llvm-project/flang/lib/Semantics/check-cuda.cpp
Peter Klausler b01ab5318e
[flang][CUDA] Apply intrinsic operator overrides (#151018)
Fortran's intrinsic numeric and relational operators can be overridden
with explicit interfaces so long as one or more of the dummy arguments
have the DEVICE attribute. Semantics already allows this without
complaint, but fails to replace the operations with the defined specific
procedure calls when analyzing expressions.
2025-07-30 11:41:40 -07:00

778 lines
28 KiB
C++

//===-- lib/Semantics/check-cuda.cpp ----------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "check-cuda.h"
#include "flang/Common/template.h"
#include "flang/Evaluate/fold.h"
#include "flang/Evaluate/tools.h"
#include "flang/Evaluate/traverse.h"
#include "flang/Parser/parse-tree-visitor.h"
#include "flang/Parser/parse-tree.h"
#include "flang/Parser/tools.h"
#include "flang/Semantics/expression.h"
#include "flang/Semantics/symbol.h"
#include "flang/Semantics/tools.h"
#include "llvm/ADT/StringSet.h"
// Once labeled DO constructs have been canonicalized and their parse subtrees
// transformed into parser::DoConstructs, scan the parser::Blocks of the program
// and merge adjacent CUFKernelDoConstructs and DoConstructs whenever the
// CUFKernelDoConstruct doesn't already have an embedded DoConstruct. Also
// emit errors about improper or missing DoConstructs.
namespace Fortran::parser {
struct Mutator {
template <typename A> bool Pre(A &) { return true; }
template <typename A> void Post(A &) {}
bool Pre(Block &);
};
bool Mutator::Pre(Block &block) {
for (auto iter{block.begin()}; iter != block.end(); ++iter) {
if (auto *kernel{Unwrap<CUFKernelDoConstruct>(*iter)}) {
auto &nested{std::get<std::optional<DoConstruct>>(kernel->t)};
if (!nested) {
if (auto next{iter}; ++next != block.end()) {
if (auto *doConstruct{Unwrap<DoConstruct>(*next)}) {
nested = std::move(*doConstruct);
block.erase(next);
}
}
}
} else {
Walk(*iter, *this);
}
}
return false;
}
} // namespace Fortran::parser
namespace Fortran::semantics {
bool CanonicalizeCUDA(parser::Program &program) {
parser::Mutator mutator;
parser::Walk(program, mutator);
return true;
}
using MaybeMsg = std::optional<parser::MessageFormattedText>;
static const llvm::StringSet<> warpFunctions_ = {"match_all_syncjj",
"match_all_syncjx", "match_all_syncjf", "match_all_syncjd",
"match_any_syncjj", "match_any_syncjx", "match_any_syncjf",
"match_any_syncjd"};
// Traverses an evaluate::Expr<> in search of unsupported operations
// on the device.
struct DeviceExprChecker
: public evaluate::AnyTraverse<DeviceExprChecker, MaybeMsg> {
using Result = MaybeMsg;
using Base = evaluate::AnyTraverse<DeviceExprChecker, Result>;
explicit DeviceExprChecker(SemanticsContext &c) : Base(*this), context_{c} {}
using Base::operator();
Result operator()(const evaluate::ProcedureDesignator &x) const {
if (const Symbol * sym{x.GetInterfaceSymbol()}) {
const auto *subp{
sym->GetUltimate().detailsIf<semantics::SubprogramDetails>()};
if (subp) {
if (auto attrs{subp->cudaSubprogramAttrs()}) {
if (*attrs == common::CUDASubprogramAttrs::HostDevice ||
*attrs == common::CUDASubprogramAttrs::Device) {
if (warpFunctions_.contains(sym->name().ToString()) &&
!context_.languageFeatures().IsEnabled(
Fortran::common::LanguageFeature::CudaWarpMatchFunction)) {
return parser::MessageFormattedText(
"warp match function disabled"_err_en_US);
}
return {};
}
}
}
const Symbol &ultimate{sym->GetUltimate()};
const Scope &scope{ultimate.owner()};
const Symbol *mod{scope.IsModule() ? scope.symbol() : nullptr};
// Allow ieee_arithmetic module functions to be called on the device.
// TODO: Check for unsupported ieee_arithmetic on the device.
if (mod && mod->name() == "ieee_arithmetic") {
return {};
}
} else if (x.GetSpecificIntrinsic()) {
// TODO(CUDA): Check for unsupported intrinsics here
return {};
}
return parser::MessageFormattedText(
"'%s' may not be called in device code"_err_en_US, x.GetName());
}
SemanticsContext &context_;
};
struct FindHostArray
: public evaluate::AnyTraverse<FindHostArray, const Symbol *> {
using Result = const Symbol *;
using Base = evaluate::AnyTraverse<FindHostArray, Result>;
FindHostArray() : Base(*this) {}
using Base::operator();
Result operator()(const evaluate::Component &x) const {
const Symbol &symbol{x.GetLastSymbol()};
if (IsAllocatableOrPointer(symbol)) {
if (Result hostArray{(*this)(symbol)}) {
return hostArray;
}
}
return (*this)(x.base());
}
Result operator()(const Symbol &symbol) const {
if (const auto *details{
symbol.GetUltimate().detailsIf<semantics::ObjectEntityDetails>()}) {
if (details->IsArray() &&
!symbol.attrs().test(Fortran::semantics::Attr::PARAMETER) &&
(!details->cudaDataAttr() ||
(details->cudaDataAttr() &&
*details->cudaDataAttr() != common::CUDADataAttr::Device &&
*details->cudaDataAttr() != common::CUDADataAttr::Constant &&
*details->cudaDataAttr() != common::CUDADataAttr::Managed &&
*details->cudaDataAttr() != common::CUDADataAttr::Shared &&
*details->cudaDataAttr() != common::CUDADataAttr::Unified))) {
return &symbol;
}
}
return nullptr;
}
};
template <typename A>
static MaybeMsg CheckUnwrappedExpr(SemanticsContext &context, const A &x) {
if (const auto *expr{parser::Unwrap<parser::Expr>(x)}) {
return DeviceExprChecker{context}(expr->typedExpr);
}
return {};
}
template <typename A>
static void CheckUnwrappedExpr(
SemanticsContext &context, SourceName at, const A &x) {
if (const auto *expr{parser::Unwrap<parser::Expr>(x)}) {
if (auto msg{DeviceExprChecker{context}(expr->typedExpr)}) {
context.Say(at, std::move(*msg));
}
}
}
template <bool CUF_KERNEL> struct ActionStmtChecker {
template <typename A>
static MaybeMsg WhyNotOk(SemanticsContext &context, const A &x) {
if constexpr (ConstraintTrait<A>) {
return WhyNotOk(context, x.thing);
} else if constexpr (WrapperTrait<A>) {
return WhyNotOk(context, x.v);
} else if constexpr (UnionTrait<A>) {
return WhyNotOk(context, x.u);
} else if constexpr (TupleTrait<A>) {
return WhyNotOk(context, x.t);
} else {
return parser::MessageFormattedText{
"Statement may not appear in device code"_err_en_US};
}
}
template <typename A>
static MaybeMsg WhyNotOk(
SemanticsContext &context, const common::Indirection<A> &x) {
return WhyNotOk(context, x.value());
}
template <typename... As>
static MaybeMsg WhyNotOk(
SemanticsContext &context, const std::variant<As...> &x) {
return common::visit(
[&context](const auto &x) { return WhyNotOk(context, x); }, x);
}
template <std::size_t J = 0, typename... As>
static MaybeMsg WhyNotOk(
SemanticsContext &context, const std::tuple<As...> &x) {
if constexpr (J == sizeof...(As)) {
return {};
} else if (auto msg{WhyNotOk(context, std::get<J>(x))}) {
return msg;
} else {
return WhyNotOk<(J + 1)>(context, x);
}
}
template <typename A>
static MaybeMsg WhyNotOk(SemanticsContext &context, const std::list<A> &x) {
for (const auto &y : x) {
if (MaybeMsg result{WhyNotOk(context, y)}) {
return result;
}
}
return {};
}
template <typename A>
static MaybeMsg WhyNotOk(
SemanticsContext &context, const std::optional<A> &x) {
if (x) {
return WhyNotOk(context, *x);
} else {
return {};
}
}
template <typename A>
static MaybeMsg WhyNotOk(
SemanticsContext &context, const parser::UnlabeledStatement<A> &x) {
return WhyNotOk(context, x.statement);
}
template <typename A>
static MaybeMsg WhyNotOk(
SemanticsContext &context, const parser::Statement<A> &x) {
return WhyNotOk(context, x.statement);
}
static MaybeMsg WhyNotOk(
SemanticsContext &context, const parser::AllocateStmt &) {
return {}; // AllocateObjects are checked elsewhere
}
static MaybeMsg WhyNotOk(
SemanticsContext &context, const parser::AllocateCoarraySpec &) {
return parser::MessageFormattedText(
"A coarray may not be allocated on the device"_err_en_US);
}
static MaybeMsg WhyNotOk(
SemanticsContext &context, const parser::DeallocateStmt &) {
return {}; // AllocateObjects are checked elsewhere
}
static MaybeMsg WhyNotOk(
SemanticsContext &context, const parser::AssignmentStmt &x) {
return DeviceExprChecker{context}(x.typedAssignment);
}
static MaybeMsg WhyNotOk(
SemanticsContext &context, const parser::CallStmt &x) {
return DeviceExprChecker{context}(x.typedCall);
}
static MaybeMsg WhyNotOk(
SemanticsContext &context, const parser::ContinueStmt &) {
return {};
}
static MaybeMsg WhyNotOk(SemanticsContext &context, const parser::IfStmt &x) {
if (auto result{CheckUnwrappedExpr(
context, std::get<parser::ScalarLogicalExpr>(x.t))}) {
return result;
}
return WhyNotOk(context,
std::get<parser::UnlabeledStatement<parser::ActionStmt>>(x.t)
.statement);
}
static MaybeMsg WhyNotOk(
SemanticsContext &context, const parser::NullifyStmt &x) {
for (const auto &y : x.v) {
if (MaybeMsg result{DeviceExprChecker{context}(y.typedExpr)}) {
return result;
}
}
return {};
}
static MaybeMsg WhyNotOk(
SemanticsContext &context, const parser::PointerAssignmentStmt &x) {
return DeviceExprChecker{context}(x.typedAssignment);
}
};
template <bool IsCUFKernelDo> class DeviceContextChecker {
public:
explicit DeviceContextChecker(SemanticsContext &c) : context_{c} {}
void CheckSubprogram(const parser::Name &name, const parser::Block &body) {
if (name.symbol) {
const auto *subp{
name.symbol->GetUltimate().detailsIf<SubprogramDetails>()};
if (subp && subp->moduleInterface()) {
subp = subp->moduleInterface()
->GetUltimate()
.detailsIf<SubprogramDetails>();
}
if (subp &&
subp->cudaSubprogramAttrs().value_or(
common::CUDASubprogramAttrs::Host) !=
common::CUDASubprogramAttrs::Host) {
isHostDevice = subp->cudaSubprogramAttrs() &&
subp->cudaSubprogramAttrs() ==
common::CUDASubprogramAttrs::HostDevice;
Check(body);
}
}
}
void Check(const parser::Block &block) {
for (const auto &epc : block) {
Check(epc);
}
}
private:
void Check(const parser::ExecutionPartConstruct &epc) {
common::visit(
common::visitors{
[&](const parser::ExecutableConstruct &x) { Check(x); },
[&](const parser::Statement<common::Indirection<parser::EntryStmt>>
&x) {
context_.Say(x.source,
"Device code may not contain an ENTRY statement"_err_en_US);
},
[](const parser::Statement<common::Indirection<parser::FormatStmt>>
&) {},
[](const parser::Statement<common::Indirection<parser::DataStmt>>
&) {},
[](const parser::Statement<
common::Indirection<parser::NamelistStmt>> &) {},
[](const parser::ErrorRecovery &) {},
},
epc.u);
}
void Check(const parser::ExecutableConstruct &ec) {
common::visit(
common::visitors{
[&](const parser::Statement<parser::ActionStmt> &stmt) {
Check(stmt.statement, stmt.source);
},
[&](const common::Indirection<parser::DoConstruct> &x) {
if (const std::optional<parser::LoopControl> &control{
x.value().GetLoopControl()}) {
common::visit([&](const auto &y) { Check(y); }, control->u);
}
Check(std::get<parser::Block>(x.value().t));
},
[&](const common::Indirection<parser::BlockConstruct> &x) {
Check(std::get<parser::Block>(x.value().t));
},
[&](const common::Indirection<parser::IfConstruct> &x) {
Check(x.value());
},
[&](const common::Indirection<parser::CaseConstruct> &x) {
const auto &caseList{
std::get<std::list<parser::CaseConstruct::Case>>(
x.value().t)};
for (const parser::CaseConstruct::Case &c : caseList) {
Check(std::get<parser::Block>(c.t));
}
},
[&](const common::Indirection<parser::CompilerDirective> &x) {
// TODO(CUDA): Check for unsupported compiler directive here.
},
[&](const auto &x) {
if (auto source{parser::GetSource(x)}) {
context_.Say(*source,
"Statement may not appear in device code"_err_en_US);
}
},
},
ec.u);
}
template <typename SEEK, typename A>
static const SEEK *GetIOControl(const A &stmt) {
for (const auto &spec : stmt.controls) {
if (const auto *result{std::get_if<SEEK>(&spec.u)}) {
return result;
}
}
return nullptr;
}
template <typename A> static bool IsInternalIO(const A &stmt) {
if (stmt.iounit.has_value()) {
return std::holds_alternative<Fortran::parser::Variable>(stmt.iounit->u);
}
if (auto *unit{GetIOControl<Fortran::parser::IoUnit>(stmt)}) {
return std::holds_alternative<Fortran::parser::Variable>(unit->u);
}
return false;
}
void WarnOnIoStmt(const parser::CharBlock &source) {
context_.Warn(common::UsageWarning::CUDAUsage, source,
"I/O statement might not be supported on device"_warn_en_US);
}
template <typename A>
void WarnIfNotInternal(const A &stmt, const parser::CharBlock &source) {
if (!IsInternalIO(stmt)) {
WarnOnIoStmt(source);
}
}
template <typename A>
void ErrorIfHostSymbol(const A &expr, parser::CharBlock source) {
if (isHostDevice)
return;
if (const Symbol * hostArray{FindHostArray{}(expr)}) {
context_.Say(source,
"Host array '%s' cannot be present in device context"_err_en_US,
hostArray->name());
}
}
void ErrorInCUFKernel(parser::CharBlock source) {
if (IsCUFKernelDo) {
context_.Say(
source, "Statement may not appear in cuf kernel code"_err_en_US);
}
}
void Check(const parser::ActionStmt &stmt, const parser::CharBlock &source) {
common::visit(
common::visitors{
[&](const common::Indirection<parser::CycleStmt> &) {
ErrorInCUFKernel(source);
},
[&](const common::Indirection<parser::ExitStmt> &) {
ErrorInCUFKernel(source);
},
[&](const common::Indirection<parser::GotoStmt> &) {
ErrorInCUFKernel(source);
},
[&](const common::Indirection<parser::StopStmt> &) { return; },
[&](const common::Indirection<parser::PrintStmt> &) {},
[&](const common::Indirection<parser::WriteStmt> &x) {
if (x.value().format) { // Formatted write to '*' or '6'
if (std::holds_alternative<Fortran::parser::Star>(
x.value().format->u)) {
if (x.value().iounit) {
if (std::holds_alternative<Fortran::parser::Star>(
x.value().iounit->u)) {
return;
}
}
}
}
WarnIfNotInternal(x.value(), source);
},
[&](const common::Indirection<parser::CloseStmt> &x) {
WarnOnIoStmt(source);
},
[&](const common::Indirection<parser::EndfileStmt> &x) {
WarnOnIoStmt(source);
},
[&](const common::Indirection<parser::OpenStmt> &x) {
WarnOnIoStmt(source);
},
[&](const common::Indirection<parser::ReadStmt> &x) {
WarnIfNotInternal(x.value(), source);
},
[&](const common::Indirection<parser::InquireStmt> &x) {
WarnOnIoStmt(source);
},
[&](const common::Indirection<parser::RewindStmt> &x) {
WarnOnIoStmt(source);
},
[&](const common::Indirection<parser::BackspaceStmt> &x) {
WarnOnIoStmt(source);
},
[&](const common::Indirection<parser::IfStmt> &x) {
Check(x.value());
},
[&](const common::Indirection<parser::AssignmentStmt> &x) {
if (const evaluate::Assignment *
assign{semantics::GetAssignment(x.value())}) {
ErrorIfHostSymbol(assign->lhs, source);
ErrorIfHostSymbol(assign->rhs, source);
}
if (auto msg{ActionStmtChecker<IsCUFKernelDo>::WhyNotOk(
context_, x)}) {
context_.Say(source, std::move(*msg));
}
},
[&](const auto &x) {
if (auto msg{ActionStmtChecker<IsCUFKernelDo>::WhyNotOk(
context_, x)}) {
context_.Say(source, std::move(*msg));
}
},
},
stmt.u);
}
void Check(const parser::IfConstruct &ic) {
const auto &ifS{std::get<parser::Statement<parser::IfThenStmt>>(ic.t)};
CheckUnwrappedExpr(context_, ifS.source,
std::get<parser::ScalarLogicalExpr>(ifS.statement.t));
Check(std::get<parser::Block>(ic.t));
for (const auto &eib :
std::get<std::list<parser::IfConstruct::ElseIfBlock>>(ic.t)) {
const auto &eIfS{std::get<parser::Statement<parser::ElseIfStmt>>(eib.t)};
CheckUnwrappedExpr(context_, eIfS.source,
std::get<parser::ScalarLogicalExpr>(eIfS.statement.t));
Check(std::get<parser::Block>(eib.t));
}
if (const auto &eb{
std::get<std::optional<parser::IfConstruct::ElseBlock>>(ic.t)}) {
Check(std::get<parser::Block>(eb->t));
}
}
void Check(const parser::IfStmt &is) {
const auto &uS{
std::get<parser::UnlabeledStatement<parser::ActionStmt>>(is.t)};
CheckUnwrappedExpr(
context_, uS.source, std::get<parser::ScalarLogicalExpr>(is.t));
Check(uS.statement, uS.source);
}
void Check(const parser::LoopControl::Bounds &bounds) {
Check(bounds.lower);
Check(bounds.upper);
if (bounds.step) {
Check(*bounds.step);
}
}
void Check(const parser::LoopControl::Concurrent &x) {
const auto &header{std::get<parser::ConcurrentHeader>(x.t)};
for (const auto &cc :
std::get<std::list<parser::ConcurrentControl>>(header.t)) {
Check(std::get<1>(cc.t));
Check(std::get<2>(cc.t));
if (const auto &step{
std::get<std::optional<parser::ScalarIntExpr>>(cc.t)}) {
Check(*step);
}
}
if (const auto &mask{
std::get<std::optional<parser::ScalarLogicalExpr>>(header.t)}) {
Check(*mask);
}
}
void Check(const parser::ScalarLogicalExpr &x) {
Check(DEREF(parser::Unwrap<parser::Expr>(x)));
}
void Check(const parser::ScalarIntExpr &x) {
Check(DEREF(parser::Unwrap<parser::Expr>(x)));
}
void Check(const parser::ScalarExpr &x) {
Check(DEREF(parser::Unwrap<parser::Expr>(x)));
}
void Check(const parser::Expr &expr) {
if (MaybeMsg msg{DeviceExprChecker{context_}(expr.typedExpr)}) {
context_.Say(expr.source, std::move(*msg));
}
}
SemanticsContext &context_;
bool isHostDevice{false};
};
void CUDAChecker::Enter(const parser::SubroutineSubprogram &x) {
DeviceContextChecker<false>{context_}.CheckSubprogram(
std::get<parser::Name>(
std::get<parser::Statement<parser::SubroutineStmt>>(x.t).statement.t),
std::get<parser::ExecutionPart>(x.t).v);
}
void CUDAChecker::Enter(const parser::FunctionSubprogram &x) {
DeviceContextChecker<false>{context_}.CheckSubprogram(
std::get<parser::Name>(
std::get<parser::Statement<parser::FunctionStmt>>(x.t).statement.t),
std::get<parser::ExecutionPart>(x.t).v);
}
void CUDAChecker::Enter(const parser::SeparateModuleSubprogram &x) {
DeviceContextChecker<false>{context_}.CheckSubprogram(
std::get<parser::Statement<parser::MpSubprogramStmt>>(x.t).statement.v,
std::get<parser::ExecutionPart>(x.t).v);
}
// !$CUF KERNEL DO semantic checks
static int DoConstructTightNesting(
const parser::DoConstruct *doConstruct, const parser::Block *&innerBlock) {
if (!doConstruct ||
(!doConstruct->IsDoNormal() && !doConstruct->IsDoConcurrent())) {
return 0;
}
innerBlock = &std::get<parser::Block>(doConstruct->t);
if (doConstruct->IsDoConcurrent()) {
const auto &loopControl = doConstruct->GetLoopControl();
if (loopControl) {
if (const auto *concurrentControl{
std::get_if<parser::LoopControl::Concurrent>(&loopControl->u)}) {
const auto &concurrentHeader =
std::get<Fortran::parser::ConcurrentHeader>(concurrentControl->t);
const auto &controls =
std::get<std::list<Fortran::parser::ConcurrentControl>>(
concurrentHeader.t);
return controls.size();
}
}
return 0;
}
if (innerBlock->size() == 1) {
if (const auto *execConstruct{
std::get_if<parser::ExecutableConstruct>(&innerBlock->front().u)}) {
if (const auto *next{
std::get_if<common::Indirection<parser::DoConstruct>>(
&execConstruct->u)}) {
return 1 + DoConstructTightNesting(&next->value(), innerBlock);
}
}
}
return 1;
}
static void CheckReduce(
SemanticsContext &context, const parser::CUFReduction &reduce) {
auto op{std::get<parser::CUFReduction::Operator>(reduce.t).v};
for (const auto &var :
std::get<std::list<parser::Scalar<parser::Variable>>>(reduce.t)) {
if (const auto &typedExprPtr{var.thing.typedExpr};
typedExprPtr && typedExprPtr->v) {
const auto &expr{*typedExprPtr->v};
if (auto type{expr.GetType()}) {
auto cat{type->category()};
bool isOk{false};
switch (op) {
case parser::ReductionOperator::Operator::Plus:
case parser::ReductionOperator::Operator::Multiply:
case parser::ReductionOperator::Operator::Max:
case parser::ReductionOperator::Operator::Min:
isOk = cat == TypeCategory::Integer || cat == TypeCategory::Real ||
cat == TypeCategory::Complex;
break;
case parser::ReductionOperator::Operator::Iand:
case parser::ReductionOperator::Operator::Ior:
case parser::ReductionOperator::Operator::Ieor:
isOk = cat == TypeCategory::Integer;
break;
case parser::ReductionOperator::Operator::And:
case parser::ReductionOperator::Operator::Or:
case parser::ReductionOperator::Operator::Eqv:
case parser::ReductionOperator::Operator::Neqv:
isOk = cat == TypeCategory::Logical;
break;
}
if (!isOk) {
context.Say(var.thing.GetSource(),
"!$CUF KERNEL DO REDUCE operation is not acceptable for a variable with type %s"_err_en_US,
type->AsFortran());
}
}
}
}
}
void CUDAChecker::Enter(const parser::CUFKernelDoConstruct &x) {
auto source{std::get<parser::CUFKernelDoConstruct::Directive>(x.t).source};
const auto &directive{std::get<parser::CUFKernelDoConstruct::Directive>(x.t)};
std::int64_t depth{1};
if (auto expr{AnalyzeExpr(context_,
std::get<std::optional<parser::ScalarIntConstantExpr>>(
directive.t))}) {
depth = evaluate::ToInt64(expr).value_or(0);
if (depth <= 0) {
context_.Say(source,
"!$CUF KERNEL DO (%jd): loop nesting depth must be positive"_err_en_US,
std::intmax_t{depth});
depth = 1;
}
}
const parser::DoConstruct *doConstruct{common::GetPtrFromOptional(
std::get<std::optional<parser::DoConstruct>>(x.t))};
const parser::Block *innerBlock{nullptr};
if (DoConstructTightNesting(doConstruct, innerBlock) < depth) {
if (doConstruct && doConstruct->IsDoConcurrent())
context_.Say(source,
"!$CUF KERNEL DO (%jd) must be followed by a DO CONCURRENT construct with at least %jd indices"_err_en_US,
std::intmax_t{depth}, std::intmax_t{depth});
else
context_.Say(source,
"!$CUF KERNEL DO (%jd) must be followed by a DO construct with tightly nested outer levels of counted DO loops"_err_en_US,
std::intmax_t{depth});
}
if (innerBlock) {
DeviceContextChecker<true>{context_}.Check(*innerBlock);
}
for (const auto &reduce :
std::get<std::list<parser::CUFReduction>>(directive.t)) {
CheckReduce(context_, reduce);
}
++deviceConstructDepth_;
}
static bool IsOpenACCComputeConstruct(const parser::OpenACCBlockConstruct &x) {
const auto &beginBlockDirective =
std::get<Fortran::parser::AccBeginBlockDirective>(x.t);
const auto &blockDirective =
std::get<Fortran::parser::AccBlockDirective>(beginBlockDirective.t);
if (blockDirective.v == llvm::acc::ACCD_parallel ||
blockDirective.v == llvm::acc::ACCD_serial ||
blockDirective.v == llvm::acc::ACCD_kernels) {
return true;
}
return false;
}
void CUDAChecker::Leave(const parser::CUFKernelDoConstruct &) {
--deviceConstructDepth_;
}
void CUDAChecker::Enter(const parser::OpenACCBlockConstruct &x) {
if (IsOpenACCComputeConstruct(x)) {
++deviceConstructDepth_;
}
}
void CUDAChecker::Leave(const parser::OpenACCBlockConstruct &x) {
if (IsOpenACCComputeConstruct(x)) {
--deviceConstructDepth_;
}
}
void CUDAChecker::Enter(const parser::OpenACCCombinedConstruct &) {
++deviceConstructDepth_;
}
void CUDAChecker::Leave(const parser::OpenACCCombinedConstruct &) {
--deviceConstructDepth_;
}
void CUDAChecker::Enter(const parser::OpenACCLoopConstruct &) {
++deviceConstructDepth_;
}
void CUDAChecker::Leave(const parser::OpenACCLoopConstruct &) {
--deviceConstructDepth_;
}
void CUDAChecker::Enter(const parser::DoConstruct &x) {
if (x.IsDoConcurrent() &&
context_.foldingContext().languageFeatures().IsEnabled(
common::LanguageFeature::DoConcurrentOffload)) {
++deviceConstructDepth_;
}
}
void CUDAChecker::Leave(const parser::DoConstruct &x) {
if (x.IsDoConcurrent() &&
context_.foldingContext().languageFeatures().IsEnabled(
common::LanguageFeature::DoConcurrentOffload)) {
--deviceConstructDepth_;
}
}
void CUDAChecker::Enter(const parser::AssignmentStmt &x) {
auto lhsLoc{std::get<parser::Variable>(x.t).GetSource()};
const auto &scope{context_.FindScope(lhsLoc)};
const Scope &progUnit{GetProgramUnitContaining(scope)};
if (IsCUDADeviceContext(&progUnit) || deviceConstructDepth_ > 0) {
return; // Data transfer with assignment is only perform on host.
}
const evaluate::Assignment *assign{semantics::GetAssignment(x)};
if (!assign) {
return;
}
int nbLhs{evaluate::GetNbOfCUDADeviceSymbols(assign->lhs)};
int nbRhs{evaluate::GetNbOfCUDADeviceSymbols(assign->rhs)};
// device to host transfer with more than one device object on the rhs is not
// legal.
if (nbLhs == 0 && nbRhs > 1) {
context_.Say(lhsLoc,
"More than one reference to a CUDA object on the right hand side of the assignment"_err_en_US);
}
if (evaluate::HasCUDADeviceAttrs(assign->lhs) &&
evaluate::HasCUDAImplicitTransfer(assign->rhs)) {
if (GetNbOfCUDAManagedOrUnifiedSymbols(assign->lhs) == 1 &&
GetNbOfCUDAManagedOrUnifiedSymbols(assign->rhs) == 1 && nbRhs == 1) {
return; // This is a special case handled on the host.
}
context_.Say(lhsLoc, "Unsupported CUDA data transfer"_err_en_US);
}
}
} // namespace Fortran::semantics