcallCallingConv(RTLIB::OGE_F64, CallingConv::MSP430_BUILTIN);
Info.setLibcallCallingConv(RTLIB::OLT_F64, CallingConv::MSP430_BUILTIN);
Info.setLibcallCallingConv(RTLIB::OLE_F64, CallingConv::MSP430_BUILTIN);
Info.setLibcallCallingConv(RTLIB::OGT_F64, CallingConv::MSP430_BUILTIN);
// TODO: __mspabi_srall, __mspabi_srlll, __mspabi_sllll
}
void RuntimeLibcallsInfo::initSoftFloatCmpLibcallPredicates() {
SoftFloatCompareLibcallPredicates[RTLIB::OEQ_F32] = CmpInst::ICMP_EQ;
SoftFloatCompareLibcallPredicates[RTLIB::OEQ_F64] = CmpInst::ICMP_EQ;
SoftFloatCompareLibcallPredicates[RTLIB::OEQ_F128] = CmpInst::ICMP_EQ;
SoftFloatCompareLibcallPredicates[RTLIB::OEQ_PPCF128] = CmpInst::ICMP_EQ;
SoftFloatCompareLibcallPredicates[RTLIB::UNE_F32] = CmpInst::ICMP_NE;
SoftFloatCompareLibcallPredicates[RTLIB::UNE_F64] = CmpInst::ICMP_NE;
SoftFloatCompareLibcallPredicates[RTLIB::UNE_F128] = CmpInst::ICMP_NE;
SoftFloatCompareLibcallPredicates[RTLIB::UNE_PPCF128] = CmpInst::ICMP_NE;
SoftFloatCompareLibcallPredicates[RTLIB::OGE_F32] = CmpInst::ICMP_SGE;
SoftFloatCompareLibcallPredicates[RTLIB::OGE_F64] = CmpInst::ICMP_SGE;
SoftFloatCompareLibcallPredicates[RTLIB::OGE_F128] = CmpInst::ICMP_SGE;
SoftFloatCompareLibcallPredicates[RTLIB::OGE_PPCF128] = CmpInst::ICMP_SGE;
SoftFloatCompareLibcallPredicates[RTLIB::OLT_F32] = CmpInst::ICMP_SLT;
SoftFloatCompareLibcallPredicates[RTLIB::OLT_F64] = CmpInst::ICMP_SLT;
SoftFloatCompareLibcallPredicates[RTLIB::OLT_F128] = CmpInst::ICMP_SLT;
SoftFloatCompareLibcallPredicates[RTLIB::OLT_PPCF128] = CmpInst::ICMP_SLT;
SoftFloatCompareLibcallPredicates[RTLIB::OLE_F32] = CmpInst::ICMP_SLE;
SoftFloatCompareLibcallPredicates[RTLIB::OLE_F64] = CmpInst::ICMP_SLE;
SoftFloatCompareLibcallPredicates[RTLIB::OLE_F128] = CmpInst::ICMP_SLE;
SoftFloatCompareLibcallPredicates[RTLIB::OLE_PPCF128] = CmpInst::ICMP_SLE;
SoftFloatCompareLibcallPredicates[RTLIB::OGT_F32] = CmpInst::ICMP_SGT;
SoftFloatCompareLibcallPredicates[RTLIB::OGT_F64] = CmpInst::ICMP_SGT;
SoftFloatCompareLibcallPredicates[RTLIB::OGT_F128] = CmpInst::ICMP_SGT;
SoftFloatCompareLibcallPredicates[RTLIB::OGT_PPCF128] = CmpInst::ICMP_SGT;
SoftFloatCompareLibcallPredicates[RTLIB::UO_F32] = CmpInst::ICMP_NE;
SoftFloatCompareLibcallPredicates[RTLIB::UO_F64] = CmpInst::ICMP_NE;
SoftFloatCompareLibcallPredicates[RTLIB::UO_F128] = CmpInst::ICMP_NE;
SoftFloatCompareLibcallPredicates[RTLIB::UO_PPCF128] = CmpInst::ICMP_NE;
}
static void setLongDoubleIsF128Libm(RuntimeLibcallsInfo &Info,
bool FiniteOnlyFuncs = false) {
Info.setLibcallImpl(RTLIB::REM_F128, RTLIB::fmodf128);
Info.setLibcallImpl(RTLIB::FMA_F128, RTLIB::fmaf128);
Info.setLibcallImpl(RTLIB::SQRT_F128, RTLIB::sqrtf128);
Info.setLibcallImpl(RTLIB::CBRT_F128, RTLIB::cbrtf128);
Info.setLibcallImpl(RTLIB::LOG_F128, RTLIB::logf128);
Info.setLibcallImpl(RTLIB::LOG2_F128, RTLIB::log2f128);
Info.setLibcallImpl(RTLIB::LOG10_F128, RTLIB::log10f128);
Info.setLibcallImpl(RTLIB::EXP_F128, RTLIB::expf128);
Info.setLibcallImpl(RTLIB::EXP2_F128, RTLIB::exp2f128);
Info.setLibcallImpl(RTLIB::EXP10_F128, RTLIB::exp10f128);
Info.setLibcallImpl(RTLIB::SIN_F128, RTLIB::sinf128);
Info.setLibcallImpl(RTLIB::COS_F128, RTLIB::cosf128);
Info.setLibcallImpl(RTLIB::TAN_F128, RTLIB::tanf128);
Info.setLibcallImpl(RTLIB::SINCOS_F128, RTLIB::sincosf128);
Info.setLibcallImpl(RTLIB::ASIN_F128, RTLIB::asinf128);
Info.setLibcallImpl(RTLIB::ACOS_F128, RTLIB::acosf128);
Info.setLibcallImpl(RTLIB::ATAN_F128, RTLIB::atanf128);
Info.setLibcallImpl(RTLIB::ATAN2_F128, RTLIB::atan2f128);
Info.setLibcallImpl(RTLIB::SINH_F128, RTLIB::sinhf128);
Info.setLibcallImpl(RTLIB::COSH_F128, RTLIB::coshf128);
Info.setLibcallImpl(RTLIB::TANH_F128, RTLIB::tanhf128);
Info.setLibcallImpl(RTLIB::POW_F128, RTLIB::powf128);
Info.setLibcallImpl(RTLIB::CEIL_F128, RTLIB::ceilf128);
Info.setLibcallImpl(RTLIB::TRUNC_F128, RTLIB::truncf128);
Info.setLibcallImpl(RTLIB::RINT_F128, RTLIB::rintf128);
Info.setLibcallImpl(RTLIB::NEARBYINT_F128, RTLIB::nearbyintf128);
Info.setLibcallImpl(RTLIB::ROUND_F128, RTLIB::roundf128);
Info.setLibcallImpl(RTLIB::ROUNDEVEN_F128, RTLIB::roundevenf128);
Info.setLibcallImpl(RTLIB::FLOOR_F128, RTLIB::floorf128);
Info.setLibcallImpl(RTLIB::COPYSIGN_F128, RTLIB::copysignf128);
Info.setLibcallImpl(RTLIB::FMIN_F128, RTLIB::fminf128);
Info.setLibcallImpl(RTLIB::FMAX_F128, RTLIB::fmaxf128);
Info.setLibcallImpl(RTLIB::FMINIMUM_F128, RTLIB::fminimumf128);
Info.setLibcallImpl(RTLIB::FMAXIMUM_F128, RTLIB::fmaximumf128);
Info.setLibcallImpl(RTLIB::FMINIMUM_NUM_F128, RTLIB::fminimum_numf128);
Info.setLibcallImpl(RTLIB::FMAXIMUM_NUM_F128, RTLIB::fmaximum_numf128);
Info.setLibcallImpl(RTLIB::LROUND_F128, RTLIB::lroundf128);
Info.setLibcallImpl(RTLIB::LLROUND_F128, RTLIB::llroundf128);
Info.setLibcallImpl(RTLIB::LRINT_F128, RTLIB::lrintf128);
Info.setLibcallImpl(RTLIB::LLRINT_F128, RTLIB::llrintf128);
Info.setLibcallImpl(RTLIB::LDEXP_F128, RTLIB::ldexpf128);
Info.setLibcallImpl(RTLIB::FREXP_F128, RTLIB::frexpf128);
Info.setLibcallImpl(RTLIB::MODF_F128, RTLIB::modff128);
if (FiniteOnlyFuncs) {
Info.setLibcallImpl(RTLIB::LOG_FINITE_F128, RTLIB::__logf128_finite);
Info.setLibcallImpl(RTLIB::LOG2_FINITE_F128, RTLIB::__log2f128_finite);
Info.setLibcallImpl(RTLIB::LOG10_FINITE_F128, RTLIB::__log10f128_finite);
Info.setLibcallImpl(RTLIB::EXP_FINITE_F128, RTLIB::__expf128_finite);
Info.setLibcallImpl(RTLIB::EXP2_FINITE_F128, RTLIB::__exp2f128_finite);
Info.setLibcallImpl(RTLIB::POW_FINITE_F128, RTLIB::__powf128_finite);
} else {
Info.setLibcallImpl(RTLIB::LOG_FINITE_F128, RTLIB::Unsupported);
Info.setLibcallImpl(RTLIB::LOG2_FINITE_F128, RTLIB::Unsupported);
Info.setLibcallImpl(RTLIB::LOG10_FINITE_F128, RTLIB::Unsupported);
Info.setLibcallImpl(RTLIB::EXP_FINITE_F128, RTLIB::Unsupported);
Info.setLibcallImpl(RTLIB::EXP2_FINITE_F128, RTLIB::Unsupported);
Info.setLibcallImpl(RTLIB::POW_FINITE_F128, RTLIB::Unsupported);
}
}
void RTLIB::RuntimeLibcallsInfo::initDefaultLibCallImpls() {
std::memcpy(LibcallImpls, DefaultLibcallImpls, sizeof(LibcallImpls));
static_assert(sizeof(LibcallImpls) == sizeof(DefaultLibcallImpls),
"libcall array size should match");
}
/// Set default libcall names. If a target wants to opt-out of a libcall it
/// should be placed here.
void RuntimeLibcallsInfo::initLibcalls(const Triple &TT,
ExceptionHandling ExceptionModel,
FloatABI::ABIType FloatABI,
EABI EABIVersion, StringRef ABIName) {
// Use the f128 variants of math functions on x86
if (TT.isX86() && TT.isGNUEnvironment())
setLongDoubleIsF128Libm(*this, /*FiniteOnlyFuncs=*/true);
if (TT.isX86() || TT.isVE()) {
if (ExceptionModel == ExceptionHandling::SjLj)
setLibcallImpl(RTLIB::UNWIND_RESUME, RTLIB::_Unwind_SjLj_Resume);
}
if (TT.isPPC()) {
setPPCLibCallNameOverrides();
// TODO: Do the finite only functions exist?
setLongDoubleIsF128Libm(*this, /*FiniteOnlyFuncs=*/false);
// TODO: Tablegen predicate support
if (TT.isOSAIX()) {
if (TT.isPPC64()) {
setLibcallImpl(RTLIB::MEMCPY, RTLIB::Unsupported);
setLibcallImpl(RTLIB::MEMMOVE, RTLIB::___memmove64);
setLibcallImpl(RTLIB::MEMSET, RTLIB::___memset64);
setLibcallImpl(RTLIB::BZERO, RTLIB::___bzero64);
} else {
setLibcallImpl(RTLIB::MEMCPY, RTLIB::Unsupported);
setLibcallImpl(RTLIB::MEMMOVE, RTLIB::___memmove);
setLibcallImpl(RTLIB::MEMSET, RTLIB::___memset);
setLibcallImpl(RTLIB::BZERO, RTLIB::___bzero);
}
}
}
// A few names are different on particular architectures or environments.
if (TT.isOSDarwin()) {
// For f16/f32 conversions, Darwin uses the standard naming scheme,
// instead of the gnueabi-style __gnu_*_ieee.
// FIXME: What about other targets?
setLibcallImpl(RTLIB::FPEXT_F16_F32, RTLIB::__extendhfsf2);
setLibcallImpl(RTLIB::FPROUND_F32_F16, RTLIB::__truncsfhf2);
// Some darwins have an optimized __bzero/bzero function.
if (TT.isX86()) {
if (TT.isMacOSX() && !TT.isMacOSXVersionLT(10, 6))
setLibcallImpl(RTLIB::BZERO, RTLIB::__bzero);
} else if (TT.isAArch64())
setLibcallImpl(RTLIB::BZERO, RTLIB::bzero);
if (darwinHasSinCosStret(TT)) {
setLibcallImpl(RTLIB::SINCOS_STRET_F32, RTLIB::__sincosf_stret);
setLibcallImpl(RTLIB::SINCOS_STRET_F64, RTLIB::__sincos_stret);
if (TT.isWatchABI()) {
setLibcallCallingConv(RTLIB::SINCOS_STRET_F32,
CallingConv::ARM_AAPCS_VFP);
setLibcallCallingConv(RTLIB::SINCOS_STRET_F64,
CallingConv::ARM_AAPCS_VFP);
}
}
if (darwinHasExp10(TT)) {
setLibcallImpl(RTLIB::EXP10_F32, RTLIB::__exp10f);
setLibcallImpl(RTLIB::EXP10_F64, RTLIB::__exp10);
} else {
setLibcallImpl(RTLIB::EXP10_F32, RTLIB::Unsupported);
setLibcallImpl(RTLIB::EXP10_F64, RTLIB::Unsupported);
}
}
if (hasSinCos(TT)) {
setLibcallImpl(RTLIB::SINCOS_F32, RTLIB::sincosf);
setLibcallImpl(RTLIB::SINCOS_F64, RTLIB::sincos);
setLibcallImpl(RTLIB::SINCOS_F80, RTLIB::sincos_f80);
setLibcallImpl(RTLIB::SINCOS_F128, RTLIB::sincos_f128);
setLibcallImpl(RTLIB::SINCOS_PPCF128, RTLIB::sincos_ppcf128);
}
if (TT.isPS()) {
setLibcallImpl(RTLIB::SINCOS_F32, RTLIB::sincosf);
setLibcallImpl(RTLIB::SINCOS_F64, RTLIB::sincos);
}
if (TT.isOSOpenBSD()) {
setLibcallImpl(RTLIB::STACKPROTECTOR_CHECK_FAIL, RTLIB::Unsupported);
}
if (TT.isOSWindows() && !TT.isOSCygMing()) {
setLibcallImpl(RTLIB::LDEXP_F32, RTLIB::Unsupported);
setLibcallImpl(RTLIB::LDEXP_F80, RTLIB::Unsupported);
setLibcallImpl(RTLIB::LDEXP_F128, RTLIB::Unsupported);
setLibcallImpl(RTLIB::LDEXP_PPCF128, RTLIB::Unsupported);
setLibcallImpl(RTLIB::FREXP_F32, RTLIB::Unsupported);
setLibcallImpl(RTLIB::FREXP_F80, RTLIB::Unsupported);
setLibcallImpl(RTLIB::FREXP_F128, RTLIB::Unsupported);
setLibcallImpl(RTLIB::FREXP_PPCF128, RTLIB::Unsupported);
}
// Disable most libcalls on AMDGPU and NVPTX.
if (TT.isAMDGPU() || TT.isNVPTX()) {
for (RTLIB::Libcall LC : RTLIB::libcalls()) {
if (!isAtomicLibCall(LC))
setLibcallImpl(LC, RTLIB::Unsupported);
}
}
if (TT.isOSMSVCRT()) {
// MSVCRT doesn't have powi; fall back to pow
setLibcallImpl(RTLIB::POWI_F32, RTLIB::Unsupported);
setLibcallImpl(RTLIB::POWI_F64, RTLIB::Unsupported);
}
// Setup Windows compiler runtime calls.
if (TT.getArch() == Triple::x86 &&
(TT.isWindowsMSVCEnvironment() || TT.isWindowsItaniumEnvironment())) {
static const struct {
const RTLIB::Libcall Op;
const RTLIB::LibcallImpl Impl;
const CallingConv::ID CC;
} LibraryCalls[] = {
{RTLIB::SDIV_I64, RTLIB::_alldiv, CallingConv::X86_StdCall},
{RTLIB::UDIV_I64, RTLIB::_aulldiv, CallingConv::X86_StdCall},
{RTLIB::SREM_I64, RTLIB::_allrem, CallingConv::X86_StdCall},
{RTLIB::UREM_I64, RTLIB::_aullrem, CallingConv::X86_StdCall},
{RTLIB::MUL_I64, RTLIB::_allmul, CallingConv::X86_StdCall},
};
for (const auto &LC : LibraryCalls) {
setLibcallImpl(LC.Op, LC.Impl);
setLibcallCallingConv(LC.Op, LC.CC);
}
}
if (TT.isAArch64()) {
if (TT.isWindowsArm64EC())
setWindowsArm64LibCallNameOverrides();
setAArch64LibcallNames(*this, TT);
} else if (TT.isARM() || TT.isThumb()) {
setARMLibcallNames(*this, TT, FloatABI, EABIVersion);
} else if (TT.getArch() == Triple::ArchType::avr) {
// Division rtlib functions (not supported), use divmod functions instead
setLibcallImpl(RTLIB::SDIV_I8, RTLIB::Unsupported);
setLibcallImpl(RTLIB::SDIV_I16, RTLIB::Unsupported);
setLibcallImpl(RTLIB::SDIV_I32, RTLIB::Unsupported);
setLibcallImpl(RTLIB::UDIV_I8, RTLIB::Unsupported);
setLibcallImpl(RTLIB::UDIV_I16, RTLIB::Unsupported);
setLibcallImpl(RTLIB::UDIV_I32, RTLIB::Unsupported);
// Modulus rtlib functions (not supported), use divmod functions instead
setLibcallImpl(RTLIB::SREM_I8, RTLIB::Unsupported);
setLibcallImpl(RTLIB::SREM_I16, RTLIB::Unsupported);
setLibcallImpl(RTLIB::SREM_I32, RTLIB::Unsupported);
setLibcallImpl(RTLIB::UREM_I8, RTLIB::Unsupported);
setLibcallImpl(RTLIB::UREM_I16, RTLIB::Unsupported);
setLibcallImpl(RTLIB::UREM_I32, RTLIB::Unsupported);
// Division and modulus rtlib functions
setLibcallImpl(RTLIB::SDIVREM_I8, RTLIB::__divmodqi4);
setLibcallImpl(RTLIB::SDIVREM_I16, RTLIB::__divmodhi4);
setLibcallImpl(RTLIB::SDIVREM_I32, RTLIB::__divmodsi4);
setLibcallImpl(RTLIB::UDIVREM_I8, RTLIB::__udivmodqi4);
setLibcallImpl(RTLIB::UDIVREM_I16, RTLIB::__udivmodhi4);
setLibcallImpl(RTLIB::UDIVREM_I32, RTLIB::__udivmodsi4);
// Several of the runtime library functions use a special calling conv
setLibcallCallingConv(RTLIB::SDIVREM_I8, CallingConv::AVR_BUILTIN);
setLibcallCallingConv(RTLIB::SDIVREM_I16, CallingConv::AVR_BUILTIN);
setLibcallCallingConv(RTLIB::UDIVREM_I8, CallingConv::AVR_BUILTIN);
setLibcallCallingConv(RTLIB::UDIVREM_I16, CallingConv::AVR_BUILTIN);
// Trigonometric rtlib functions
setLibcallImpl(RTLIB::SIN_F32, RTLIB::avr_sin);
setLibcallImpl(RTLIB::COS_F32, RTLIB::avr_cos);
}
if (!TT.isWasm()) {
// These libcalls are only available in compiler-rt, not libgcc.
if (TT.isArch32Bit()) {
setLibcallImpl(RTLIB::SHL_I128, RTLIB::Unsupported);
setLibcallImpl(RTLIB::SRL_I128, RTLIB::Unsupported);
setLibcallImpl(RTLIB::SRA_I128, RTLIB::Unsupported);
setLibcallImpl(RTLIB::MUL_I128, RTLIB::Unsupported);
setLibcallImpl(RTLIB::MULO_I64, RTLIB::Unsupported);
}
setLibcallImpl(RTLIB::MULO_I128, RTLIB::Unsupported);
} else {
// Define the emscripten name for return address helper.
// TODO: when implementing other Wasm backends, make this generic or only do
// this on emscripten depending on what they end up doing.
setLibcallImpl(RTLIB::RETURN_ADDRESS, RTLIB::emscripten_return_address);
}
if (TT.getArch() == Triple::ArchType::hexagon) {
setLibcallImpl(RTLIB::SDIV_I32, RTLIB::__hexagon_divsi3);
setLibcallImpl(RTLIB::SDIV_I64, RTLIB::__hexagon_divdi3);
setLibcallImpl(RTLIB::UDIV_I32, RTLIB::__hexagon_udivsi3);
setLibcallImpl(RTLIB::UDIV_I64, RTLIB::__hexagon_udivdi3);
setLibcallImpl(RTLIB::SREM_I32, RTLIB::__hexagon_modsi3);
setLibcallImpl(RTLIB::SREM_I64, RTLIB::__hexagon_moddi3);
setLibcallImpl(RTLIB::UREM_I32, RTLIB::__hexagon_umodsi3);
setLibcallImpl(RTLIB::UREM_I64, RTLIB::__hexagon_umoddi3);
const bool FastMath = HexagonEnableFastMathRuntimeCalls;
// This is the only fast library function for sqrtd.
if (FastMath)
setLibcallImpl(RTLIB::SQRT_F64, RTLIB::__hexagon_fast2_sqrtdf2);
// Prefix is: nothing for "slow-math",
// "fast2_" for V5+ fast-math double-precision
// (actually, keep fast-math and fast-math2 separate for now)
if (FastMath) {
setLibcallImpl(RTLIB::ADD_F64, RTLIB::__hexagon_fast_adddf3);
setLibcallImpl(RTLIB::SUB_F64, RTLIB::__hexagon_fast_subdf3);
setLibcallImpl(RTLIB::MUL_F64, RTLIB::__hexagon_fast_muldf3);
setLibcallImpl(RTLIB::DIV_F64, RTLIB::__hexagon_fast_divdf3);
setLibcallImpl(RTLIB::DIV_F32, RTLIB::__hexagon_fast_divsf3);
} else {
setLibcallImpl(RTLIB::ADD_F64, RTLIB::__hexagon_adddf3);
setLibcallImpl(RTLIB::SUB_F64, RTLIB::__hexagon_subdf3);
setLibcallImpl(RTLIB::MUL_F64, RTLIB::__hexagon_muldf3);
setLibcallImpl(RTLIB::DIV_F64, RTLIB::__hexagon_divdf3);
setLibcallImpl(RTLIB::DIV_F32, RTLIB::__hexagon_divsf3);
}
if (FastMath)
setLibcallImpl(RTLIB::SQRT_F32, RTLIB::__hexagon_fast2_sqrtf);
else
setLibcallImpl(RTLIB::SQRT_F32, RTLIB::__hexagon_sqrtf);
setLibcallImpl(
RTLIB::HEXAGON_MEMCPY_LIKELY_ALIGNED_MIN32BYTES_MULT8BYTES,
RTLIB::__hexagon_memcpy_likely_aligned_min32bytes_mult8bytes);
}
if (TT.getArch() == Triple::ArchType::msp430)
setMSP430Libcalls(*this, TT);
if (TT.isSystemZ() && TT.isOSzOS())
setZOSLibCallNameOverrides();
if (TT.getArch() == Triple::ArchType::xcore)
setLibcallImpl(RTLIB::MEMCPY_ALIGN_4, RTLIB::__memcpy_4);
}
bool RuntimeLibcallsInfo::darwinHasExp10(const Triple &TT) {
assert(TT.isOSDarwin() && "should be called with darwin triple");
switch (TT.getOS()) {
case Triple::MacOSX:
return !TT.isMacOSXVersionLT(10, 9);
case Triple::IOS:
return !TT.isOSVersionLT(7, 0);
case Triple::DriverKit:
case Triple::TvOS:
case Triple::WatchOS:
case Triple::XROS:
case Triple::BridgeOS:
return true;
default:
return false;
}
}