llvm-project/flang/lib/Lower/Mangler.cpp
Carlos Seo 89e4d9f905
[Flang] Fix crash with parametrized derived types usage (#150289)
The current mangleName implementation doesn't take a FoldingContext,
which prevents the proper evaluation of expressions containing parameter
references to an integer constant. Since parametrized derived types are
not yet implemented, the compiler will crash there in some cases (see
example in issue #127424).

This is a workaround so that doesn't happen until the feature is
properly implemented.

Fixes #127424
2025-08-01 11:20:09 -03:00

315 lines
14 KiB
C++

//===-- Mangler.cpp -------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "flang/Lower/Mangler.h"
#include "flang/Common/reference.h"
#include "flang/Lower/Support/Utils.h"
#include "flang/Optimizer/Builder/Todo.h"
#include "flang/Optimizer/Dialect/FIRType.h"
#include "flang/Optimizer/Support/InternalNames.h"
#include "flang/Semantics/tools.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/Support/MD5.h"
/// Return all ancestor module and submodule scope names; all host procedure
/// and statement function scope names; and the innermost blockId containing
/// \p scope, including scope itself.
static std::tuple<llvm::SmallVector<llvm::StringRef>,
llvm::SmallVector<llvm::StringRef>, std::int64_t>
ancestors(const Fortran::semantics::Scope &scope,
Fortran::lower::mangle::ScopeBlockIdMap &scopeBlockIdMap) {
llvm::SmallVector<const Fortran::semantics::Scope *> scopes;
for (auto *scp = &scope; !scp->IsGlobal(); scp = &scp->parent())
scopes.push_back(scp);
llvm::SmallVector<llvm::StringRef> modules;
llvm::SmallVector<llvm::StringRef> procs;
std::int64_t blockId = 0;
for (auto iter = scopes.rbegin(), rend = scopes.rend(); iter != rend;
++iter) {
auto *scp = *iter;
switch (scp->kind()) {
case Fortran::semantics::Scope::Kind::Module:
modules.emplace_back(toStringRef(scp->symbol()->name()));
break;
case Fortran::semantics::Scope::Kind::Subprogram:
procs.emplace_back(toStringRef(scp->symbol()->name()));
break;
case Fortran::semantics::Scope::Kind::MainProgram:
// Do not use the main program name, if any, because it may collide
// with a procedure of the same name in another compilation unit.
// This is nonconformant, but universally allowed.
procs.emplace_back(llvm::StringRef(""));
break;
case Fortran::semantics::Scope::Kind::BlockConstruct: {
auto it = scopeBlockIdMap.find(scp);
assert(it != scopeBlockIdMap.end() && it->second &&
"invalid block identifier");
blockId = it->second;
} break;
default:
break;
}
}
return {modules, procs, blockId};
}
/// Return all ancestor module and submodule scope names; all host procedure
/// and statement function scope names; and the innermost blockId containing
/// \p symbol.
static std::tuple<llvm::SmallVector<llvm::StringRef>,
llvm::SmallVector<llvm::StringRef>, std::int64_t>
ancestors(const Fortran::semantics::Symbol &symbol,
Fortran::lower::mangle::ScopeBlockIdMap &scopeBlockIdMap) {
return ancestors(symbol.owner(), scopeBlockIdMap);
}
/// Return a globally unique string for a compiler generated \p name.
std::string
Fortran::lower::mangle::mangleName(std::string &name,
const Fortran::semantics::Scope &scope,
ScopeBlockIdMap &scopeBlockIdMap) {
llvm::SmallVector<llvm::StringRef> modules;
llvm::SmallVector<llvm::StringRef> procs;
std::int64_t blockId;
std::tie(modules, procs, blockId) = ancestors(scope, scopeBlockIdMap);
return fir::NameUniquer::doGenerated(modules, procs, blockId, name);
}
// Mangle the name of \p symbol to make it globally unique.
std::string Fortran::lower::mangle::mangleName(
const Fortran::semantics::Symbol &symbol, ScopeBlockIdMap &scopeBlockIdMap,
bool keepExternalInScope, bool underscoring) {
// Resolve module and host associations before mangling.
const auto &ultimateSymbol = symbol.GetUltimate();
// The Fortran and BIND(C) namespaces are counterintuitive. A BIND(C) name is
// substituted early, and has precedence over the Fortran name. This allows
// multiple procedures or objects with identical Fortran names to legally
// coexist. The BIND(C) name is unique.
if (auto *overrideName = ultimateSymbol.GetBindName())
return *overrideName;
llvm::StringRef symbolName = toStringRef(ultimateSymbol.name());
llvm::SmallVector<llvm::StringRef> modules;
llvm::SmallVector<llvm::StringRef> procs;
std::int64_t blockId;
// mangle ObjectEntityDetails or AssocEntityDetails symbols.
auto mangleObject = [&]() -> std::string {
std::tie(modules, procs, blockId) =
ancestors(ultimateSymbol, scopeBlockIdMap);
if (Fortran::semantics::IsNamedConstant(ultimateSymbol))
return fir::NameUniquer::doConstant(modules, procs, blockId, symbolName);
return fir::NameUniquer::doVariable(modules, procs, blockId, symbolName);
};
return Fortran::common::visit(
Fortran::common::visitors{
[&](const Fortran::semantics::MainProgramDetails &) {
return fir::NameUniquer::doProgramEntry().str();
},
[&](const Fortran::semantics::SubprogramDetails &subpDetails) {
// Mangle external procedure without any scope prefix.
if (!keepExternalInScope &&
Fortran::semantics::IsExternal(ultimateSymbol))
return fir::NameUniquer::doProcedure({}, {}, symbolName);
// A separate module procedure must be mangled according to its
// declaration scope, not its definition scope.
const Fortran::semantics::Symbol *interface = &ultimateSymbol;
if (interface->attrs().test(Fortran::semantics::Attr::MODULE) &&
interface->owner().IsSubmodule() && !subpDetails.isInterface())
interface = subpDetails.moduleInterface();
std::tie(modules, procs, blockId) = ancestors(
interface ? *interface : ultimateSymbol, scopeBlockIdMap);
return fir::NameUniquer::doProcedure(modules, procs, symbolName);
},
[&](const Fortran::semantics::ProcEntityDetails &) {
// Mangle procedure pointers and dummy procedures as variables.
if (Fortran::semantics::IsPointer(ultimateSymbol) ||
Fortran::semantics::IsDummy(ultimateSymbol)) {
std::tie(modules, procs, blockId) =
ancestors(ultimateSymbol, scopeBlockIdMap);
return fir::NameUniquer::doVariable(modules, procs, blockId,
symbolName);
}
// Otherwise, this is an external procedure, with or without an
// explicit EXTERNAL attribute. Mangle it without any prefix.
return fir::NameUniquer::doProcedure({}, {}, symbolName);
},
[&](const Fortran::semantics::ObjectEntityDetails &) {
return mangleObject();
},
[&](const Fortran::semantics::AssocEntityDetails &) {
return mangleObject();
},
[&](const Fortran::semantics::NamelistDetails &) {
std::tie(modules, procs, blockId) =
ancestors(ultimateSymbol, scopeBlockIdMap);
return fir::NameUniquer::doNamelistGroup(modules, procs,
symbolName);
},
[&](const Fortran::semantics::CommonBlockDetails &) {
return Fortran::semantics::GetCommonBlockObjectName(ultimateSymbol,
underscoring);
},
[&](const Fortran::semantics::ProcBindingDetails &procBinding) {
return mangleName(procBinding.symbol(), scopeBlockIdMap,
keepExternalInScope, underscoring);
},
[&](const Fortran::semantics::GenericDetails &generic)
-> std::string {
if (generic.specific())
return mangleName(*generic.specific(), scopeBlockIdMap,
keepExternalInScope, underscoring);
else
llvm::report_fatal_error(
"attempt to mangle a generic name but "
"it has no specific procedure of the same name");
},
[&](const Fortran::semantics::DerivedTypeDetails &) -> std::string {
// Derived type mangling must use mangleName(DerivedTypeSpec) so
// that kind type parameter values can be mangled.
llvm::report_fatal_error(
"only derived type instances can be mangled");
},
[](const auto &) -> std::string { TODO_NOLOC("symbol mangling"); },
},
ultimateSymbol.details());
}
std::string
Fortran::lower::mangle::mangleName(const Fortran::semantics::Symbol &symbol,
bool keepExternalInScope,
bool underscoring) {
assert((symbol.owner().kind() !=
Fortran::semantics::Scope::Kind::BlockConstruct ||
symbol.has<Fortran::semantics::SubprogramDetails>() ||
Fortran::semantics::IsBindCProcedure(symbol)) &&
"block object mangling must specify a scopeBlockIdMap");
ScopeBlockIdMap scopeBlockIdMap;
return mangleName(symbol, scopeBlockIdMap, keepExternalInScope, underscoring);
}
std::string Fortran::lower::mangle::mangleName(
const Fortran::semantics::DerivedTypeSpec &derivedType,
ScopeBlockIdMap &scopeBlockIdMap) {
// Resolve module and host associations before mangling.
const Fortran::semantics::Symbol &ultimateSymbol =
derivedType.typeSymbol().GetUltimate();
llvm::StringRef symbolName = toStringRef(ultimateSymbol.name());
llvm::SmallVector<llvm::StringRef> modules;
llvm::SmallVector<llvm::StringRef> procs;
std::int64_t blockId;
std::tie(modules, procs, blockId) =
ancestors(ultimateSymbol, scopeBlockIdMap);
llvm::SmallVector<std::int64_t> kinds;
for (const auto &param :
Fortran::semantics::OrderParameterDeclarations(ultimateSymbol)) {
const auto &paramDetails =
param->get<Fortran::semantics::TypeParamDetails>();
if (paramDetails.attr() == Fortran::common::TypeParamAttr::Kind) {
const Fortran::semantics::ParamValue *paramValue =
derivedType.FindParameter(param->name());
assert(paramValue && "derived type kind parameter value not found");
const Fortran::semantics::MaybeIntExpr paramExpr =
paramValue->GetExplicit();
assert(paramExpr && "derived type kind param not explicit");
std::optional<int64_t> init =
Fortran::evaluate::ToInt64(paramValue->GetExplicit());
// TODO: put the assertion check back when parametrized derived types
// are supported:
// assert(init && "derived type kind param is not constant");
//
// The init parameter above will require a FoldingContext for proper
// expression evaluation to an integer constant, otherwise the
// compiler may crash here (see example in issue #127424).
if (!init) {
TODO_NOLOC("parameterized derived types");
} else {
kinds.emplace_back(*init);
}
}
}
return fir::NameUniquer::doType(modules, procs, blockId, symbolName, kinds);
}
std::string Fortran::lower::mangle::getRecordTypeFieldName(
const Fortran::semantics::Symbol &component,
ScopeBlockIdMap &scopeBlockIdMap) {
if (!component.attrs().test(Fortran::semantics::Attr::PRIVATE))
return component.name().ToString();
const Fortran::semantics::DerivedTypeSpec *componentParentType =
component.owner().derivedTypeSpec();
assert(componentParentType &&
"failed to retrieve private component parent type");
// Do not mangle Iso C C_PTR and C_FUNPTR components. This type cannot be
// extended as per Fortran 2018 7.5.7.1, mangling them makes the IR unreadable
// when using ISO C modules, and lowering needs to know the component way
// without access to semantics::Symbol.
if (Fortran::semantics::IsIsoCType(componentParentType))
return component.name().ToString();
return mangleName(*componentParentType, scopeBlockIdMap) + "." +
component.name().ToString();
}
std::string Fortran::lower::mangle::demangleName(llvm::StringRef name) {
auto result = fir::NameUniquer::deconstruct(name);
return result.second.name;
}
//===----------------------------------------------------------------------===//
// Array Literals Mangling
//===----------------------------------------------------------------------===//
static std::string typeToString(Fortran::common::TypeCategory cat, int kind,
llvm::StringRef derivedName) {
switch (cat) {
case Fortran::common::TypeCategory::Integer:
return "i" + std::to_string(kind);
case Fortran::common::TypeCategory::Unsigned:
return "u" + std::to_string(kind);
case Fortran::common::TypeCategory::Real:
return "r" + std::to_string(kind);
case Fortran::common::TypeCategory::Complex:
return "z" + std::to_string(kind);
case Fortran::common::TypeCategory::Logical:
return "l" + std::to_string(kind);
case Fortran::common::TypeCategory::Character:
return "c" + std::to_string(kind);
case Fortran::common::TypeCategory::Derived:
return derivedName.str();
}
llvm_unreachable("bad TypeCategory");
}
std::string Fortran::lower::mangle::mangleArrayLiteral(
size_t size, const Fortran::evaluate::ConstantSubscripts &shape,
Fortran::common::TypeCategory cat, int kind,
Fortran::common::ConstantSubscript charLen, llvm::StringRef derivedName) {
std::string typeId;
for (Fortran::evaluate::ConstantSubscript extent : shape)
typeId.append(std::to_string(extent)).append("x");
if (charLen >= 0)
typeId.append(std::to_string(charLen)).append("x");
typeId.append(typeToString(cat, kind, derivedName));
std::string name =
fir::NameUniquer::doGenerated("ro."s.append(typeId).append("."));
if (!size)
name += "null.";
return name;
}
std::string Fortran::lower::mangle::globalNamelistDescriptorName(
const Fortran::semantics::Symbol &sym) {
std::string name = mangleName(sym);
return IsAllocatableOrObjectPointer(&sym) ? name : name + ".desc"s;
}