
Vectors are always bit-packed and don't respect the elements' alignment requirements. This is different from arrays. This means offsets of vector GEPs need to be computed differently than offsets of array GEPs. This PR fixes many places that rely on an incorrect pattern that always relies on `DL.getTypeAllocSize(GTI.getIndexedType())`. We replace these by usages of `GTI.getSequentialElementStride(DL)`, which is a new helper function added in this PR. This changes behavior for GEPs into vectors with element types for which the (bit) size and alloc size is different. This includes two cases: * Types with a bit size that is not a multiple of a byte, e.g. i1. GEPs into such vectors are questionable to begin with, as some elements are not even addressable. * Overaligned types, e.g. i16 with 32-bit alignment. Existing tests are unaffected, but a miscompilation of a new test is fixed. --------- Co-authored-by: Nikita Popov <github@npopov.com>
1518 lines
58 KiB
C++
1518 lines
58 KiB
C++
//===- LoadStoreVectorizer.cpp - GPU Load & Store Vectorizer --------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This pass merges loads/stores to/from sequential memory addresses into vector
|
|
// loads/stores. Although there's nothing GPU-specific in here, this pass is
|
|
// motivated by the microarchitectural quirks of nVidia and AMD GPUs.
|
|
//
|
|
// (For simplicity below we talk about loads only, but everything also applies
|
|
// to stores.)
|
|
//
|
|
// This pass is intended to be run late in the pipeline, after other
|
|
// vectorization opportunities have been exploited. So the assumption here is
|
|
// that immediately following our new vector load we'll need to extract out the
|
|
// individual elements of the load, so we can operate on them individually.
|
|
//
|
|
// On CPUs this transformation is usually not beneficial, because extracting the
|
|
// elements of a vector register is expensive on most architectures. It's
|
|
// usually better just to load each element individually into its own scalar
|
|
// register.
|
|
//
|
|
// However, nVidia and AMD GPUs don't have proper vector registers. Instead, a
|
|
// "vector load" loads directly into a series of scalar registers. In effect,
|
|
// extracting the elements of the vector is free. It's therefore always
|
|
// beneficial to vectorize a sequence of loads on these architectures.
|
|
//
|
|
// Vectorizing (perhaps a better name might be "coalescing") loads can have
|
|
// large performance impacts on GPU kernels, and opportunities for vectorizing
|
|
// are common in GPU code. This pass tries very hard to find such
|
|
// opportunities; its runtime is quadratic in the number of loads in a BB.
|
|
//
|
|
// Some CPU architectures, such as ARM, have instructions that load into
|
|
// multiple scalar registers, similar to a GPU vectorized load. In theory ARM
|
|
// could use this pass (with some modifications), but currently it implements
|
|
// its own pass to do something similar to what we do here.
|
|
//
|
|
// Overview of the algorithm and terminology in this pass:
|
|
//
|
|
// - Break up each basic block into pseudo-BBs, composed of instructions which
|
|
// are guaranteed to transfer control to their successors.
|
|
// - Within a single pseudo-BB, find all loads, and group them into
|
|
// "equivalence classes" according to getUnderlyingObject() and loaded
|
|
// element size. Do the same for stores.
|
|
// - For each equivalence class, greedily build "chains". Each chain has a
|
|
// leader instruction, and every other member of the chain has a known
|
|
// constant offset from the first instr in the chain.
|
|
// - Break up chains so that they contain only contiguous accesses of legal
|
|
// size with no intervening may-alias instrs.
|
|
// - Convert each chain to vector instructions.
|
|
//
|
|
// The O(n^2) behavior of this pass comes from initially building the chains.
|
|
// In the worst case we have to compare each new instruction to all of those
|
|
// that came before. To limit this, we only calculate the offset to the leaders
|
|
// of the N most recently-used chains.
|
|
|
|
#include "llvm/Transforms/Vectorize/LoadStoreVectorizer.h"
|
|
#include "llvm/ADT/APInt.h"
|
|
#include "llvm/ADT/ArrayRef.h"
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/ADT/MapVector.h"
|
|
#include "llvm/ADT/PostOrderIterator.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/Sequence.h"
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/ADT/iterator_range.h"
|
|
#include "llvm/Analysis/AliasAnalysis.h"
|
|
#include "llvm/Analysis/AssumptionCache.h"
|
|
#include "llvm/Analysis/MemoryLocation.h"
|
|
#include "llvm/Analysis/ScalarEvolution.h"
|
|
#include "llvm/Analysis/TargetTransformInfo.h"
|
|
#include "llvm/Analysis/ValueTracking.h"
|
|
#include "llvm/Analysis/VectorUtils.h"
|
|
#include "llvm/IR/Attributes.h"
|
|
#include "llvm/IR/BasicBlock.h"
|
|
#include "llvm/IR/ConstantRange.h"
|
|
#include "llvm/IR/Constants.h"
|
|
#include "llvm/IR/DataLayout.h"
|
|
#include "llvm/IR/DerivedTypes.h"
|
|
#include "llvm/IR/Dominators.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/IR/GetElementPtrTypeIterator.h"
|
|
#include "llvm/IR/IRBuilder.h"
|
|
#include "llvm/IR/InstrTypes.h"
|
|
#include "llvm/IR/Instruction.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/LLVMContext.h"
|
|
#include "llvm/IR/Module.h"
|
|
#include "llvm/IR/Type.h"
|
|
#include "llvm/IR/Value.h"
|
|
#include "llvm/InitializePasses.h"
|
|
#include "llvm/Pass.h"
|
|
#include "llvm/Support/Alignment.h"
|
|
#include "llvm/Support/Casting.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/KnownBits.h"
|
|
#include "llvm/Support/MathExtras.h"
|
|
#include "llvm/Support/ModRef.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/Transforms/Utils/Local.h"
|
|
#include <algorithm>
|
|
#include <cassert>
|
|
#include <cstdint>
|
|
#include <cstdlib>
|
|
#include <iterator>
|
|
#include <numeric>
|
|
#include <optional>
|
|
#include <tuple>
|
|
#include <type_traits>
|
|
#include <utility>
|
|
#include <vector>
|
|
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "load-store-vectorizer"
|
|
|
|
STATISTIC(NumVectorInstructions, "Number of vector accesses generated");
|
|
STATISTIC(NumScalarsVectorized, "Number of scalar accesses vectorized");
|
|
|
|
namespace {
|
|
|
|
// Equivalence class key, the initial tuple by which we group loads/stores.
|
|
// Loads/stores with different EqClassKeys are never merged.
|
|
//
|
|
// (We could in theory remove element-size from the this tuple. We'd just need
|
|
// to fix up the vector packing/unpacking code.)
|
|
using EqClassKey =
|
|
std::tuple<const Value * /* result of getUnderlyingObject() */,
|
|
unsigned /* AddrSpace */,
|
|
unsigned /* Load/Store element size bits */,
|
|
char /* IsLoad; char b/c bool can't be a DenseMap key */
|
|
>;
|
|
[[maybe_unused]] llvm::raw_ostream &operator<<(llvm::raw_ostream &OS,
|
|
const EqClassKey &K) {
|
|
const auto &[UnderlyingObject, AddrSpace, ElementSize, IsLoad] = K;
|
|
return OS << (IsLoad ? "load" : "store") << " of " << *UnderlyingObject
|
|
<< " of element size " << ElementSize << " bits in addrspace "
|
|
<< AddrSpace;
|
|
}
|
|
|
|
// A Chain is a set of instructions such that:
|
|
// - All instructions have the same equivalence class, so in particular all are
|
|
// loads, or all are stores.
|
|
// - We know the address accessed by the i'th chain elem relative to the
|
|
// chain's leader instruction, which is the first instr of the chain in BB
|
|
// order.
|
|
//
|
|
// Chains have two canonical orderings:
|
|
// - BB order, sorted by Instr->comesBefore.
|
|
// - Offset order, sorted by OffsetFromLeader.
|
|
// This pass switches back and forth between these orders.
|
|
struct ChainElem {
|
|
Instruction *Inst;
|
|
APInt OffsetFromLeader;
|
|
};
|
|
using Chain = SmallVector<ChainElem, 1>;
|
|
|
|
void sortChainInBBOrder(Chain &C) {
|
|
sort(C, [](auto &A, auto &B) { return A.Inst->comesBefore(B.Inst); });
|
|
}
|
|
|
|
void sortChainInOffsetOrder(Chain &C) {
|
|
sort(C, [](const auto &A, const auto &B) {
|
|
if (A.OffsetFromLeader != B.OffsetFromLeader)
|
|
return A.OffsetFromLeader.slt(B.OffsetFromLeader);
|
|
return A.Inst->comesBefore(B.Inst); // stable tiebreaker
|
|
});
|
|
}
|
|
|
|
[[maybe_unused]] void dumpChain(ArrayRef<ChainElem> C) {
|
|
for (const auto &E : C) {
|
|
dbgs() << " " << *E.Inst << " (offset " << E.OffsetFromLeader << ")\n";
|
|
}
|
|
}
|
|
|
|
using EquivalenceClassMap =
|
|
MapVector<EqClassKey, SmallVector<Instruction *, 8>>;
|
|
|
|
// FIXME: Assuming stack alignment of 4 is always good enough
|
|
constexpr unsigned StackAdjustedAlignment = 4;
|
|
|
|
Instruction *propagateMetadata(Instruction *I, const Chain &C) {
|
|
SmallVector<Value *, 8> Values;
|
|
for (const ChainElem &E : C)
|
|
Values.push_back(E.Inst);
|
|
return propagateMetadata(I, Values);
|
|
}
|
|
|
|
bool isInvariantLoad(const Instruction *I) {
|
|
const LoadInst *LI = dyn_cast<LoadInst>(I);
|
|
return LI != nullptr && LI->hasMetadata(LLVMContext::MD_invariant_load);
|
|
}
|
|
|
|
/// Reorders the instructions that I depends on (the instructions defining its
|
|
/// operands), to ensure they dominate I.
|
|
void reorder(Instruction *I) {
|
|
SmallPtrSet<Instruction *, 16> InstructionsToMove;
|
|
SmallVector<Instruction *, 16> Worklist;
|
|
|
|
Worklist.push_back(I);
|
|
while (!Worklist.empty()) {
|
|
Instruction *IW = Worklist.pop_back_val();
|
|
int NumOperands = IW->getNumOperands();
|
|
for (int i = 0; i < NumOperands; i++) {
|
|
Instruction *IM = dyn_cast<Instruction>(IW->getOperand(i));
|
|
if (!IM || IM->getOpcode() == Instruction::PHI)
|
|
continue;
|
|
|
|
// If IM is in another BB, no need to move it, because this pass only
|
|
// vectorizes instructions within one BB.
|
|
if (IM->getParent() != I->getParent())
|
|
continue;
|
|
|
|
if (!IM->comesBefore(I)) {
|
|
InstructionsToMove.insert(IM);
|
|
Worklist.push_back(IM);
|
|
}
|
|
}
|
|
}
|
|
|
|
// All instructions to move should follow I. Start from I, not from begin().
|
|
for (auto BBI = I->getIterator(), E = I->getParent()->end(); BBI != E;) {
|
|
Instruction *IM = &*(BBI++);
|
|
if (!InstructionsToMove.count(IM))
|
|
continue;
|
|
IM->moveBefore(I);
|
|
}
|
|
}
|
|
|
|
class Vectorizer {
|
|
Function &F;
|
|
AliasAnalysis &AA;
|
|
AssumptionCache &AC;
|
|
DominatorTree &DT;
|
|
ScalarEvolution &SE;
|
|
TargetTransformInfo &TTI;
|
|
const DataLayout &DL;
|
|
IRBuilder<> Builder;
|
|
|
|
// We could erase instrs right after vectorizing them, but that can mess up
|
|
// our BB iterators, and also can make the equivalence class keys point to
|
|
// freed memory. This is fixable, but it's simpler just to wait until we're
|
|
// done with the BB and erase all at once.
|
|
SmallVector<Instruction *, 128> ToErase;
|
|
|
|
public:
|
|
Vectorizer(Function &F, AliasAnalysis &AA, AssumptionCache &AC,
|
|
DominatorTree &DT, ScalarEvolution &SE, TargetTransformInfo &TTI)
|
|
: F(F), AA(AA), AC(AC), DT(DT), SE(SE), TTI(TTI),
|
|
DL(F.getParent()->getDataLayout()), Builder(SE.getContext()) {}
|
|
|
|
bool run();
|
|
|
|
private:
|
|
static const unsigned MaxDepth = 3;
|
|
|
|
/// Runs the vectorizer on a "pseudo basic block", which is a range of
|
|
/// instructions [Begin, End) within one BB all of which have
|
|
/// isGuaranteedToTransferExecutionToSuccessor(I) == true.
|
|
bool runOnPseudoBB(BasicBlock::iterator Begin, BasicBlock::iterator End);
|
|
|
|
/// Runs the vectorizer on one equivalence class, i.e. one set of loads/stores
|
|
/// in the same BB with the same value for getUnderlyingObject() etc.
|
|
bool runOnEquivalenceClass(const EqClassKey &EqClassKey,
|
|
ArrayRef<Instruction *> EqClass);
|
|
|
|
/// Runs the vectorizer on one chain, i.e. a subset of an equivalence class
|
|
/// where all instructions access a known, constant offset from the first
|
|
/// instruction.
|
|
bool runOnChain(Chain &C);
|
|
|
|
/// Splits the chain into subchains of instructions which read/write a
|
|
/// contiguous block of memory. Discards any length-1 subchains (because
|
|
/// there's nothing to vectorize in there).
|
|
std::vector<Chain> splitChainByContiguity(Chain &C);
|
|
|
|
/// Splits the chain into subchains where it's safe to hoist loads up to the
|
|
/// beginning of the sub-chain and it's safe to sink loads up to the end of
|
|
/// the sub-chain. Discards any length-1 subchains.
|
|
std::vector<Chain> splitChainByMayAliasInstrs(Chain &C);
|
|
|
|
/// Splits the chain into subchains that make legal, aligned accesses.
|
|
/// Discards any length-1 subchains.
|
|
std::vector<Chain> splitChainByAlignment(Chain &C);
|
|
|
|
/// Converts the instrs in the chain into a single vectorized load or store.
|
|
/// Adds the old scalar loads/stores to ToErase.
|
|
bool vectorizeChain(Chain &C);
|
|
|
|
/// Tries to compute the offset in bytes PtrB - PtrA.
|
|
std::optional<APInt> getConstantOffset(Value *PtrA, Value *PtrB,
|
|
Instruction *ContextInst,
|
|
unsigned Depth = 0);
|
|
std::optional<APInt> getConstantOffsetComplexAddrs(Value *PtrA, Value *PtrB,
|
|
Instruction *ContextInst,
|
|
unsigned Depth);
|
|
std::optional<APInt> getConstantOffsetSelects(Value *PtrA, Value *PtrB,
|
|
Instruction *ContextInst,
|
|
unsigned Depth);
|
|
|
|
/// Gets the element type of the vector that the chain will load or store.
|
|
/// This is nontrivial because the chain may contain elements of different
|
|
/// types; e.g. it's legal to have a chain that contains both i32 and float.
|
|
Type *getChainElemTy(const Chain &C);
|
|
|
|
/// Determines whether ChainElem can be moved up (if IsLoad) or down (if
|
|
/// !IsLoad) to ChainBegin -- i.e. there are no intervening may-alias
|
|
/// instructions.
|
|
///
|
|
/// The map ChainElemOffsets must contain all of the elements in
|
|
/// [ChainBegin, ChainElem] and their offsets from some arbitrary base
|
|
/// address. It's ok if it contains additional entries.
|
|
template <bool IsLoadChain>
|
|
bool isSafeToMove(
|
|
Instruction *ChainElem, Instruction *ChainBegin,
|
|
const DenseMap<Instruction *, APInt /*OffsetFromLeader*/> &ChainOffsets);
|
|
|
|
/// Collects loads and stores grouped by "equivalence class", where:
|
|
/// - all elements in an eq class are a load or all are a store,
|
|
/// - they all load/store the same element size (it's OK to have e.g. i8 and
|
|
/// <4 x i8> in the same class, but not i32 and <4 x i8>), and
|
|
/// - they all have the same value for getUnderlyingObject().
|
|
EquivalenceClassMap collectEquivalenceClasses(BasicBlock::iterator Begin,
|
|
BasicBlock::iterator End);
|
|
|
|
/// Partitions Instrs into "chains" where every instruction has a known
|
|
/// constant offset from the first instr in the chain.
|
|
///
|
|
/// Postcondition: For all i, ret[i][0].second == 0, because the first instr
|
|
/// in the chain is the leader, and an instr touches distance 0 from itself.
|
|
std::vector<Chain> gatherChains(ArrayRef<Instruction *> Instrs);
|
|
};
|
|
|
|
class LoadStoreVectorizerLegacyPass : public FunctionPass {
|
|
public:
|
|
static char ID;
|
|
|
|
LoadStoreVectorizerLegacyPass() : FunctionPass(ID) {
|
|
initializeLoadStoreVectorizerLegacyPassPass(
|
|
*PassRegistry::getPassRegistry());
|
|
}
|
|
|
|
bool runOnFunction(Function &F) override;
|
|
|
|
StringRef getPassName() const override {
|
|
return "GPU Load and Store Vectorizer";
|
|
}
|
|
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override {
|
|
AU.addRequired<AAResultsWrapperPass>();
|
|
AU.addRequired<AssumptionCacheTracker>();
|
|
AU.addRequired<ScalarEvolutionWrapperPass>();
|
|
AU.addRequired<DominatorTreeWrapperPass>();
|
|
AU.addRequired<TargetTransformInfoWrapperPass>();
|
|
AU.setPreservesCFG();
|
|
}
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
char LoadStoreVectorizerLegacyPass::ID = 0;
|
|
|
|
INITIALIZE_PASS_BEGIN(LoadStoreVectorizerLegacyPass, DEBUG_TYPE,
|
|
"Vectorize load and Store instructions", false, false)
|
|
INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass)
|
|
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker);
|
|
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
|
|
INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
|
|
INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
|
|
INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
|
|
INITIALIZE_PASS_END(LoadStoreVectorizerLegacyPass, DEBUG_TYPE,
|
|
"Vectorize load and store instructions", false, false)
|
|
|
|
Pass *llvm::createLoadStoreVectorizerPass() {
|
|
return new LoadStoreVectorizerLegacyPass();
|
|
}
|
|
|
|
bool LoadStoreVectorizerLegacyPass::runOnFunction(Function &F) {
|
|
// Don't vectorize when the attribute NoImplicitFloat is used.
|
|
if (skipFunction(F) || F.hasFnAttribute(Attribute::NoImplicitFloat))
|
|
return false;
|
|
|
|
AliasAnalysis &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
|
|
DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
|
|
ScalarEvolution &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
|
|
TargetTransformInfo &TTI =
|
|
getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
|
|
|
|
AssumptionCache &AC =
|
|
getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
|
|
|
|
return Vectorizer(F, AA, AC, DT, SE, TTI).run();
|
|
}
|
|
|
|
PreservedAnalyses LoadStoreVectorizerPass::run(Function &F,
|
|
FunctionAnalysisManager &AM) {
|
|
// Don't vectorize when the attribute NoImplicitFloat is used.
|
|
if (F.hasFnAttribute(Attribute::NoImplicitFloat))
|
|
return PreservedAnalyses::all();
|
|
|
|
AliasAnalysis &AA = AM.getResult<AAManager>(F);
|
|
DominatorTree &DT = AM.getResult<DominatorTreeAnalysis>(F);
|
|
ScalarEvolution &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
|
|
TargetTransformInfo &TTI = AM.getResult<TargetIRAnalysis>(F);
|
|
AssumptionCache &AC = AM.getResult<AssumptionAnalysis>(F);
|
|
|
|
bool Changed = Vectorizer(F, AA, AC, DT, SE, TTI).run();
|
|
PreservedAnalyses PA;
|
|
PA.preserveSet<CFGAnalyses>();
|
|
return Changed ? PA : PreservedAnalyses::all();
|
|
}
|
|
|
|
bool Vectorizer::run() {
|
|
bool Changed = false;
|
|
// Break up the BB if there are any instrs which aren't guaranteed to transfer
|
|
// execution to their successor.
|
|
//
|
|
// Consider, for example:
|
|
//
|
|
// def assert_arr_len(int n) { if (n < 2) exit(); }
|
|
//
|
|
// load arr[0]
|
|
// call assert_array_len(arr.length)
|
|
// load arr[1]
|
|
//
|
|
// Even though assert_arr_len does not read or write any memory, we can't
|
|
// speculate the second load before the call. More info at
|
|
// https://github.com/llvm/llvm-project/issues/52950.
|
|
for (BasicBlock *BB : post_order(&F)) {
|
|
// BB must at least have a terminator.
|
|
assert(!BB->empty());
|
|
|
|
SmallVector<BasicBlock::iterator, 8> Barriers;
|
|
Barriers.push_back(BB->begin());
|
|
for (Instruction &I : *BB)
|
|
if (!isGuaranteedToTransferExecutionToSuccessor(&I))
|
|
Barriers.push_back(I.getIterator());
|
|
Barriers.push_back(BB->end());
|
|
|
|
for (auto It = Barriers.begin(), End = std::prev(Barriers.end()); It != End;
|
|
++It)
|
|
Changed |= runOnPseudoBB(*It, *std::next(It));
|
|
|
|
for (Instruction *I : ToErase) {
|
|
auto *PtrOperand = getLoadStorePointerOperand(I);
|
|
if (I->use_empty())
|
|
I->eraseFromParent();
|
|
RecursivelyDeleteTriviallyDeadInstructions(PtrOperand);
|
|
}
|
|
ToErase.clear();
|
|
}
|
|
|
|
return Changed;
|
|
}
|
|
|
|
bool Vectorizer::runOnPseudoBB(BasicBlock::iterator Begin,
|
|
BasicBlock::iterator End) {
|
|
LLVM_DEBUG({
|
|
dbgs() << "LSV: Running on pseudo-BB [" << *Begin << " ... ";
|
|
if (End != Begin->getParent()->end())
|
|
dbgs() << *End;
|
|
else
|
|
dbgs() << "<BB end>";
|
|
dbgs() << ")\n";
|
|
});
|
|
|
|
bool Changed = false;
|
|
for (const auto &[EqClassKey, EqClass] :
|
|
collectEquivalenceClasses(Begin, End))
|
|
Changed |= runOnEquivalenceClass(EqClassKey, EqClass);
|
|
|
|
return Changed;
|
|
}
|
|
|
|
bool Vectorizer::runOnEquivalenceClass(const EqClassKey &EqClassKey,
|
|
ArrayRef<Instruction *> EqClass) {
|
|
bool Changed = false;
|
|
|
|
LLVM_DEBUG({
|
|
dbgs() << "LSV: Running on equivalence class of size " << EqClass.size()
|
|
<< " keyed on " << EqClassKey << ":\n";
|
|
for (Instruction *I : EqClass)
|
|
dbgs() << " " << *I << "\n";
|
|
});
|
|
|
|
std::vector<Chain> Chains = gatherChains(EqClass);
|
|
LLVM_DEBUG(dbgs() << "LSV: Got " << Chains.size()
|
|
<< " nontrivial chains.\n";);
|
|
for (Chain &C : Chains)
|
|
Changed |= runOnChain(C);
|
|
return Changed;
|
|
}
|
|
|
|
bool Vectorizer::runOnChain(Chain &C) {
|
|
LLVM_DEBUG({
|
|
dbgs() << "LSV: Running on chain with " << C.size() << " instructions:\n";
|
|
dumpChain(C);
|
|
});
|
|
|
|
// Split up the chain into increasingly smaller chains, until we can finally
|
|
// vectorize the chains.
|
|
//
|
|
// (Don't be scared by the depth of the loop nest here. These operations are
|
|
// all at worst O(n lg n) in the number of instructions, and splitting chains
|
|
// doesn't change the number of instrs. So the whole loop nest is O(n lg n).)
|
|
bool Changed = false;
|
|
for (auto &C : splitChainByMayAliasInstrs(C))
|
|
for (auto &C : splitChainByContiguity(C))
|
|
for (auto &C : splitChainByAlignment(C))
|
|
Changed |= vectorizeChain(C);
|
|
return Changed;
|
|
}
|
|
|
|
std::vector<Chain> Vectorizer::splitChainByMayAliasInstrs(Chain &C) {
|
|
if (C.empty())
|
|
return {};
|
|
|
|
sortChainInBBOrder(C);
|
|
|
|
LLVM_DEBUG({
|
|
dbgs() << "LSV: splitChainByMayAliasInstrs considering chain:\n";
|
|
dumpChain(C);
|
|
});
|
|
|
|
// We know that elements in the chain with nonverlapping offsets can't
|
|
// alias, but AA may not be smart enough to figure this out. Use a
|
|
// hashtable.
|
|
DenseMap<Instruction *, APInt /*OffsetFromLeader*/> ChainOffsets;
|
|
for (const auto &E : C)
|
|
ChainOffsets.insert({&*E.Inst, E.OffsetFromLeader});
|
|
|
|
// Loads get hoisted up to the first load in the chain. Stores get sunk
|
|
// down to the last store in the chain. Our algorithm for loads is:
|
|
//
|
|
// - Take the first element of the chain. This is the start of a new chain.
|
|
// - Take the next element of `Chain` and check for may-alias instructions
|
|
// up to the start of NewChain. If no may-alias instrs, add it to
|
|
// NewChain. Otherwise, start a new NewChain.
|
|
//
|
|
// For stores it's the same except in the reverse direction.
|
|
//
|
|
// We expect IsLoad to be an std::bool_constant.
|
|
auto Impl = [&](auto IsLoad) {
|
|
// MSVC is unhappy if IsLoad is a capture, so pass it as an arg.
|
|
auto [ChainBegin, ChainEnd] = [&](auto IsLoad) {
|
|
if constexpr (IsLoad())
|
|
return std::make_pair(C.begin(), C.end());
|
|
else
|
|
return std::make_pair(C.rbegin(), C.rend());
|
|
}(IsLoad);
|
|
assert(ChainBegin != ChainEnd);
|
|
|
|
std::vector<Chain> Chains;
|
|
SmallVector<ChainElem, 1> NewChain;
|
|
NewChain.push_back(*ChainBegin);
|
|
for (auto ChainIt = std::next(ChainBegin); ChainIt != ChainEnd; ++ChainIt) {
|
|
if (isSafeToMove<IsLoad>(ChainIt->Inst, NewChain.front().Inst,
|
|
ChainOffsets)) {
|
|
LLVM_DEBUG(dbgs() << "LSV: No intervening may-alias instrs; can merge "
|
|
<< *ChainIt->Inst << " into " << *ChainBegin->Inst
|
|
<< "\n");
|
|
NewChain.push_back(*ChainIt);
|
|
} else {
|
|
LLVM_DEBUG(
|
|
dbgs() << "LSV: Found intervening may-alias instrs; cannot merge "
|
|
<< *ChainIt->Inst << " into " << *ChainBegin->Inst << "\n");
|
|
if (NewChain.size() > 1) {
|
|
LLVM_DEBUG({
|
|
dbgs() << "LSV: got nontrivial chain without aliasing instrs:\n";
|
|
dumpChain(NewChain);
|
|
});
|
|
Chains.push_back(std::move(NewChain));
|
|
}
|
|
|
|
// Start a new chain.
|
|
NewChain = SmallVector<ChainElem, 1>({*ChainIt});
|
|
}
|
|
}
|
|
if (NewChain.size() > 1) {
|
|
LLVM_DEBUG({
|
|
dbgs() << "LSV: got nontrivial chain without aliasing instrs:\n";
|
|
dumpChain(NewChain);
|
|
});
|
|
Chains.push_back(std::move(NewChain));
|
|
}
|
|
return Chains;
|
|
};
|
|
|
|
if (isa<LoadInst>(C[0].Inst))
|
|
return Impl(/*IsLoad=*/std::bool_constant<true>());
|
|
|
|
assert(isa<StoreInst>(C[0].Inst));
|
|
return Impl(/*IsLoad=*/std::bool_constant<false>());
|
|
}
|
|
|
|
std::vector<Chain> Vectorizer::splitChainByContiguity(Chain &C) {
|
|
if (C.empty())
|
|
return {};
|
|
|
|
sortChainInOffsetOrder(C);
|
|
|
|
LLVM_DEBUG({
|
|
dbgs() << "LSV: splitChainByContiguity considering chain:\n";
|
|
dumpChain(C);
|
|
});
|
|
|
|
std::vector<Chain> Ret;
|
|
Ret.push_back({C.front()});
|
|
|
|
for (auto It = std::next(C.begin()), End = C.end(); It != End; ++It) {
|
|
// `prev` accesses offsets [PrevDistFromBase, PrevReadEnd).
|
|
auto &CurChain = Ret.back();
|
|
const ChainElem &Prev = CurChain.back();
|
|
unsigned SzBits = DL.getTypeSizeInBits(getLoadStoreType(&*Prev.Inst));
|
|
assert(SzBits % 8 == 0 && "Non-byte sizes should have been filtered out by "
|
|
"collectEquivalenceClass");
|
|
APInt PrevReadEnd = Prev.OffsetFromLeader + SzBits / 8;
|
|
|
|
// Add this instruction to the end of the current chain, or start a new one.
|
|
bool AreContiguous = It->OffsetFromLeader == PrevReadEnd;
|
|
LLVM_DEBUG(dbgs() << "LSV: Instructions are "
|
|
<< (AreContiguous ? "" : "not ") << "contiguous: "
|
|
<< *Prev.Inst << " (ends at offset " << PrevReadEnd
|
|
<< ") -> " << *It->Inst << " (starts at offset "
|
|
<< It->OffsetFromLeader << ")\n");
|
|
if (AreContiguous)
|
|
CurChain.push_back(*It);
|
|
else
|
|
Ret.push_back({*It});
|
|
}
|
|
|
|
// Filter out length-1 chains, these are uninteresting.
|
|
llvm::erase_if(Ret, [](const auto &Chain) { return Chain.size() <= 1; });
|
|
return Ret;
|
|
}
|
|
|
|
Type *Vectorizer::getChainElemTy(const Chain &C) {
|
|
assert(!C.empty());
|
|
// The rules are:
|
|
// - If there are any pointer types in the chain, use an integer type.
|
|
// - Prefer an integer type if it appears in the chain.
|
|
// - Otherwise, use the first type in the chain.
|
|
//
|
|
// The rule about pointer types is a simplification when we merge e.g. a load
|
|
// of a ptr and a double. There's no direct conversion from a ptr to a
|
|
// double; it requires a ptrtoint followed by a bitcast.
|
|
//
|
|
// It's unclear to me if the other rules have any practical effect, but we do
|
|
// it to match this pass's previous behavior.
|
|
if (any_of(C, [](const ChainElem &E) {
|
|
return getLoadStoreType(E.Inst)->getScalarType()->isPointerTy();
|
|
})) {
|
|
return Type::getIntNTy(
|
|
F.getContext(),
|
|
DL.getTypeSizeInBits(getLoadStoreType(C[0].Inst)->getScalarType()));
|
|
}
|
|
|
|
for (const ChainElem &E : C)
|
|
if (Type *T = getLoadStoreType(E.Inst)->getScalarType(); T->isIntegerTy())
|
|
return T;
|
|
return getLoadStoreType(C[0].Inst)->getScalarType();
|
|
}
|
|
|
|
std::vector<Chain> Vectorizer::splitChainByAlignment(Chain &C) {
|
|
// We use a simple greedy algorithm.
|
|
// - Given a chain of length N, find all prefixes that
|
|
// (a) are not longer than the max register length, and
|
|
// (b) are a power of 2.
|
|
// - Starting from the longest prefix, try to create a vector of that length.
|
|
// - If one of them works, great. Repeat the algorithm on any remaining
|
|
// elements in the chain.
|
|
// - If none of them work, discard the first element and repeat on a chain
|
|
// of length N-1.
|
|
if (C.empty())
|
|
return {};
|
|
|
|
sortChainInOffsetOrder(C);
|
|
|
|
LLVM_DEBUG({
|
|
dbgs() << "LSV: splitChainByAlignment considering chain:\n";
|
|
dumpChain(C);
|
|
});
|
|
|
|
bool IsLoadChain = isa<LoadInst>(C[0].Inst);
|
|
auto getVectorFactor = [&](unsigned VF, unsigned LoadStoreSize,
|
|
unsigned ChainSizeBytes, VectorType *VecTy) {
|
|
return IsLoadChain ? TTI.getLoadVectorFactor(VF, LoadStoreSize,
|
|
ChainSizeBytes, VecTy)
|
|
: TTI.getStoreVectorFactor(VF, LoadStoreSize,
|
|
ChainSizeBytes, VecTy);
|
|
};
|
|
|
|
#ifndef NDEBUG
|
|
for (const auto &E : C) {
|
|
Type *Ty = getLoadStoreType(E.Inst)->getScalarType();
|
|
assert(isPowerOf2_32(DL.getTypeSizeInBits(Ty)) &&
|
|
"Should have filtered out non-power-of-two elements in "
|
|
"collectEquivalenceClasses.");
|
|
}
|
|
#endif
|
|
|
|
unsigned AS = getLoadStoreAddressSpace(C[0].Inst);
|
|
unsigned VecRegBytes = TTI.getLoadStoreVecRegBitWidth(AS) / 8;
|
|
|
|
std::vector<Chain> Ret;
|
|
for (unsigned CBegin = 0; CBegin < C.size(); ++CBegin) {
|
|
// Find candidate chains of size not greater than the largest vector reg.
|
|
// These chains are over the closed interval [CBegin, CEnd].
|
|
SmallVector<std::pair<unsigned /*CEnd*/, unsigned /*SizeBytes*/>, 8>
|
|
CandidateChains;
|
|
for (unsigned CEnd = CBegin + 1, Size = C.size(); CEnd < Size; ++CEnd) {
|
|
APInt Sz = C[CEnd].OffsetFromLeader +
|
|
DL.getTypeStoreSize(getLoadStoreType(C[CEnd].Inst)) -
|
|
C[CBegin].OffsetFromLeader;
|
|
if (Sz.sgt(VecRegBytes))
|
|
break;
|
|
CandidateChains.push_back(
|
|
{CEnd, static_cast<unsigned>(Sz.getLimitedValue())});
|
|
}
|
|
|
|
// Consider the longest chain first.
|
|
for (auto It = CandidateChains.rbegin(), End = CandidateChains.rend();
|
|
It != End; ++It) {
|
|
auto [CEnd, SizeBytes] = *It;
|
|
LLVM_DEBUG(
|
|
dbgs() << "LSV: splitChainByAlignment considering candidate chain ["
|
|
<< *C[CBegin].Inst << " ... " << *C[CEnd].Inst << "]\n");
|
|
|
|
Type *VecElemTy = getChainElemTy(C);
|
|
// Note, VecElemTy is a power of 2, but might be less than one byte. For
|
|
// example, we can vectorize 2 x <2 x i4> to <4 x i4>, and in this case
|
|
// VecElemTy would be i4.
|
|
unsigned VecElemBits = DL.getTypeSizeInBits(VecElemTy);
|
|
|
|
// SizeBytes and VecElemBits are powers of 2, so they divide evenly.
|
|
assert((8 * SizeBytes) % VecElemBits == 0);
|
|
unsigned NumVecElems = 8 * SizeBytes / VecElemBits;
|
|
FixedVectorType *VecTy = FixedVectorType::get(VecElemTy, NumVecElems);
|
|
unsigned VF = 8 * VecRegBytes / VecElemBits;
|
|
|
|
// Check that TTI is happy with this vectorization factor.
|
|
unsigned TargetVF = getVectorFactor(VF, VecElemBits,
|
|
VecElemBits * NumVecElems / 8, VecTy);
|
|
if (TargetVF != VF && TargetVF < NumVecElems) {
|
|
LLVM_DEBUG(
|
|
dbgs() << "LSV: splitChainByAlignment discarding candidate chain "
|
|
"because TargetVF="
|
|
<< TargetVF << " != VF=" << VF
|
|
<< " and TargetVF < NumVecElems=" << NumVecElems << "\n");
|
|
continue;
|
|
}
|
|
|
|
// Is a load/store with this alignment allowed by TTI and at least as fast
|
|
// as an unvectorized load/store?
|
|
//
|
|
// TTI and F are passed as explicit captures to WAR an MSVC misparse (??).
|
|
auto IsAllowedAndFast = [&, SizeBytes = SizeBytes, &TTI = TTI,
|
|
&F = F](Align Alignment) {
|
|
if (Alignment.value() % SizeBytes == 0)
|
|
return true;
|
|
unsigned VectorizedSpeed = 0;
|
|
bool AllowsMisaligned = TTI.allowsMisalignedMemoryAccesses(
|
|
F.getContext(), SizeBytes * 8, AS, Alignment, &VectorizedSpeed);
|
|
if (!AllowsMisaligned) {
|
|
LLVM_DEBUG(dbgs()
|
|
<< "LSV: Access of " << SizeBytes << "B in addrspace "
|
|
<< AS << " with alignment " << Alignment.value()
|
|
<< " is misaligned, and therefore can't be vectorized.\n");
|
|
return false;
|
|
}
|
|
|
|
unsigned ElementwiseSpeed = 0;
|
|
(TTI).allowsMisalignedMemoryAccesses((F).getContext(), VecElemBits, AS,
|
|
Alignment, &ElementwiseSpeed);
|
|
if (VectorizedSpeed < ElementwiseSpeed) {
|
|
LLVM_DEBUG(dbgs()
|
|
<< "LSV: Access of " << SizeBytes << "B in addrspace "
|
|
<< AS << " with alignment " << Alignment.value()
|
|
<< " has relative speed " << VectorizedSpeed
|
|
<< ", which is lower than the elementwise speed of "
|
|
<< ElementwiseSpeed
|
|
<< ". Therefore this access won't be vectorized.\n");
|
|
return false;
|
|
}
|
|
return true;
|
|
};
|
|
|
|
// If we're loading/storing from an alloca, align it if possible.
|
|
//
|
|
// FIXME: We eagerly upgrade the alignment, regardless of whether TTI
|
|
// tells us this is beneficial. This feels a bit odd, but it matches
|
|
// existing tests. This isn't *so* bad, because at most we align to 4
|
|
// bytes (current value of StackAdjustedAlignment).
|
|
//
|
|
// FIXME: We will upgrade the alignment of the alloca even if it turns out
|
|
// we can't vectorize for some other reason.
|
|
Value *PtrOperand = getLoadStorePointerOperand(C[CBegin].Inst);
|
|
bool IsAllocaAccess = AS == DL.getAllocaAddrSpace() &&
|
|
isa<AllocaInst>(PtrOperand->stripPointerCasts());
|
|
Align Alignment = getLoadStoreAlignment(C[CBegin].Inst);
|
|
Align PrefAlign = Align(StackAdjustedAlignment);
|
|
if (IsAllocaAccess && Alignment.value() % SizeBytes != 0 &&
|
|
IsAllowedAndFast(PrefAlign)) {
|
|
Align NewAlign = getOrEnforceKnownAlignment(
|
|
PtrOperand, PrefAlign, DL, C[CBegin].Inst, nullptr, &DT);
|
|
if (NewAlign >= Alignment) {
|
|
LLVM_DEBUG(dbgs()
|
|
<< "LSV: splitByChain upgrading alloca alignment from "
|
|
<< Alignment.value() << " to " << NewAlign.value()
|
|
<< "\n");
|
|
Alignment = NewAlign;
|
|
}
|
|
}
|
|
|
|
if (!IsAllowedAndFast(Alignment)) {
|
|
LLVM_DEBUG(
|
|
dbgs() << "LSV: splitChainByAlignment discarding candidate chain "
|
|
"because its alignment is not AllowedAndFast: "
|
|
<< Alignment.value() << "\n");
|
|
continue;
|
|
}
|
|
|
|
if ((IsLoadChain &&
|
|
!TTI.isLegalToVectorizeLoadChain(SizeBytes, Alignment, AS)) ||
|
|
(!IsLoadChain &&
|
|
!TTI.isLegalToVectorizeStoreChain(SizeBytes, Alignment, AS))) {
|
|
LLVM_DEBUG(
|
|
dbgs() << "LSV: splitChainByAlignment discarding candidate chain "
|
|
"because !isLegalToVectorizeLoad/StoreChain.");
|
|
continue;
|
|
}
|
|
|
|
// Hooray, we can vectorize this chain!
|
|
Chain &NewChain = Ret.emplace_back();
|
|
for (unsigned I = CBegin; I <= CEnd; ++I)
|
|
NewChain.push_back(C[I]);
|
|
CBegin = CEnd; // Skip over the instructions we've added to the chain.
|
|
break;
|
|
}
|
|
}
|
|
return Ret;
|
|
}
|
|
|
|
bool Vectorizer::vectorizeChain(Chain &C) {
|
|
if (C.size() < 2)
|
|
return false;
|
|
|
|
sortChainInOffsetOrder(C);
|
|
|
|
LLVM_DEBUG({
|
|
dbgs() << "LSV: Vectorizing chain of " << C.size() << " instructions:\n";
|
|
dumpChain(C);
|
|
});
|
|
|
|
Type *VecElemTy = getChainElemTy(C);
|
|
bool IsLoadChain = isa<LoadInst>(C[0].Inst);
|
|
unsigned AS = getLoadStoreAddressSpace(C[0].Inst);
|
|
unsigned ChainBytes = std::accumulate(
|
|
C.begin(), C.end(), 0u, [&](unsigned Bytes, const ChainElem &E) {
|
|
return Bytes + DL.getTypeStoreSize(getLoadStoreType(E.Inst));
|
|
});
|
|
assert(ChainBytes % DL.getTypeStoreSize(VecElemTy) == 0);
|
|
// VecTy is a power of 2 and 1 byte at smallest, but VecElemTy may be smaller
|
|
// than 1 byte (e.g. VecTy == <32 x i1>).
|
|
Type *VecTy = FixedVectorType::get(
|
|
VecElemTy, 8 * ChainBytes / DL.getTypeSizeInBits(VecElemTy));
|
|
|
|
Align Alignment = getLoadStoreAlignment(C[0].Inst);
|
|
// If this is a load/store of an alloca, we might have upgraded the alloca's
|
|
// alignment earlier. Get the new alignment.
|
|
if (AS == DL.getAllocaAddrSpace()) {
|
|
Alignment = std::max(
|
|
Alignment,
|
|
getOrEnforceKnownAlignment(getLoadStorePointerOperand(C[0].Inst),
|
|
MaybeAlign(), DL, C[0].Inst, nullptr, &DT));
|
|
}
|
|
|
|
// All elements of the chain must have the same scalar-type size.
|
|
#ifndef NDEBUG
|
|
for (const ChainElem &E : C)
|
|
assert(DL.getTypeStoreSize(getLoadStoreType(E.Inst)->getScalarType()) ==
|
|
DL.getTypeStoreSize(VecElemTy));
|
|
#endif
|
|
|
|
Instruction *VecInst;
|
|
if (IsLoadChain) {
|
|
// Loads get hoisted to the location of the first load in the chain. We may
|
|
// also need to hoist the (transitive) operands of the loads.
|
|
Builder.SetInsertPoint(
|
|
std::min_element(C.begin(), C.end(), [](const auto &A, const auto &B) {
|
|
return A.Inst->comesBefore(B.Inst);
|
|
})->Inst);
|
|
|
|
// Chain is in offset order, so C[0] is the instr with the lowest offset,
|
|
// i.e. the root of the vector.
|
|
VecInst = Builder.CreateAlignedLoad(VecTy,
|
|
getLoadStorePointerOperand(C[0].Inst),
|
|
Alignment);
|
|
|
|
unsigned VecIdx = 0;
|
|
for (const ChainElem &E : C) {
|
|
Instruction *I = E.Inst;
|
|
Value *V;
|
|
Type *T = getLoadStoreType(I);
|
|
if (auto *VT = dyn_cast<FixedVectorType>(T)) {
|
|
auto Mask = llvm::to_vector<8>(
|
|
llvm::seq<int>(VecIdx, VecIdx + VT->getNumElements()));
|
|
V = Builder.CreateShuffleVector(VecInst, Mask, I->getName());
|
|
VecIdx += VT->getNumElements();
|
|
} else {
|
|
V = Builder.CreateExtractElement(VecInst, Builder.getInt32(VecIdx),
|
|
I->getName());
|
|
++VecIdx;
|
|
}
|
|
if (V->getType() != I->getType())
|
|
V = Builder.CreateBitOrPointerCast(V, I->getType());
|
|
I->replaceAllUsesWith(V);
|
|
}
|
|
|
|
// Finally, we need to reorder the instrs in the BB so that the (transitive)
|
|
// operands of VecInst appear before it. To see why, suppose we have
|
|
// vectorized the following code:
|
|
//
|
|
// ptr1 = gep a, 1
|
|
// load1 = load i32 ptr1
|
|
// ptr0 = gep a, 0
|
|
// load0 = load i32 ptr0
|
|
//
|
|
// We will put the vectorized load at the location of the earliest load in
|
|
// the BB, i.e. load1. We get:
|
|
//
|
|
// ptr1 = gep a, 1
|
|
// loadv = load <2 x i32> ptr0
|
|
// load0 = extractelement loadv, 0
|
|
// load1 = extractelement loadv, 1
|
|
// ptr0 = gep a, 0
|
|
//
|
|
// Notice that loadv uses ptr0, which is defined *after* it!
|
|
reorder(VecInst);
|
|
} else {
|
|
// Stores get sunk to the location of the last store in the chain.
|
|
Builder.SetInsertPoint(
|
|
std::max_element(C.begin(), C.end(), [](auto &A, auto &B) {
|
|
return A.Inst->comesBefore(B.Inst);
|
|
})->Inst);
|
|
|
|
// Build the vector to store.
|
|
Value *Vec = PoisonValue::get(VecTy);
|
|
unsigned VecIdx = 0;
|
|
auto InsertElem = [&](Value *V) {
|
|
if (V->getType() != VecElemTy)
|
|
V = Builder.CreateBitOrPointerCast(V, VecElemTy);
|
|
Vec = Builder.CreateInsertElement(Vec, V, Builder.getInt32(VecIdx++));
|
|
};
|
|
for (const ChainElem &E : C) {
|
|
auto I = cast<StoreInst>(E.Inst);
|
|
if (FixedVectorType *VT =
|
|
dyn_cast<FixedVectorType>(getLoadStoreType(I))) {
|
|
for (int J = 0, JE = VT->getNumElements(); J < JE; ++J) {
|
|
InsertElem(Builder.CreateExtractElement(I->getValueOperand(),
|
|
Builder.getInt32(J)));
|
|
}
|
|
} else {
|
|
InsertElem(I->getValueOperand());
|
|
}
|
|
}
|
|
|
|
// Chain is in offset order, so C[0] is the instr with the lowest offset,
|
|
// i.e. the root of the vector.
|
|
VecInst = Builder.CreateAlignedStore(
|
|
Vec,
|
|
getLoadStorePointerOperand(C[0].Inst),
|
|
Alignment);
|
|
}
|
|
|
|
propagateMetadata(VecInst, C);
|
|
|
|
for (const ChainElem &E : C)
|
|
ToErase.push_back(E.Inst);
|
|
|
|
++NumVectorInstructions;
|
|
NumScalarsVectorized += C.size();
|
|
return true;
|
|
}
|
|
|
|
template <bool IsLoadChain>
|
|
bool Vectorizer::isSafeToMove(
|
|
Instruction *ChainElem, Instruction *ChainBegin,
|
|
const DenseMap<Instruction *, APInt /*OffsetFromLeader*/> &ChainOffsets) {
|
|
LLVM_DEBUG(dbgs() << "LSV: isSafeToMove(" << *ChainElem << " -> "
|
|
<< *ChainBegin << ")\n");
|
|
|
|
assert(isa<LoadInst>(ChainElem) == IsLoadChain);
|
|
if (ChainElem == ChainBegin)
|
|
return true;
|
|
|
|
// Invariant loads can always be reordered; by definition they are not
|
|
// clobbered by stores.
|
|
if (isInvariantLoad(ChainElem))
|
|
return true;
|
|
|
|
auto BBIt = std::next([&] {
|
|
if constexpr (IsLoadChain)
|
|
return BasicBlock::reverse_iterator(ChainElem);
|
|
else
|
|
return BasicBlock::iterator(ChainElem);
|
|
}());
|
|
auto BBItEnd = std::next([&] {
|
|
if constexpr (IsLoadChain)
|
|
return BasicBlock::reverse_iterator(ChainBegin);
|
|
else
|
|
return BasicBlock::iterator(ChainBegin);
|
|
}());
|
|
|
|
const APInt &ChainElemOffset = ChainOffsets.at(ChainElem);
|
|
const unsigned ChainElemSize =
|
|
DL.getTypeStoreSize(getLoadStoreType(ChainElem));
|
|
|
|
for (; BBIt != BBItEnd; ++BBIt) {
|
|
Instruction *I = &*BBIt;
|
|
|
|
if (!I->mayReadOrWriteMemory())
|
|
continue;
|
|
|
|
// Loads can be reordered with other loads.
|
|
if (IsLoadChain && isa<LoadInst>(I))
|
|
continue;
|
|
|
|
// Stores can be sunk below invariant loads.
|
|
if (!IsLoadChain && isInvariantLoad(I))
|
|
continue;
|
|
|
|
// If I is in the chain, we can tell whether it aliases ChainIt by checking
|
|
// what offset ChainIt accesses. This may be better than AA is able to do.
|
|
//
|
|
// We should really only have duplicate offsets for stores (the duplicate
|
|
// loads should be CSE'ed), but in case we have a duplicate load, we'll
|
|
// split the chain so we don't have to handle this case specially.
|
|
if (auto OffsetIt = ChainOffsets.find(I); OffsetIt != ChainOffsets.end()) {
|
|
// I and ChainElem overlap if:
|
|
// - I and ChainElem have the same offset, OR
|
|
// - I's offset is less than ChainElem's, but I touches past the
|
|
// beginning of ChainElem, OR
|
|
// - ChainElem's offset is less than I's, but ChainElem touches past the
|
|
// beginning of I.
|
|
const APInt &IOffset = OffsetIt->second;
|
|
unsigned IElemSize = DL.getTypeStoreSize(getLoadStoreType(I));
|
|
if (IOffset == ChainElemOffset ||
|
|
(IOffset.sle(ChainElemOffset) &&
|
|
(IOffset + IElemSize).sgt(ChainElemOffset)) ||
|
|
(ChainElemOffset.sle(IOffset) &&
|
|
(ChainElemOffset + ChainElemSize).sgt(OffsetIt->second))) {
|
|
LLVM_DEBUG({
|
|
// Double check that AA also sees this alias. If not, we probably
|
|
// have a bug.
|
|
ModRefInfo MR = AA.getModRefInfo(I, MemoryLocation::get(ChainElem));
|
|
assert(IsLoadChain ? isModSet(MR) : isModOrRefSet(MR));
|
|
dbgs() << "LSV: Found alias in chain: " << *I << "\n";
|
|
});
|
|
return false; // We found an aliasing instruction; bail.
|
|
}
|
|
|
|
continue; // We're confident there's no alias.
|
|
}
|
|
|
|
LLVM_DEBUG(dbgs() << "LSV: Querying AA for " << *I << "\n");
|
|
ModRefInfo MR = AA.getModRefInfo(I, MemoryLocation::get(ChainElem));
|
|
if (IsLoadChain ? isModSet(MR) : isModOrRefSet(MR)) {
|
|
LLVM_DEBUG(dbgs() << "LSV: Found alias in chain:\n"
|
|
<< " Aliasing instruction:\n"
|
|
<< " " << *I << '\n'
|
|
<< " Aliased instruction and pointer:\n"
|
|
<< " " << *ChainElem << '\n'
|
|
<< " " << *getLoadStorePointerOperand(ChainElem)
|
|
<< '\n');
|
|
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static bool checkNoWrapFlags(Instruction *I, bool Signed) {
|
|
BinaryOperator *BinOpI = cast<BinaryOperator>(I);
|
|
return (Signed && BinOpI->hasNoSignedWrap()) ||
|
|
(!Signed && BinOpI->hasNoUnsignedWrap());
|
|
}
|
|
|
|
static bool checkIfSafeAddSequence(const APInt &IdxDiff, Instruction *AddOpA,
|
|
unsigned MatchingOpIdxA, Instruction *AddOpB,
|
|
unsigned MatchingOpIdxB, bool Signed) {
|
|
LLVM_DEBUG(dbgs() << "LSV: checkIfSafeAddSequence IdxDiff=" << IdxDiff
|
|
<< ", AddOpA=" << *AddOpA << ", MatchingOpIdxA="
|
|
<< MatchingOpIdxA << ", AddOpB=" << *AddOpB
|
|
<< ", MatchingOpIdxB=" << MatchingOpIdxB
|
|
<< ", Signed=" << Signed << "\n");
|
|
// If both OpA and OpB are adds with NSW/NUW and with one of the operands
|
|
// being the same, we can guarantee that the transformation is safe if we can
|
|
// prove that OpA won't overflow when Ret added to the other operand of OpA.
|
|
// For example:
|
|
// %tmp7 = add nsw i32 %tmp2, %v0
|
|
// %tmp8 = sext i32 %tmp7 to i64
|
|
// ...
|
|
// %tmp11 = add nsw i32 %v0, 1
|
|
// %tmp12 = add nsw i32 %tmp2, %tmp11
|
|
// %tmp13 = sext i32 %tmp12 to i64
|
|
//
|
|
// Both %tmp7 and %tmp12 have the nsw flag and the first operand is %tmp2.
|
|
// It's guaranteed that adding 1 to %tmp7 won't overflow because %tmp11 adds
|
|
// 1 to %v0 and both %tmp11 and %tmp12 have the nsw flag.
|
|
assert(AddOpA->getOpcode() == Instruction::Add &&
|
|
AddOpB->getOpcode() == Instruction::Add &&
|
|
checkNoWrapFlags(AddOpA, Signed) && checkNoWrapFlags(AddOpB, Signed));
|
|
if (AddOpA->getOperand(MatchingOpIdxA) ==
|
|
AddOpB->getOperand(MatchingOpIdxB)) {
|
|
Value *OtherOperandA = AddOpA->getOperand(MatchingOpIdxA == 1 ? 0 : 1);
|
|
Value *OtherOperandB = AddOpB->getOperand(MatchingOpIdxB == 1 ? 0 : 1);
|
|
Instruction *OtherInstrA = dyn_cast<Instruction>(OtherOperandA);
|
|
Instruction *OtherInstrB = dyn_cast<Instruction>(OtherOperandB);
|
|
// Match `x +nsw/nuw y` and `x +nsw/nuw (y +nsw/nuw IdxDiff)`.
|
|
if (OtherInstrB && OtherInstrB->getOpcode() == Instruction::Add &&
|
|
checkNoWrapFlags(OtherInstrB, Signed) &&
|
|
isa<ConstantInt>(OtherInstrB->getOperand(1))) {
|
|
int64_t CstVal =
|
|
cast<ConstantInt>(OtherInstrB->getOperand(1))->getSExtValue();
|
|
if (OtherInstrB->getOperand(0) == OtherOperandA &&
|
|
IdxDiff.getSExtValue() == CstVal)
|
|
return true;
|
|
}
|
|
// Match `x +nsw/nuw (y +nsw/nuw -Idx)` and `x +nsw/nuw (y +nsw/nuw x)`.
|
|
if (OtherInstrA && OtherInstrA->getOpcode() == Instruction::Add &&
|
|
checkNoWrapFlags(OtherInstrA, Signed) &&
|
|
isa<ConstantInt>(OtherInstrA->getOperand(1))) {
|
|
int64_t CstVal =
|
|
cast<ConstantInt>(OtherInstrA->getOperand(1))->getSExtValue();
|
|
if (OtherInstrA->getOperand(0) == OtherOperandB &&
|
|
IdxDiff.getSExtValue() == -CstVal)
|
|
return true;
|
|
}
|
|
// Match `x +nsw/nuw (y +nsw/nuw c)` and
|
|
// `x +nsw/nuw (y +nsw/nuw (c + IdxDiff))`.
|
|
if (OtherInstrA && OtherInstrB &&
|
|
OtherInstrA->getOpcode() == Instruction::Add &&
|
|
OtherInstrB->getOpcode() == Instruction::Add &&
|
|
checkNoWrapFlags(OtherInstrA, Signed) &&
|
|
checkNoWrapFlags(OtherInstrB, Signed) &&
|
|
isa<ConstantInt>(OtherInstrA->getOperand(1)) &&
|
|
isa<ConstantInt>(OtherInstrB->getOperand(1))) {
|
|
int64_t CstValA =
|
|
cast<ConstantInt>(OtherInstrA->getOperand(1))->getSExtValue();
|
|
int64_t CstValB =
|
|
cast<ConstantInt>(OtherInstrB->getOperand(1))->getSExtValue();
|
|
if (OtherInstrA->getOperand(0) == OtherInstrB->getOperand(0) &&
|
|
IdxDiff.getSExtValue() == (CstValB - CstValA))
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
std::optional<APInt> Vectorizer::getConstantOffsetComplexAddrs(
|
|
Value *PtrA, Value *PtrB, Instruction *ContextInst, unsigned Depth) {
|
|
LLVM_DEBUG(dbgs() << "LSV: getConstantOffsetComplexAddrs PtrA=" << *PtrA
|
|
<< " PtrB=" << *PtrB << " ContextInst=" << *ContextInst
|
|
<< " Depth=" << Depth << "\n");
|
|
auto *GEPA = dyn_cast<GetElementPtrInst>(PtrA);
|
|
auto *GEPB = dyn_cast<GetElementPtrInst>(PtrB);
|
|
if (!GEPA || !GEPB)
|
|
return getConstantOffsetSelects(PtrA, PtrB, ContextInst, Depth);
|
|
|
|
// Look through GEPs after checking they're the same except for the last
|
|
// index.
|
|
if (GEPA->getNumOperands() != GEPB->getNumOperands() ||
|
|
GEPA->getPointerOperand() != GEPB->getPointerOperand())
|
|
return std::nullopt;
|
|
gep_type_iterator GTIA = gep_type_begin(GEPA);
|
|
gep_type_iterator GTIB = gep_type_begin(GEPB);
|
|
for (unsigned I = 0, E = GEPA->getNumIndices() - 1; I < E; ++I) {
|
|
if (GTIA.getOperand() != GTIB.getOperand())
|
|
return std::nullopt;
|
|
++GTIA;
|
|
++GTIB;
|
|
}
|
|
|
|
Instruction *OpA = dyn_cast<Instruction>(GTIA.getOperand());
|
|
Instruction *OpB = dyn_cast<Instruction>(GTIB.getOperand());
|
|
if (!OpA || !OpB || OpA->getOpcode() != OpB->getOpcode() ||
|
|
OpA->getType() != OpB->getType())
|
|
return std::nullopt;
|
|
|
|
uint64_t Stride = GTIA.getSequentialElementStride(DL);
|
|
|
|
// Only look through a ZExt/SExt.
|
|
if (!isa<SExtInst>(OpA) && !isa<ZExtInst>(OpA))
|
|
return std::nullopt;
|
|
|
|
bool Signed = isa<SExtInst>(OpA);
|
|
|
|
// At this point A could be a function parameter, i.e. not an instruction
|
|
Value *ValA = OpA->getOperand(0);
|
|
OpB = dyn_cast<Instruction>(OpB->getOperand(0));
|
|
if (!OpB || ValA->getType() != OpB->getType())
|
|
return std::nullopt;
|
|
|
|
const SCEV *OffsetSCEVA = SE.getSCEV(ValA);
|
|
const SCEV *OffsetSCEVB = SE.getSCEV(OpB);
|
|
const SCEV *IdxDiffSCEV = SE.getMinusSCEV(OffsetSCEVB, OffsetSCEVA);
|
|
if (IdxDiffSCEV == SE.getCouldNotCompute())
|
|
return std::nullopt;
|
|
|
|
ConstantRange IdxDiffRange = SE.getSignedRange(IdxDiffSCEV);
|
|
if (!IdxDiffRange.isSingleElement())
|
|
return std::nullopt;
|
|
APInt IdxDiff = *IdxDiffRange.getSingleElement();
|
|
|
|
LLVM_DEBUG(dbgs() << "LSV: getConstantOffsetComplexAddrs IdxDiff=" << IdxDiff
|
|
<< "\n");
|
|
|
|
// Now we need to prove that adding IdxDiff to ValA won't overflow.
|
|
bool Safe = false;
|
|
|
|
// First attempt: if OpB is an add with NSW/NUW, and OpB is IdxDiff added to
|
|
// ValA, we're okay.
|
|
if (OpB->getOpcode() == Instruction::Add &&
|
|
isa<ConstantInt>(OpB->getOperand(1)) &&
|
|
IdxDiff.sle(cast<ConstantInt>(OpB->getOperand(1))->getSExtValue()) &&
|
|
checkNoWrapFlags(OpB, Signed))
|
|
Safe = true;
|
|
|
|
// Second attempt: check if we have eligible add NSW/NUW instruction
|
|
// sequences.
|
|
OpA = dyn_cast<Instruction>(ValA);
|
|
if (!Safe && OpA && OpA->getOpcode() == Instruction::Add &&
|
|
OpB->getOpcode() == Instruction::Add && checkNoWrapFlags(OpA, Signed) &&
|
|
checkNoWrapFlags(OpB, Signed)) {
|
|
// In the checks below a matching operand in OpA and OpB is an operand which
|
|
// is the same in those two instructions. Below we account for possible
|
|
// orders of the operands of these add instructions.
|
|
for (unsigned MatchingOpIdxA : {0, 1})
|
|
for (unsigned MatchingOpIdxB : {0, 1})
|
|
if (!Safe)
|
|
Safe = checkIfSafeAddSequence(IdxDiff, OpA, MatchingOpIdxA, OpB,
|
|
MatchingOpIdxB, Signed);
|
|
}
|
|
|
|
unsigned BitWidth = ValA->getType()->getScalarSizeInBits();
|
|
|
|
// Third attempt:
|
|
//
|
|
// Assuming IdxDiff is positive: If all set bits of IdxDiff or any higher
|
|
// order bit other than the sign bit are known to be zero in ValA, we can add
|
|
// Diff to it while guaranteeing no overflow of any sort.
|
|
//
|
|
// If IdxDiff is negative, do the same, but swap ValA and ValB.
|
|
if (!Safe) {
|
|
// When computing known bits, use the GEPs as context instructions, since
|
|
// they likely are in the same BB as the load/store.
|
|
KnownBits Known(BitWidth);
|
|
computeKnownBits((IdxDiff.sge(0) ? ValA : OpB), Known, DL, 0, &AC,
|
|
ContextInst, &DT);
|
|
APInt BitsAllowedToBeSet = Known.Zero.zext(IdxDiff.getBitWidth());
|
|
if (Signed)
|
|
BitsAllowedToBeSet.clearBit(BitWidth - 1);
|
|
if (BitsAllowedToBeSet.ult(IdxDiff.abs()))
|
|
return std::nullopt;
|
|
Safe = true;
|
|
}
|
|
|
|
if (Safe)
|
|
return IdxDiff * Stride;
|
|
return std::nullopt;
|
|
}
|
|
|
|
std::optional<APInt> Vectorizer::getConstantOffsetSelects(
|
|
Value *PtrA, Value *PtrB, Instruction *ContextInst, unsigned Depth) {
|
|
if (Depth++ == MaxDepth)
|
|
return std::nullopt;
|
|
|
|
if (auto *SelectA = dyn_cast<SelectInst>(PtrA)) {
|
|
if (auto *SelectB = dyn_cast<SelectInst>(PtrB)) {
|
|
if (SelectA->getCondition() != SelectB->getCondition())
|
|
return std::nullopt;
|
|
LLVM_DEBUG(dbgs() << "LSV: getConstantOffsetSelects, PtrA=" << *PtrA
|
|
<< ", PtrB=" << *PtrB << ", ContextInst="
|
|
<< *ContextInst << ", Depth=" << Depth << "\n");
|
|
std::optional<APInt> TrueDiff = getConstantOffset(
|
|
SelectA->getTrueValue(), SelectB->getTrueValue(), ContextInst, Depth);
|
|
if (!TrueDiff.has_value())
|
|
return std::nullopt;
|
|
std::optional<APInt> FalseDiff =
|
|
getConstantOffset(SelectA->getFalseValue(), SelectB->getFalseValue(),
|
|
ContextInst, Depth);
|
|
if (TrueDiff == FalseDiff)
|
|
return TrueDiff;
|
|
}
|
|
}
|
|
return std::nullopt;
|
|
}
|
|
|
|
EquivalenceClassMap
|
|
Vectorizer::collectEquivalenceClasses(BasicBlock::iterator Begin,
|
|
BasicBlock::iterator End) {
|
|
EquivalenceClassMap Ret;
|
|
|
|
auto getUnderlyingObject = [](const Value *Ptr) -> const Value * {
|
|
const Value *ObjPtr = llvm::getUnderlyingObject(Ptr);
|
|
if (const auto *Sel = dyn_cast<SelectInst>(ObjPtr)) {
|
|
// The select's themselves are distinct instructions even if they share
|
|
// the same condition and evaluate to consecutive pointers for true and
|
|
// false values of the condition. Therefore using the select's themselves
|
|
// for grouping instructions would put consecutive accesses into different
|
|
// lists and they won't be even checked for being consecutive, and won't
|
|
// be vectorized.
|
|
return Sel->getCondition();
|
|
}
|
|
return ObjPtr;
|
|
};
|
|
|
|
for (Instruction &I : make_range(Begin, End)) {
|
|
auto *LI = dyn_cast<LoadInst>(&I);
|
|
auto *SI = dyn_cast<StoreInst>(&I);
|
|
if (!LI && !SI)
|
|
continue;
|
|
|
|
if ((LI && !LI->isSimple()) || (SI && !SI->isSimple()))
|
|
continue;
|
|
|
|
if ((LI && !TTI.isLegalToVectorizeLoad(LI)) ||
|
|
(SI && !TTI.isLegalToVectorizeStore(SI)))
|
|
continue;
|
|
|
|
Type *Ty = getLoadStoreType(&I);
|
|
if (!VectorType::isValidElementType(Ty->getScalarType()))
|
|
continue;
|
|
|
|
// Skip weird non-byte sizes. They probably aren't worth the effort of
|
|
// handling correctly.
|
|
unsigned TySize = DL.getTypeSizeInBits(Ty);
|
|
if ((TySize % 8) != 0)
|
|
continue;
|
|
|
|
// Skip vectors of pointers. The vectorizeLoadChain/vectorizeStoreChain
|
|
// functions are currently using an integer type for the vectorized
|
|
// load/store, and does not support casting between the integer type and a
|
|
// vector of pointers (e.g. i64 to <2 x i16*>)
|
|
if (Ty->isVectorTy() && Ty->isPtrOrPtrVectorTy())
|
|
continue;
|
|
|
|
Value *Ptr = getLoadStorePointerOperand(&I);
|
|
unsigned AS = Ptr->getType()->getPointerAddressSpace();
|
|
unsigned VecRegSize = TTI.getLoadStoreVecRegBitWidth(AS);
|
|
|
|
unsigned VF = VecRegSize / TySize;
|
|
VectorType *VecTy = dyn_cast<VectorType>(Ty);
|
|
|
|
// Only handle power-of-two sized elements.
|
|
if ((!VecTy && !isPowerOf2_32(DL.getTypeSizeInBits(Ty))) ||
|
|
(VecTy && !isPowerOf2_32(DL.getTypeSizeInBits(VecTy->getScalarType()))))
|
|
continue;
|
|
|
|
// No point in looking at these if they're too big to vectorize.
|
|
if (TySize > VecRegSize / 2 ||
|
|
(VecTy && TTI.getLoadVectorFactor(VF, TySize, TySize / 8, VecTy) == 0))
|
|
continue;
|
|
|
|
Ret[{getUnderlyingObject(Ptr), AS,
|
|
DL.getTypeSizeInBits(getLoadStoreType(&I)->getScalarType()),
|
|
/*IsLoad=*/LI != nullptr}]
|
|
.push_back(&I);
|
|
}
|
|
|
|
return Ret;
|
|
}
|
|
|
|
std::vector<Chain> Vectorizer::gatherChains(ArrayRef<Instruction *> Instrs) {
|
|
if (Instrs.empty())
|
|
return {};
|
|
|
|
unsigned AS = getLoadStoreAddressSpace(Instrs[0]);
|
|
unsigned ASPtrBits = DL.getIndexSizeInBits(AS);
|
|
|
|
#ifndef NDEBUG
|
|
// Check that Instrs is in BB order and all have the same addr space.
|
|
for (size_t I = 1; I < Instrs.size(); ++I) {
|
|
assert(Instrs[I - 1]->comesBefore(Instrs[I]));
|
|
assert(getLoadStoreAddressSpace(Instrs[I]) == AS);
|
|
}
|
|
#endif
|
|
|
|
// Machinery to build an MRU-hashtable of Chains.
|
|
//
|
|
// (Ideally this could be done with MapVector, but as currently implemented,
|
|
// moving an element to the front of a MapVector is O(n).)
|
|
struct InstrListElem : ilist_node<InstrListElem>,
|
|
std::pair<Instruction *, Chain> {
|
|
explicit InstrListElem(Instruction *I)
|
|
: std::pair<Instruction *, Chain>(I, {}) {}
|
|
};
|
|
struct InstrListElemDenseMapInfo {
|
|
using PtrInfo = DenseMapInfo<InstrListElem *>;
|
|
using IInfo = DenseMapInfo<Instruction *>;
|
|
static InstrListElem *getEmptyKey() { return PtrInfo::getEmptyKey(); }
|
|
static InstrListElem *getTombstoneKey() {
|
|
return PtrInfo::getTombstoneKey();
|
|
}
|
|
static unsigned getHashValue(const InstrListElem *E) {
|
|
return IInfo::getHashValue(E->first);
|
|
}
|
|
static bool isEqual(const InstrListElem *A, const InstrListElem *B) {
|
|
if (A == getEmptyKey() || B == getEmptyKey())
|
|
return A == getEmptyKey() && B == getEmptyKey();
|
|
if (A == getTombstoneKey() || B == getTombstoneKey())
|
|
return A == getTombstoneKey() && B == getTombstoneKey();
|
|
return IInfo::isEqual(A->first, B->first);
|
|
}
|
|
};
|
|
SpecificBumpPtrAllocator<InstrListElem> Allocator;
|
|
simple_ilist<InstrListElem> MRU;
|
|
DenseSet<InstrListElem *, InstrListElemDenseMapInfo> Chains;
|
|
|
|
// Compare each instruction in `instrs` to leader of the N most recently-used
|
|
// chains. This limits the O(n^2) behavior of this pass while also allowing
|
|
// us to build arbitrarily long chains.
|
|
for (Instruction *I : Instrs) {
|
|
constexpr int MaxChainsToTry = 64;
|
|
|
|
bool MatchFound = false;
|
|
auto ChainIter = MRU.begin();
|
|
for (size_t J = 0; J < MaxChainsToTry && ChainIter != MRU.end();
|
|
++J, ++ChainIter) {
|
|
std::optional<APInt> Offset = getConstantOffset(
|
|
getLoadStorePointerOperand(ChainIter->first),
|
|
getLoadStorePointerOperand(I),
|
|
/*ContextInst=*/
|
|
(ChainIter->first->comesBefore(I) ? I : ChainIter->first));
|
|
if (Offset.has_value()) {
|
|
// `Offset` might not have the expected number of bits, if e.g. AS has a
|
|
// different number of bits than opaque pointers.
|
|
ChainIter->second.push_back(ChainElem{I, Offset.value()});
|
|
// Move ChainIter to the front of the MRU list.
|
|
MRU.remove(*ChainIter);
|
|
MRU.push_front(*ChainIter);
|
|
MatchFound = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!MatchFound) {
|
|
APInt ZeroOffset(ASPtrBits, 0);
|
|
InstrListElem *E = new (Allocator.Allocate()) InstrListElem(I);
|
|
E->second.push_back(ChainElem{I, ZeroOffset});
|
|
MRU.push_front(*E);
|
|
Chains.insert(E);
|
|
}
|
|
}
|
|
|
|
std::vector<Chain> Ret;
|
|
Ret.reserve(Chains.size());
|
|
// Iterate over MRU rather than Chains so the order is deterministic.
|
|
for (auto &E : MRU)
|
|
if (E.second.size() > 1)
|
|
Ret.push_back(std::move(E.second));
|
|
return Ret;
|
|
}
|
|
|
|
std::optional<APInt> Vectorizer::getConstantOffset(Value *PtrA, Value *PtrB,
|
|
Instruction *ContextInst,
|
|
unsigned Depth) {
|
|
LLVM_DEBUG(dbgs() << "LSV: getConstantOffset, PtrA=" << *PtrA
|
|
<< ", PtrB=" << *PtrB << ", ContextInst= " << *ContextInst
|
|
<< ", Depth=" << Depth << "\n");
|
|
// We'll ultimately return a value of this bit width, even if computations
|
|
// happen in a different width.
|
|
unsigned OrigBitWidth = DL.getIndexTypeSizeInBits(PtrA->getType());
|
|
APInt OffsetA(OrigBitWidth, 0);
|
|
APInt OffsetB(OrigBitWidth, 0);
|
|
PtrA = PtrA->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetA);
|
|
PtrB = PtrB->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetB);
|
|
unsigned NewPtrBitWidth = DL.getTypeStoreSizeInBits(PtrA->getType());
|
|
if (NewPtrBitWidth != DL.getTypeStoreSizeInBits(PtrB->getType()))
|
|
return std::nullopt;
|
|
|
|
// If we have to shrink the pointer, stripAndAccumulateInBoundsConstantOffsets
|
|
// should properly handle a possible overflow and the value should fit into
|
|
// the smallest data type used in the cast/gep chain.
|
|
assert(OffsetA.getSignificantBits() <= NewPtrBitWidth &&
|
|
OffsetB.getSignificantBits() <= NewPtrBitWidth);
|
|
|
|
OffsetA = OffsetA.sextOrTrunc(NewPtrBitWidth);
|
|
OffsetB = OffsetB.sextOrTrunc(NewPtrBitWidth);
|
|
if (PtrA == PtrB)
|
|
return (OffsetB - OffsetA).sextOrTrunc(OrigBitWidth);
|
|
|
|
// Try to compute B - A.
|
|
const SCEV *DistScev = SE.getMinusSCEV(SE.getSCEV(PtrB), SE.getSCEV(PtrA));
|
|
if (DistScev != SE.getCouldNotCompute()) {
|
|
LLVM_DEBUG(dbgs() << "LSV: SCEV PtrB - PtrA =" << *DistScev << "\n");
|
|
ConstantRange DistRange = SE.getSignedRange(DistScev);
|
|
if (DistRange.isSingleElement()) {
|
|
// Handle index width (the width of Dist) != pointer width (the width of
|
|
// the Offset*s at this point).
|
|
APInt Dist = DistRange.getSingleElement()->sextOrTrunc(NewPtrBitWidth);
|
|
return (OffsetB - OffsetA + Dist).sextOrTrunc(OrigBitWidth);
|
|
}
|
|
}
|
|
std::optional<APInt> Diff =
|
|
getConstantOffsetComplexAddrs(PtrA, PtrB, ContextInst, Depth);
|
|
if (Diff.has_value())
|
|
return (OffsetB - OffsetA + Diff->sext(OffsetB.getBitWidth()))
|
|
.sextOrTrunc(OrigBitWidth);
|
|
return std::nullopt;
|
|
}
|