Snehasish Kumar 0528848def
[NFC][MemProf] Move IndexedMemProfData to its own header. (#140503)
Part of a larger refactoring with the following goals
1. Reduce the size of MemProf.h 
2. Avoid including ModuleSummaryIndex just for a couple of types
2025-05-19 16:21:51 -07:00

387 lines
13 KiB
C++

#include "llvm/ProfileData/MemProf.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/IR/Function.h"
#include "llvm/ProfileData/InstrProf.h"
#include "llvm/ProfileData/SampleProf.h"
#include "llvm/Support/Endian.h"
#include "llvm/Support/EndianStream.h"
namespace llvm {
namespace memprof {
MemProfSchema getFullSchema() {
MemProfSchema List;
#define MIBEntryDef(NameTag, Name, Type) List.push_back(Meta::Name);
#include "llvm/ProfileData/MIBEntryDef.inc"
#undef MIBEntryDef
return List;
}
MemProfSchema getHotColdSchema() {
return {Meta::AllocCount, Meta::TotalSize, Meta::TotalLifetime,
Meta::TotalLifetimeAccessDensity};
}
static size_t serializedSizeV2(const IndexedAllocationInfo &IAI,
const MemProfSchema &Schema) {
size_t Size = 0;
// The CallStackId
Size += sizeof(CallStackId);
// The size of the payload.
Size += PortableMemInfoBlock::serializedSize(Schema);
return Size;
}
static size_t serializedSizeV3(const IndexedAllocationInfo &IAI,
const MemProfSchema &Schema) {
size_t Size = 0;
// The linear call stack ID.
Size += sizeof(LinearCallStackId);
// The size of the payload.
Size += PortableMemInfoBlock::serializedSize(Schema);
return Size;
}
size_t IndexedAllocationInfo::serializedSize(const MemProfSchema &Schema,
IndexedVersion Version) const {
switch (Version) {
case Version2:
return serializedSizeV2(*this, Schema);
// Combine V3 and V4 as the size calculation is the same
case Version3:
case Version4:
return serializedSizeV3(*this, Schema);
}
llvm_unreachable("unsupported MemProf version");
}
static size_t serializedSizeV2(const IndexedMemProfRecord &Record,
const MemProfSchema &Schema) {
// The number of alloc sites to serialize.
size_t Result = sizeof(uint64_t);
for (const IndexedAllocationInfo &N : Record.AllocSites)
Result += N.serializedSize(Schema, Version2);
// The number of callsites we have information for.
Result += sizeof(uint64_t);
// The CallStackId
Result += Record.CallSites.size() * sizeof(CallStackId);
return Result;
}
static size_t serializedSizeV3(const IndexedMemProfRecord &Record,
const MemProfSchema &Schema) {
// The number of alloc sites to serialize.
size_t Result = sizeof(uint64_t);
for (const IndexedAllocationInfo &N : Record.AllocSites)
Result += N.serializedSize(Schema, Version3);
// The number of callsites we have information for.
Result += sizeof(uint64_t);
// The linear call stack ID.
// Note: V3 only stored the LinearCallStackId per call site.
Result += Record.CallSites.size() * sizeof(LinearCallStackId);
return Result;
}
static size_t serializedSizeV4(const IndexedMemProfRecord &Record,
const MemProfSchema &Schema) {
// The number of alloc sites to serialize.
size_t Result = sizeof(uint64_t);
for (const IndexedAllocationInfo &N : Record.AllocSites)
Result += N.serializedSize(Schema, Version4);
// The number of callsites we have information for.
Result += sizeof(uint64_t);
for (const auto &CS : Record.CallSites)
Result += sizeof(LinearCallStackId) + sizeof(uint64_t) +
CS.CalleeGuids.size() * sizeof(GlobalValue::GUID);
return Result;
}
size_t IndexedMemProfRecord::serializedSize(const MemProfSchema &Schema,
IndexedVersion Version) const {
switch (Version) {
case Version2:
return serializedSizeV2(*this, Schema);
case Version3:
return serializedSizeV3(*this, Schema);
case Version4:
return serializedSizeV4(*this, Schema);
}
llvm_unreachable("unsupported MemProf version");
}
static void serializeV2(const IndexedMemProfRecord &Record,
const MemProfSchema &Schema, raw_ostream &OS) {
using namespace support;
endian::Writer LE(OS, llvm::endianness::little);
LE.write<uint64_t>(Record.AllocSites.size());
for (const IndexedAllocationInfo &N : Record.AllocSites) {
LE.write<CallStackId>(N.CSId);
N.Info.serialize(Schema, OS);
}
// Related contexts.
LE.write<uint64_t>(Record.CallSites.size());
for (const auto &CS : Record.CallSites)
LE.write<CallStackId>(CS.CSId);
}
static void serializeV3(
const IndexedMemProfRecord &Record, const MemProfSchema &Schema,
raw_ostream &OS,
llvm::DenseMap<CallStackId, LinearCallStackId> &MemProfCallStackIndexes) {
using namespace support;
endian::Writer LE(OS, llvm::endianness::little);
LE.write<uint64_t>(Record.AllocSites.size());
for (const IndexedAllocationInfo &N : Record.AllocSites) {
assert(MemProfCallStackIndexes.contains(N.CSId));
LE.write<LinearCallStackId>(MemProfCallStackIndexes[N.CSId]);
N.Info.serialize(Schema, OS);
}
// Related contexts.
LE.write<uint64_t>(Record.CallSites.size());
for (const auto &CS : Record.CallSites) {
assert(MemProfCallStackIndexes.contains(CS.CSId));
LE.write<LinearCallStackId>(MemProfCallStackIndexes[CS.CSId]);
}
}
static void serializeV4(
const IndexedMemProfRecord &Record, const MemProfSchema &Schema,
raw_ostream &OS,
llvm::DenseMap<CallStackId, LinearCallStackId> &MemProfCallStackIndexes) {
using namespace support;
endian::Writer LE(OS, llvm::endianness::little);
LE.write<uint64_t>(Record.AllocSites.size());
for (const IndexedAllocationInfo &N : Record.AllocSites) {
assert(MemProfCallStackIndexes.contains(N.CSId));
LE.write<LinearCallStackId>(MemProfCallStackIndexes[N.CSId]);
N.Info.serialize(Schema, OS);
}
// Related contexts.
LE.write<uint64_t>(Record.CallSites.size());
for (const auto &CS : Record.CallSites) {
assert(MemProfCallStackIndexes.contains(CS.CSId));
LE.write<LinearCallStackId>(MemProfCallStackIndexes[CS.CSId]);
LE.write<uint64_t>(CS.CalleeGuids.size());
for (const auto &Guid : CS.CalleeGuids)
LE.write<GlobalValue::GUID>(Guid);
}
}
void IndexedMemProfRecord::serialize(
const MemProfSchema &Schema, raw_ostream &OS, IndexedVersion Version,
llvm::DenseMap<CallStackId, LinearCallStackId> *MemProfCallStackIndexes)
const {
switch (Version) {
case Version2:
serializeV2(*this, Schema, OS);
return;
case Version3:
serializeV3(*this, Schema, OS, *MemProfCallStackIndexes);
return;
case Version4:
serializeV4(*this, Schema, OS, *MemProfCallStackIndexes);
return;
}
llvm_unreachable("unsupported MemProf version");
}
static IndexedMemProfRecord deserializeV2(const MemProfSchema &Schema,
const unsigned char *Ptr) {
using namespace support;
IndexedMemProfRecord Record;
// Read the meminfo nodes.
const uint64_t NumNodes =
endian::readNext<uint64_t, llvm::endianness::little>(Ptr);
Record.AllocSites.reserve(NumNodes);
for (uint64_t I = 0; I < NumNodes; I++) {
IndexedAllocationInfo Node;
Node.CSId = endian::readNext<CallStackId, llvm::endianness::little>(Ptr);
Node.Info.deserialize(Schema, Ptr);
Ptr += PortableMemInfoBlock::serializedSize(Schema);
Record.AllocSites.push_back(Node);
}
// Read the callsite information.
const uint64_t NumCtxs =
endian::readNext<uint64_t, llvm::endianness::little>(Ptr);
Record.CallSites.reserve(NumCtxs);
for (uint64_t J = 0; J < NumCtxs; J++) {
CallStackId CSId =
endian::readNext<CallStackId, llvm::endianness::little>(Ptr);
Record.CallSites.emplace_back(CSId);
}
return Record;
}
static IndexedMemProfRecord deserializeV3(const MemProfSchema &Schema,
const unsigned char *Ptr) {
using namespace support;
IndexedMemProfRecord Record;
// Read the meminfo nodes.
const uint64_t NumNodes =
endian::readNext<uint64_t, llvm::endianness::little>(Ptr);
Record.AllocSites.reserve(NumNodes);
const size_t SerializedSize = PortableMemInfoBlock::serializedSize(Schema);
for (uint64_t I = 0; I < NumNodes; I++) {
IndexedAllocationInfo Node;
Node.CSId =
endian::readNext<LinearCallStackId, llvm::endianness::little>(Ptr);
Node.Info.deserialize(Schema, Ptr);
Ptr += SerializedSize;
Record.AllocSites.push_back(Node);
}
// Read the callsite information.
const uint64_t NumCtxs =
endian::readNext<uint64_t, llvm::endianness::little>(Ptr);
Record.CallSites.reserve(NumCtxs);
for (uint64_t J = 0; J < NumCtxs; J++) {
// We are storing LinearCallStackId in CallSiteIds, which is a vector of
// CallStackId. Assert that CallStackId is no smaller than
// LinearCallStackId.
static_assert(sizeof(LinearCallStackId) <= sizeof(CallStackId));
LinearCallStackId CSId =
endian::readNext<LinearCallStackId, llvm::endianness::little>(Ptr);
Record.CallSites.emplace_back(CSId);
}
return Record;
}
static IndexedMemProfRecord deserializeV4(const MemProfSchema &Schema,
const unsigned char *Ptr) {
using namespace support;
IndexedMemProfRecord Record;
// Read the meminfo nodes.
const uint64_t NumNodes =
endian::readNext<uint64_t, llvm::endianness::little>(Ptr);
Record.AllocSites.reserve(NumNodes);
const size_t SerializedSize = PortableMemInfoBlock::serializedSize(Schema);
for (uint64_t I = 0; I < NumNodes; I++) {
IndexedAllocationInfo Node;
Node.CSId =
endian::readNext<LinearCallStackId, llvm::endianness::little>(Ptr);
Node.Info.deserialize(Schema, Ptr);
Ptr += SerializedSize;
Record.AllocSites.push_back(Node);
}
// Read the callsite information.
const uint64_t NumCtxs =
endian::readNext<uint64_t, llvm::endianness::little>(Ptr);
Record.CallSites.reserve(NumCtxs);
for (uint64_t J = 0; J < NumCtxs; J++) {
static_assert(sizeof(LinearCallStackId) <= sizeof(CallStackId));
LinearCallStackId CSId =
endian::readNext<LinearCallStackId, llvm::endianness::little>(Ptr);
const uint64_t NumGuids =
endian::readNext<uint64_t, llvm::endianness::little>(Ptr);
SmallVector<GlobalValue::GUID, 1> Guids;
Guids.reserve(NumGuids);
for (uint64_t K = 0; K < NumGuids; ++K)
Guids.push_back(
endian::readNext<GlobalValue::GUID, llvm::endianness::little>(Ptr));
Record.CallSites.emplace_back(CSId, std::move(Guids));
}
return Record;
}
IndexedMemProfRecord
IndexedMemProfRecord::deserialize(const MemProfSchema &Schema,
const unsigned char *Ptr,
IndexedVersion Version) {
switch (Version) {
case Version2:
return deserializeV2(Schema, Ptr);
case Version3:
return deserializeV3(Schema, Ptr);
case Version4:
return deserializeV4(Schema, Ptr);
}
llvm_unreachable("unsupported MemProf version");
}
MemProfRecord IndexedMemProfRecord::toMemProfRecord(
llvm::function_ref<std::vector<Frame>(const CallStackId)> Callback) const {
MemProfRecord Record;
Record.AllocSites.reserve(AllocSites.size());
for (const IndexedAllocationInfo &IndexedAI : AllocSites) {
AllocationInfo AI;
AI.Info = IndexedAI.Info;
AI.CallStack = Callback(IndexedAI.CSId);
Record.AllocSites.push_back(std::move(AI));
}
Record.CallSites.reserve(CallSites.size());
for (const IndexedCallSiteInfo &CS : CallSites) {
std::vector<Frame> Frames = Callback(CS.CSId);
Record.CallSites.emplace_back(std::move(Frames), CS.CalleeGuids);
}
return Record;
}
GlobalValue::GUID getGUID(const StringRef FunctionName) {
// Canonicalize the function name to drop suffixes such as ".llvm.". Note
// we do not drop any ".__uniq." suffixes, as getCanonicalFnName does not drop
// those by default. This is by design to differentiate internal linkage
// functions during matching. By dropping the other suffixes we can then match
// functions in the profile use phase prior to their addition. Note that this
// applies to both instrumented and sampled function names.
StringRef CanonicalName =
sampleprof::FunctionSamples::getCanonicalFnName(FunctionName);
// We use the function guid which we expect to be a uint64_t. At
// this time, it is the lower 64 bits of the md5 of the canonical
// function name.
return Function::getGUIDAssumingExternalLinkage(CanonicalName);
}
Expected<MemProfSchema> readMemProfSchema(const unsigned char *&Buffer) {
using namespace support;
const unsigned char *Ptr = Buffer;
const uint64_t NumSchemaIds =
endian::readNext<uint64_t, llvm::endianness::little>(Ptr);
if (NumSchemaIds > static_cast<uint64_t>(Meta::Size)) {
return make_error<InstrProfError>(instrprof_error::malformed,
"memprof schema invalid");
}
MemProfSchema Result;
for (size_t I = 0; I < NumSchemaIds; I++) {
const uint64_t Tag =
endian::readNext<uint64_t, llvm::endianness::little>(Ptr);
if (Tag >= static_cast<uint64_t>(Meta::Size)) {
return make_error<InstrProfError>(instrprof_error::malformed,
"memprof schema invalid");
}
Result.push_back(static_cast<Meta>(Tag));
}
// Advance the buffer to one past the schema if we succeeded.
Buffer = Ptr;
return Result;
}
} // namespace memprof
} // namespace llvm