llvm-project/bolt/lib/Core/FunctionLayout.cpp
Fabian Parzefall 7e254818e4 [BOLT] Track fragment info for all split fragments
To generate all symbols correctly, it is necessary to record the address
of each fragment. This patch moves the address info for the main and
cold fragments from BinaryFunction to FunctionFragment, where this data
is recorded for all fragments.

Reviewed By: rafauler

Differential Revision: https://reviews.llvm.org/D132051
2022-08-24 10:17:17 -07:00

255 lines
7.7 KiB
C++

#include "bolt/Core/FunctionLayout.h"
#include "bolt/Core/BinaryFunction.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/edit_distance.h"
#include <algorithm>
#include <cstddef>
#include <functional>
#include <iterator>
#include <memory>
using namespace llvm;
using namespace bolt;
FunctionFragment::FunctionFragment(FunctionLayout &Layout,
const FragmentNum Num)
: Layout(&Layout), Num(Num), StartIndex(Layout.block_size()) {}
FunctionFragment::iterator FunctionFragment::begin() {
return iterator(Layout->block_begin() + StartIndex);
}
FunctionFragment::const_iterator FunctionFragment::begin() const {
return const_iterator(Layout->block_begin() + StartIndex);
}
FunctionFragment::iterator FunctionFragment::end() {
return iterator(Layout->block_begin() + StartIndex + Size);
}
FunctionFragment::const_iterator FunctionFragment::end() const {
return const_iterator(Layout->block_begin() + StartIndex + Size);
}
const BinaryBasicBlock *FunctionFragment::front() const { return *begin(); }
FunctionLayout::FunctionLayout() { addFragment(); }
FunctionLayout::FunctionLayout(const FunctionLayout &Other)
: Blocks(Other.Blocks) {
for (FunctionFragment *const FF : Other.Fragments) {
auto *Copy = new FunctionFragment(*FF);
Copy->Layout = this;
Fragments.emplace_back(Copy);
}
}
FunctionLayout::FunctionLayout(FunctionLayout &&Other)
: Fragments(std::move(Other.Fragments)), Blocks(std::move(Other.Blocks)) {
for (FunctionFragment *const F : Fragments)
F->Layout = this;
}
FunctionLayout &FunctionLayout::operator=(const FunctionLayout &Other) {
Blocks = Other.Blocks;
for (FunctionFragment *const FF : Other.Fragments) {
auto *const Copy = new FunctionFragment(*FF);
Copy->Layout = this;
Fragments.emplace_back(Copy);
}
return *this;
}
FunctionLayout &FunctionLayout::operator=(FunctionLayout &&Other) {
Fragments = std::move(Other.Fragments);
Blocks = std::move(Other.Blocks);
for (FunctionFragment *const FF : Fragments)
FF->Layout = this;
return *this;
}
FunctionLayout::~FunctionLayout() {
for (FunctionFragment *const F : Fragments) {
delete F;
}
}
FunctionFragment &FunctionLayout::addFragment() {
FunctionFragment *const FF =
new FunctionFragment(*this, FragmentNum(Fragments.size()));
Fragments.emplace_back(FF);
return *FF;
}
FunctionFragment &FunctionLayout::getFragment(FragmentNum Num) {
return *Fragments[Num.get()];
}
const FunctionFragment &FunctionLayout::getFragment(FragmentNum Num) const {
return *Fragments[Num.get()];
}
const FunctionFragment &
FunctionLayout::findFragment(const BinaryBasicBlock *const BB) const {
return getFragment(BB->getFragmentNum());
}
void FunctionLayout::addBasicBlock(BinaryBasicBlock *const BB) {
BB->setLayoutIndex(Blocks.size());
Blocks.emplace_back(BB);
Fragments.back()->Size++;
}
void FunctionLayout::insertBasicBlocks(
const BinaryBasicBlock *const InsertAfter,
const ArrayRef<BinaryBasicBlock *> NewBlocks) {
block_iterator InsertBeforePos = Blocks.begin();
FragmentNum InsertFragmentNum = FragmentNum::main();
unsigned LayoutIndex = 0;
if (InsertAfter) {
InsertBeforePos = std::next(findBasicBlockPos(InsertAfter));
InsertFragmentNum = InsertAfter->getFragmentNum();
LayoutIndex = InsertAfter->getLayoutIndex();
}
llvm::copy(NewBlocks, std::inserter(Blocks, InsertBeforePos));
for (BinaryBasicBlock *const BB : NewBlocks) {
BB->setFragmentNum(InsertFragmentNum);
BB->setLayoutIndex(LayoutIndex++);
}
const fragment_iterator InsertFragment =
fragment_begin() + InsertFragmentNum.get();
InsertFragment->Size += NewBlocks.size();
const fragment_iterator TailBegin = std::next(InsertFragment);
auto const UpdateFragment = [&](FunctionFragment &FF) {
FF.StartIndex += NewBlocks.size();
for (BinaryBasicBlock *const BB : FF)
BB->setLayoutIndex(LayoutIndex++);
};
std::for_each(TailBegin, fragment_end(), UpdateFragment);
}
void FunctionLayout::eraseBasicBlocks(
const DenseSet<const BinaryBasicBlock *> ToErase) {
const auto IsErased = [&](const BinaryBasicBlock *const BB) {
return ToErase.contains(BB);
};
unsigned TotalErased = 0;
for (FunctionFragment &FF : fragments()) {
unsigned Erased = count_if(FF, IsErased);
FF.Size -= Erased;
FF.StartIndex -= TotalErased;
TotalErased += Erased;
}
llvm::erase_if(Blocks, IsErased);
// Remove empty fragments at the end
const auto IsEmpty = [](const FunctionFragment *const FF) {
return FF->empty();
};
const FragmentListType::iterator EmptyTailBegin =
llvm::find_if_not(reverse(Fragments), IsEmpty).base();
std::for_each(EmptyTailBegin, Fragments.end(),
[](FunctionFragment *const FF) { delete FF; });
Fragments.erase(EmptyTailBegin, Fragments.end());
updateLayoutIndices();
}
void FunctionLayout::updateLayoutIndices() {
unsigned BlockIndex = 0;
for (FunctionFragment &FF : fragments()) {
for (BinaryBasicBlock *const BB : FF) {
BB->setLayoutIndex(BlockIndex++);
BB->setFragmentNum(FF.getFragmentNum());
}
}
}
bool FunctionLayout::update(const ArrayRef<BinaryBasicBlock *> NewLayout) {
const bool EqualBlockOrder = llvm::equal(Blocks, NewLayout);
if (EqualBlockOrder) {
const bool EqualPartitioning =
llvm::all_of(fragments(), [](const FunctionFragment &FF) {
return llvm::all_of(FF, [&](const BinaryBasicBlock *const BB) {
return FF.Num == BB->getFragmentNum();
});
});
if (EqualPartitioning)
return false;
}
clear();
// Generate fragments
for (BinaryBasicBlock *const BB : NewLayout) {
FragmentNum Num = BB->getFragmentNum();
assert(Num >= Fragments.back()->getFragmentNum() &&
"Blocks must be arranged such that fragments are monotonically "
"increasing.");
// Add empty fragments if necessary
while (Fragments.back()->getFragmentNum() < Num)
addFragment();
// Set the next fragment to point one past the current BB
addBasicBlock(BB);
}
return true;
}
void FunctionLayout::clear() {
Blocks = BasicBlockListType();
// If the binary does not have relocations and is not split, the function will
// be written to the output stream at its original file offset (see
// `RewriteInstance::rewriteFile`). Hence, when the layout is cleared, retain
// the main fragment, so that this information is not lost.
std::for_each(Fragments.begin() + 1, Fragments.end(),
[](FunctionFragment *const FF) { delete FF; });
Fragments = FragmentListType{Fragments.front()};
getMainFragment().Size = 0;
}
const BinaryBasicBlock *
FunctionLayout::getBasicBlockAfter(const BinaryBasicBlock *BB,
bool IgnoreSplits) const {
const block_const_iterator BBPos = find(blocks(), BB);
if (BBPos == block_end())
return nullptr;
const block_const_iterator BlockAfter = std::next(BBPos);
if (BlockAfter == block_end())
return nullptr;
if (!IgnoreSplits)
if (BlockAfter == getFragment(BB->getFragmentNum()).end())
return nullptr;
return *BlockAfter;
}
bool FunctionLayout::isSplit() const {
const unsigned NonEmptyFragCount = llvm::count_if(
fragments(), [](const FunctionFragment &FF) { return !FF.empty(); });
return NonEmptyFragCount >= 2;
}
uint64_t FunctionLayout::getEditDistance(
const ArrayRef<const BinaryBasicBlock *> OldBlockOrder) const {
return ComputeEditDistance<const BinaryBasicBlock *>(OldBlockOrder, Blocks);
}
FunctionLayout::block_const_iterator
FunctionLayout::findBasicBlockPos(const BinaryBasicBlock *BB) const {
return block_const_iterator(find(Blocks, BB));
}
FunctionLayout::block_iterator
FunctionLayout::findBasicBlockPos(const BinaryBasicBlock *BB) {
return find(Blocks, BB);
}