
The initial VPlan closely reflects the original scalar loop, so unsing VPWidenPHIRecipe here is premature. Widened phi recipes should only be introduced together with other widened recipes. PR: https://github.com/llvm/llvm-project/pull/150847
814 lines
33 KiB
C++
814 lines
33 KiB
C++
//===-- VPlanConstruction.cpp - Transforms for initial VPlan construction -===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
///
|
|
/// \file
|
|
/// This file implements transforms for initial VPlan construction.
|
|
///
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "LoopVectorizationPlanner.h"
|
|
#include "VPlan.h"
|
|
#include "VPlanCFG.h"
|
|
#include "VPlanDominatorTree.h"
|
|
#include "VPlanPatternMatch.h"
|
|
#include "VPlanTransforms.h"
|
|
#include "llvm/Analysis/LoopInfo.h"
|
|
#include "llvm/Analysis/LoopIterator.h"
|
|
#include "llvm/Analysis/ScalarEvolution.h"
|
|
#include "llvm/IR/MDBuilder.h"
|
|
|
|
#define DEBUG_TYPE "vplan"
|
|
|
|
using namespace llvm;
|
|
using namespace VPlanPatternMatch;
|
|
|
|
namespace {
|
|
// Class that is used to build the plain CFG for the incoming IR.
|
|
class PlainCFGBuilder {
|
|
// The outermost loop of the input loop nest considered for vectorization.
|
|
Loop *TheLoop;
|
|
|
|
// Loop Info analysis.
|
|
LoopInfo *LI;
|
|
|
|
// Vectorization plan that we are working on.
|
|
std::unique_ptr<VPlan> Plan;
|
|
|
|
// Builder of the VPlan instruction-level representation.
|
|
VPBuilder VPIRBuilder;
|
|
|
|
// NOTE: The following maps are intentionally destroyed after the plain CFG
|
|
// construction because subsequent VPlan-to-VPlan transformation may
|
|
// invalidate them.
|
|
// Map incoming BasicBlocks to their newly-created VPBasicBlocks.
|
|
DenseMap<BasicBlock *, VPBasicBlock *> BB2VPBB;
|
|
// Map incoming Value definitions to their newly-created VPValues.
|
|
DenseMap<Value *, VPValue *> IRDef2VPValue;
|
|
|
|
// Hold phi node's that need to be fixed once the plain CFG has been built.
|
|
SmallVector<PHINode *, 8> PhisToFix;
|
|
|
|
// Utility functions.
|
|
void setVPBBPredsFromBB(VPBasicBlock *VPBB, BasicBlock *BB);
|
|
void fixHeaderPhis();
|
|
VPBasicBlock *getOrCreateVPBB(BasicBlock *BB);
|
|
#ifndef NDEBUG
|
|
bool isExternalDef(Value *Val);
|
|
#endif
|
|
VPValue *getOrCreateVPOperand(Value *IRVal);
|
|
void createVPInstructionsForVPBB(VPBasicBlock *VPBB, BasicBlock *BB);
|
|
|
|
public:
|
|
PlainCFGBuilder(Loop *Lp, LoopInfo *LI)
|
|
: TheLoop(Lp), LI(LI), Plan(std::make_unique<VPlan>(Lp)) {}
|
|
|
|
/// Build plain CFG for TheLoop and connect it to Plan's entry.
|
|
std::unique_ptr<VPlan> buildPlainCFG();
|
|
};
|
|
} // anonymous namespace
|
|
|
|
// Set predecessors of \p VPBB in the same order as they are in \p BB. \p VPBB
|
|
// must have no predecessors.
|
|
void PlainCFGBuilder::setVPBBPredsFromBB(VPBasicBlock *VPBB, BasicBlock *BB) {
|
|
// Collect VPBB predecessors.
|
|
SmallVector<VPBlockBase *, 2> VPBBPreds;
|
|
for (BasicBlock *Pred : predecessors(BB))
|
|
VPBBPreds.push_back(getOrCreateVPBB(Pred));
|
|
VPBB->setPredecessors(VPBBPreds);
|
|
}
|
|
|
|
static bool isHeaderBB(BasicBlock *BB, Loop *L) {
|
|
return L && BB == L->getHeader();
|
|
}
|
|
|
|
// Add operands to VPInstructions representing phi nodes from the input IR.
|
|
void PlainCFGBuilder::fixHeaderPhis() {
|
|
for (auto *Phi : PhisToFix) {
|
|
assert(IRDef2VPValue.count(Phi) && "Missing VPInstruction for PHINode.");
|
|
VPValue *VPVal = IRDef2VPValue[Phi];
|
|
assert(isa<VPPhi>(VPVal) && "Expected VPPhi for phi node.");
|
|
auto *PhiR = cast<VPPhi>(VPVal);
|
|
assert(PhiR->getNumOperands() == 0 && "Expected VPPhi with no operands.");
|
|
assert(isHeaderBB(Phi->getParent(), LI->getLoopFor(Phi->getParent())) &&
|
|
"Expected Phi in header block.");
|
|
assert(Phi->getNumOperands() == 2 &&
|
|
"header phi must have exactly 2 operands");
|
|
for (BasicBlock *Pred : predecessors(Phi->getParent()))
|
|
PhiR->addOperand(
|
|
getOrCreateVPOperand(Phi->getIncomingValueForBlock(Pred)));
|
|
}
|
|
}
|
|
|
|
// Create a new empty VPBasicBlock for an incoming BasicBlock or retrieve an
|
|
// existing one if it was already created.
|
|
VPBasicBlock *PlainCFGBuilder::getOrCreateVPBB(BasicBlock *BB) {
|
|
if (auto *VPBB = BB2VPBB.lookup(BB)) {
|
|
// Retrieve existing VPBB.
|
|
return VPBB;
|
|
}
|
|
|
|
// Create new VPBB.
|
|
StringRef Name = BB->getName();
|
|
LLVM_DEBUG(dbgs() << "Creating VPBasicBlock for " << Name << "\n");
|
|
VPBasicBlock *VPBB = Plan->createVPBasicBlock(Name);
|
|
BB2VPBB[BB] = VPBB;
|
|
return VPBB;
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
// Return true if \p Val is considered an external definition. An external
|
|
// definition is either:
|
|
// 1. A Value that is not an Instruction. This will be refined in the future.
|
|
// 2. An Instruction that is outside of the IR region represented in VPlan,
|
|
// i.e., is not part of the loop nest.
|
|
bool PlainCFGBuilder::isExternalDef(Value *Val) {
|
|
// All the Values that are not Instructions are considered external
|
|
// definitions for now.
|
|
Instruction *Inst = dyn_cast<Instruction>(Val);
|
|
if (!Inst)
|
|
return true;
|
|
|
|
// Check whether Instruction definition is in loop body.
|
|
return !TheLoop->contains(Inst);
|
|
}
|
|
#endif
|
|
|
|
// Create a new VPValue or retrieve an existing one for the Instruction's
|
|
// operand \p IRVal. This function must only be used to create/retrieve VPValues
|
|
// for *Instruction's operands* and not to create regular VPInstruction's. For
|
|
// the latter, please, look at 'createVPInstructionsForVPBB'.
|
|
VPValue *PlainCFGBuilder::getOrCreateVPOperand(Value *IRVal) {
|
|
auto VPValIt = IRDef2VPValue.find(IRVal);
|
|
if (VPValIt != IRDef2VPValue.end())
|
|
// Operand has an associated VPInstruction or VPValue that was previously
|
|
// created.
|
|
return VPValIt->second;
|
|
|
|
// Operand doesn't have a previously created VPInstruction/VPValue. This
|
|
// means that operand is:
|
|
// A) a definition external to VPlan,
|
|
// B) any other Value without specific representation in VPlan.
|
|
// For now, we use VPValue to represent A and B and classify both as external
|
|
// definitions. We may introduce specific VPValue subclasses for them in the
|
|
// future.
|
|
assert(isExternalDef(IRVal) && "Expected external definition as operand.");
|
|
|
|
// A and B: Create VPValue and add it to the pool of external definitions and
|
|
// to the Value->VPValue map.
|
|
VPValue *NewVPVal = Plan->getOrAddLiveIn(IRVal);
|
|
IRDef2VPValue[IRVal] = NewVPVal;
|
|
return NewVPVal;
|
|
}
|
|
|
|
// Create new VPInstructions in a VPBasicBlock, given its BasicBlock
|
|
// counterpart. This function must be invoked in RPO so that the operands of a
|
|
// VPInstruction in \p BB have been visited before (except for Phi nodes).
|
|
void PlainCFGBuilder::createVPInstructionsForVPBB(VPBasicBlock *VPBB,
|
|
BasicBlock *BB) {
|
|
VPIRBuilder.setInsertPoint(VPBB);
|
|
// TODO: Model and preserve debug intrinsics in VPlan.
|
|
for (Instruction &InstRef : BB->instructionsWithoutDebug(false)) {
|
|
Instruction *Inst = &InstRef;
|
|
|
|
// There shouldn't be any VPValue for Inst at this point. Otherwise, we
|
|
// visited Inst when we shouldn't, breaking the RPO traversal order.
|
|
assert(!IRDef2VPValue.count(Inst) &&
|
|
"Instruction shouldn't have been visited.");
|
|
|
|
if (auto *Br = dyn_cast<BranchInst>(Inst)) {
|
|
// Conditional branch instruction are represented using BranchOnCond
|
|
// recipes.
|
|
if (Br->isConditional()) {
|
|
VPValue *Cond = getOrCreateVPOperand(Br->getCondition());
|
|
VPIRBuilder.createNaryOp(VPInstruction::BranchOnCond, {Cond}, Inst);
|
|
}
|
|
|
|
// Skip the rest of the Instruction processing for Branch instructions.
|
|
continue;
|
|
}
|
|
|
|
if (auto *SI = dyn_cast<SwitchInst>(Inst)) {
|
|
SmallVector<VPValue *> Ops = {getOrCreateVPOperand(SI->getCondition())};
|
|
for (auto Case : SI->cases())
|
|
Ops.push_back(getOrCreateVPOperand(Case.getCaseValue()));
|
|
VPIRBuilder.createNaryOp(Instruction::Switch, Ops, Inst);
|
|
continue;
|
|
}
|
|
|
|
VPSingleDefRecipe *NewR;
|
|
if (auto *Phi = dyn_cast<PHINode>(Inst)) {
|
|
// Phi node's operands may not have been visited at this point. We create
|
|
// an empty VPInstruction that we will fix once the whole plain CFG has
|
|
// been built.
|
|
NewR = VPIRBuilder.createScalarPhi({}, Phi->getDebugLoc(), "vec.phi");
|
|
NewR->setUnderlyingValue(Phi);
|
|
if (isHeaderBB(Phi->getParent(), LI->getLoopFor(Phi->getParent()))) {
|
|
// Header phis need to be fixed after the VPBB for the latch has been
|
|
// created.
|
|
PhisToFix.push_back(Phi);
|
|
} else {
|
|
// Add operands for VPPhi in the order matching its predecessors in
|
|
// VPlan.
|
|
DenseMap<const VPBasicBlock *, VPValue *> VPPredToIncomingValue;
|
|
for (unsigned I = 0; I != Phi->getNumOperands(); ++I) {
|
|
VPPredToIncomingValue[BB2VPBB[Phi->getIncomingBlock(I)]] =
|
|
getOrCreateVPOperand(Phi->getIncomingValue(I));
|
|
}
|
|
for (VPBlockBase *Pred : VPBB->getPredecessors())
|
|
NewR->addOperand(
|
|
VPPredToIncomingValue.lookup(Pred->getExitingBasicBlock()));
|
|
}
|
|
} else {
|
|
// Translate LLVM-IR operands into VPValue operands and set them in the
|
|
// new VPInstruction.
|
|
SmallVector<VPValue *, 4> VPOperands;
|
|
for (Value *Op : Inst->operands())
|
|
VPOperands.push_back(getOrCreateVPOperand(Op));
|
|
|
|
// Build VPInstruction for any arbitrary Instruction without specific
|
|
// representation in VPlan.
|
|
NewR = cast<VPInstruction>(
|
|
VPIRBuilder.createNaryOp(Inst->getOpcode(), VPOperands, Inst));
|
|
}
|
|
|
|
IRDef2VPValue[Inst] = NewR;
|
|
}
|
|
}
|
|
|
|
// Main interface to build the plain CFG.
|
|
std::unique_ptr<VPlan> PlainCFGBuilder::buildPlainCFG() {
|
|
VPIRBasicBlock *Entry = cast<VPIRBasicBlock>(Plan->getEntry());
|
|
BB2VPBB[Entry->getIRBasicBlock()] = Entry;
|
|
for (VPIRBasicBlock *ExitVPBB : Plan->getExitBlocks())
|
|
BB2VPBB[ExitVPBB->getIRBasicBlock()] = ExitVPBB;
|
|
|
|
// 1. Scan the body of the loop in a topological order to visit each basic
|
|
// block after having visited its predecessor basic blocks. Create a VPBB for
|
|
// each BB and link it to its successor and predecessor VPBBs. Note that
|
|
// predecessors must be set in the same order as they are in the incomming IR.
|
|
// Otherwise, there might be problems with existing phi nodes and algorithm
|
|
// based on predecessors traversal.
|
|
|
|
// Loop PH needs to be explicitly visited since it's not taken into account by
|
|
// LoopBlocksDFS.
|
|
BasicBlock *ThePreheaderBB = TheLoop->getLoopPreheader();
|
|
assert((ThePreheaderBB->getTerminator()->getNumSuccessors() == 1) &&
|
|
"Unexpected loop preheader");
|
|
for (auto &I : *ThePreheaderBB) {
|
|
if (I.getType()->isVoidTy())
|
|
continue;
|
|
IRDef2VPValue[&I] = Plan->getOrAddLiveIn(&I);
|
|
}
|
|
|
|
LoopBlocksRPO RPO(TheLoop);
|
|
RPO.perform(LI);
|
|
|
|
for (BasicBlock *BB : RPO) {
|
|
// Create or retrieve the VPBasicBlock for this BB.
|
|
VPBasicBlock *VPBB = getOrCreateVPBB(BB);
|
|
// Set VPBB predecessors in the same order as they are in the incoming BB.
|
|
setVPBBPredsFromBB(VPBB, BB);
|
|
|
|
// Create VPInstructions for BB.
|
|
createVPInstructionsForVPBB(VPBB, BB);
|
|
|
|
// Set VPBB successors. We create empty VPBBs for successors if they don't
|
|
// exist already. Recipes will be created when the successor is visited
|
|
// during the RPO traversal.
|
|
if (auto *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
|
|
SmallVector<VPBlockBase *> Succs = {
|
|
getOrCreateVPBB(SI->getDefaultDest())};
|
|
for (auto Case : SI->cases())
|
|
Succs.push_back(getOrCreateVPBB(Case.getCaseSuccessor()));
|
|
VPBB->setSuccessors(Succs);
|
|
continue;
|
|
}
|
|
auto *BI = cast<BranchInst>(BB->getTerminator());
|
|
unsigned NumSuccs = succ_size(BB);
|
|
if (NumSuccs == 1) {
|
|
VPBB->setOneSuccessor(getOrCreateVPBB(BB->getSingleSuccessor()));
|
|
continue;
|
|
}
|
|
assert(BI->isConditional() && NumSuccs == 2 && BI->isConditional() &&
|
|
"block must have conditional branch with 2 successors");
|
|
|
|
BasicBlock *IRSucc0 = BI->getSuccessor(0);
|
|
BasicBlock *IRSucc1 = BI->getSuccessor(1);
|
|
VPBasicBlock *Successor0 = getOrCreateVPBB(IRSucc0);
|
|
VPBasicBlock *Successor1 = getOrCreateVPBB(IRSucc1);
|
|
VPBB->setTwoSuccessors(Successor0, Successor1);
|
|
}
|
|
|
|
for (auto *EB : Plan->getExitBlocks())
|
|
setVPBBPredsFromBB(EB, EB->getIRBasicBlock());
|
|
|
|
// 2. The whole CFG has been built at this point so all the input Values must
|
|
// have a VPlan counterpart. Fix VPlan header phi by adding their
|
|
// corresponding VPlan operands.
|
|
fixHeaderPhis();
|
|
|
|
Plan->getEntry()->setOneSuccessor(getOrCreateVPBB(TheLoop->getHeader()));
|
|
Plan->getEntry()->setPlan(&*Plan);
|
|
|
|
// Fix VPlan loop-closed-ssa exit phi's by adding incoming operands to the
|
|
// VPIRInstructions wrapping them.
|
|
// // Note that the operand order corresponds to IR predecessor order, and may
|
|
// need adjusting when VPlan predecessors are added, if an exit block has
|
|
// multiple predecessor.
|
|
for (auto *EB : Plan->getExitBlocks()) {
|
|
for (VPRecipeBase &R : EB->phis()) {
|
|
auto *PhiR = cast<VPIRPhi>(&R);
|
|
PHINode &Phi = PhiR->getIRPhi();
|
|
assert(PhiR->getNumOperands() == 0 &&
|
|
"no phi operands should be added yet");
|
|
for (BasicBlock *Pred : predecessors(EB->getIRBasicBlock()))
|
|
PhiR->addOperand(
|
|
getOrCreateVPOperand(Phi.getIncomingValueForBlock(Pred)));
|
|
}
|
|
}
|
|
|
|
LLVM_DEBUG(Plan->setName("Plain CFG\n"); dbgs() << *Plan);
|
|
return std::move(Plan);
|
|
}
|
|
|
|
std::unique_ptr<VPlan> VPlanTransforms::buildPlainCFG(Loop *TheLoop,
|
|
LoopInfo &LI) {
|
|
PlainCFGBuilder Builder(TheLoop, &LI);
|
|
return Builder.buildPlainCFG();
|
|
}
|
|
|
|
/// Checks if \p HeaderVPB is a loop header block in the plain CFG; that is, it
|
|
/// has exactly 2 predecessors (preheader and latch), where the block
|
|
/// dominates the latch and the preheader dominates the block. If it is a
|
|
/// header block return true and canonicalize the predecessors of the header
|
|
/// (making sure the preheader appears first and the latch second) and the
|
|
/// successors of the latch (making sure the loop exit comes first). Otherwise
|
|
/// return false.
|
|
static bool canonicalHeaderAndLatch(VPBlockBase *HeaderVPB,
|
|
const VPDominatorTree &VPDT) {
|
|
ArrayRef<VPBlockBase *> Preds = HeaderVPB->getPredecessors();
|
|
if (Preds.size() != 2)
|
|
return false;
|
|
|
|
auto *PreheaderVPBB = Preds[0];
|
|
auto *LatchVPBB = Preds[1];
|
|
if (!VPDT.dominates(PreheaderVPBB, HeaderVPB) ||
|
|
!VPDT.dominates(HeaderVPB, LatchVPBB)) {
|
|
std::swap(PreheaderVPBB, LatchVPBB);
|
|
|
|
if (!VPDT.dominates(PreheaderVPBB, HeaderVPB) ||
|
|
!VPDT.dominates(HeaderVPB, LatchVPBB))
|
|
return false;
|
|
|
|
// Canonicalize predecessors of header so that preheader is first and
|
|
// latch second.
|
|
HeaderVPB->swapPredecessors();
|
|
for (VPRecipeBase &R : cast<VPBasicBlock>(HeaderVPB)->phis())
|
|
R.swapOperands();
|
|
}
|
|
|
|
// The two successors of conditional branch match the condition, with the
|
|
// first successor corresponding to true and the second to false. We
|
|
// canonicalize the successors of the latch when introducing the region, such
|
|
// that the latch exits the region when its condition is true; invert the
|
|
// original condition if the original CFG branches to the header on true.
|
|
// Note that the exit edge is not yet connected for top-level loops.
|
|
if (LatchVPBB->getSingleSuccessor() ||
|
|
LatchVPBB->getSuccessors()[0] != HeaderVPB)
|
|
return true;
|
|
|
|
assert(LatchVPBB->getNumSuccessors() == 2 && "Must have 2 successors");
|
|
auto *Term = cast<VPBasicBlock>(LatchVPBB)->getTerminator();
|
|
assert(cast<VPInstruction>(Term)->getOpcode() ==
|
|
VPInstruction::BranchOnCond &&
|
|
"terminator must be a BranchOnCond");
|
|
auto *Not = new VPInstruction(VPInstruction::Not, {Term->getOperand(0)});
|
|
Not->insertBefore(Term);
|
|
Term->setOperand(0, Not);
|
|
LatchVPBB->swapSuccessors();
|
|
|
|
return true;
|
|
}
|
|
|
|
/// Create a new VPRegionBlock for the loop starting at \p HeaderVPB.
|
|
static void createLoopRegion(VPlan &Plan, VPBlockBase *HeaderVPB) {
|
|
auto *PreheaderVPBB = HeaderVPB->getPredecessors()[0];
|
|
auto *LatchVPBB = HeaderVPB->getPredecessors()[1];
|
|
|
|
VPBlockUtils::disconnectBlocks(PreheaderVPBB, HeaderVPB);
|
|
VPBlockUtils::disconnectBlocks(LatchVPBB, HeaderVPB);
|
|
VPBlockBase *LatchExitVPB = LatchVPBB->getSingleSuccessor();
|
|
assert(LatchExitVPB && "Latch expected to be left with a single successor");
|
|
|
|
// Create an empty region first and insert it between PreheaderVPBB and
|
|
// LatchExitVPB, taking care to preserve the original predecessor & successor
|
|
// order of blocks. Set region entry and exiting after both HeaderVPB and
|
|
// LatchVPBB have been disconnected from their predecessors/successors.
|
|
auto *R = Plan.createVPRegionBlock();
|
|
VPBlockUtils::insertOnEdge(LatchVPBB, LatchExitVPB, R);
|
|
VPBlockUtils::disconnectBlocks(LatchVPBB, R);
|
|
VPBlockUtils::connectBlocks(PreheaderVPBB, R);
|
|
R->setEntry(HeaderVPB);
|
|
R->setExiting(LatchVPBB);
|
|
|
|
// All VPBB's reachable shallowly from HeaderVPB belong to the current region.
|
|
for (VPBlockBase *VPBB : vp_depth_first_shallow(HeaderVPB))
|
|
VPBB->setParent(R);
|
|
}
|
|
|
|
// Add the necessary canonical IV and branch recipes required to control the
|
|
// loop.
|
|
static void addCanonicalIVRecipes(VPlan &Plan, VPBasicBlock *HeaderVPBB,
|
|
VPBasicBlock *LatchVPBB, Type *IdxTy,
|
|
DebugLoc DL) {
|
|
Value *StartIdx = ConstantInt::get(IdxTy, 0);
|
|
auto *StartV = Plan.getOrAddLiveIn(StartIdx);
|
|
|
|
// Add a VPCanonicalIVPHIRecipe starting at 0 to the header.
|
|
auto *CanonicalIVPHI = new VPCanonicalIVPHIRecipe(StartV, DL);
|
|
HeaderVPBB->insert(CanonicalIVPHI, HeaderVPBB->begin());
|
|
|
|
// We are about to replace the branch to exit the region. Remove the original
|
|
// BranchOnCond, if there is any.
|
|
DebugLoc LatchDL = DL;
|
|
if (!LatchVPBB->empty() &&
|
|
match(&LatchVPBB->back(), m_BranchOnCond(m_VPValue()))) {
|
|
LatchDL = LatchVPBB->getTerminator()->getDebugLoc();
|
|
LatchVPBB->getTerminator()->eraseFromParent();
|
|
}
|
|
|
|
VPBuilder Builder(LatchVPBB);
|
|
// Add a VPInstruction to increment the scalar canonical IV by VF * UF.
|
|
// Initially the induction increment is guaranteed to not wrap, but that may
|
|
// change later, e.g. when tail-folding, when the flags need to be dropped.
|
|
auto *CanonicalIVIncrement = Builder.createOverflowingOp(
|
|
Instruction::Add, {CanonicalIVPHI, &Plan.getVFxUF()}, {true, false}, DL,
|
|
"index.next");
|
|
CanonicalIVPHI->addOperand(CanonicalIVIncrement);
|
|
|
|
// Add the BranchOnCount VPInstruction to the latch.
|
|
Builder.createNaryOp(VPInstruction::BranchOnCount,
|
|
{CanonicalIVIncrement, &Plan.getVectorTripCount()},
|
|
LatchDL);
|
|
}
|
|
|
|
void VPlanTransforms::prepareForVectorization(
|
|
VPlan &Plan, Type *InductionTy, PredicatedScalarEvolution &PSE,
|
|
bool RequiresScalarEpilogueCheck, bool TailFolded, Loop *TheLoop,
|
|
DebugLoc IVDL, bool HasUncountableEarlyExit, VFRange &Range) {
|
|
VPDominatorTree VPDT;
|
|
VPDT.recalculate(Plan);
|
|
|
|
auto *HeaderVPBB = cast<VPBasicBlock>(Plan.getEntry()->getSingleSuccessor());
|
|
canonicalHeaderAndLatch(HeaderVPBB, VPDT);
|
|
auto *LatchVPBB = cast<VPBasicBlock>(HeaderVPBB->getPredecessors()[1]);
|
|
|
|
VPBasicBlock *VecPreheader = Plan.createVPBasicBlock("vector.ph");
|
|
VPBlockUtils::insertBlockAfter(VecPreheader, Plan.getEntry());
|
|
|
|
VPBasicBlock *MiddleVPBB = Plan.createVPBasicBlock("middle.block");
|
|
// The canonical LatchVPBB has the header block as last successor. If it has
|
|
// another successor, this successor is an exit block - insert middle block on
|
|
// its edge. Otherwise, add middle block as another successor retaining header
|
|
// as last.
|
|
if (LatchVPBB->getNumSuccessors() == 2) {
|
|
VPBlockBase *LatchExitVPB = LatchVPBB->getSuccessors()[0];
|
|
VPBlockUtils::insertOnEdge(LatchVPBB, LatchExitVPB, MiddleVPBB);
|
|
} else {
|
|
VPBlockUtils::connectBlocks(LatchVPBB, MiddleVPBB);
|
|
LatchVPBB->swapSuccessors();
|
|
}
|
|
|
|
addCanonicalIVRecipes(Plan, HeaderVPBB, LatchVPBB, InductionTy, IVDL);
|
|
|
|
[[maybe_unused]] bool HandledUncountableEarlyExit = false;
|
|
// Disconnect all early exits from the loop leaving it with a single exit from
|
|
// the latch. Early exits that are countable are left for a scalar epilog. The
|
|
// condition of uncountable early exits (currently at most one is supported)
|
|
// is fused into the latch exit, and used to branch from middle block to the
|
|
// early exit destination.
|
|
for (VPIRBasicBlock *EB : Plan.getExitBlocks()) {
|
|
for (VPBlockBase *Pred : to_vector(EB->getPredecessors())) {
|
|
if (Pred == MiddleVPBB)
|
|
continue;
|
|
if (HasUncountableEarlyExit) {
|
|
assert(!HandledUncountableEarlyExit &&
|
|
"can handle exactly one uncountable early exit");
|
|
handleUncountableEarlyExit(cast<VPBasicBlock>(Pred), EB, Plan,
|
|
HeaderVPBB, LatchVPBB, Range);
|
|
HandledUncountableEarlyExit = true;
|
|
} else {
|
|
for (VPRecipeBase &R : EB->phis())
|
|
cast<VPIRPhi>(&R)->removeIncomingValueFor(Pred);
|
|
}
|
|
cast<VPBasicBlock>(Pred)->getTerminator()->eraseFromParent();
|
|
VPBlockUtils::disconnectBlocks(Pred, EB);
|
|
}
|
|
}
|
|
|
|
assert((!HasUncountableEarlyExit || HandledUncountableEarlyExit) &&
|
|
"missed an uncountable exit that must be handled");
|
|
|
|
// Create SCEV and VPValue for the trip count.
|
|
// We use the symbolic max backedge-taken-count, which works also when
|
|
// vectorizing loops with uncountable early exits.
|
|
const SCEV *BackedgeTakenCountSCEV = PSE.getSymbolicMaxBackedgeTakenCount();
|
|
assert(!isa<SCEVCouldNotCompute>(BackedgeTakenCountSCEV) &&
|
|
"Invalid loop count");
|
|
ScalarEvolution &SE = *PSE.getSE();
|
|
const SCEV *TripCount = SE.getTripCountFromExitCount(BackedgeTakenCountSCEV,
|
|
InductionTy, TheLoop);
|
|
Plan.setTripCount(
|
|
vputils::getOrCreateVPValueForSCEVExpr(Plan, TripCount, SE));
|
|
|
|
VPBasicBlock *ScalarPH = Plan.createVPBasicBlock("scalar.ph");
|
|
VPBlockUtils::connectBlocks(ScalarPH, Plan.getScalarHeader());
|
|
|
|
// The connection order corresponds to the operands of the conditional branch,
|
|
// with the middle block already connected to the exit block.
|
|
VPBlockUtils::connectBlocks(MiddleVPBB, ScalarPH);
|
|
// Also connect the entry block to the scalar preheader.
|
|
// TODO: Also introduce a branch recipe together with the minimum trip count
|
|
// check.
|
|
VPBlockUtils::connectBlocks(Plan.getEntry(), ScalarPH);
|
|
Plan.getEntry()->swapSuccessors();
|
|
|
|
// If MiddleVPBB has a single successor then the original loop does not exit
|
|
// via the latch and the single successor must be the scalar preheader.
|
|
// There's no need to add a runtime check to MiddleVPBB.
|
|
if (MiddleVPBB->getNumSuccessors() == 1) {
|
|
assert(MiddleVPBB->getSingleSuccessor() == ScalarPH &&
|
|
"must have ScalarPH as single successor");
|
|
return;
|
|
}
|
|
|
|
assert(MiddleVPBB->getNumSuccessors() == 2 && "must have 2 successors");
|
|
|
|
// Add a check in the middle block to see if we have completed all of the
|
|
// iterations in the first vector loop.
|
|
//
|
|
// Three cases:
|
|
// 1) If we require a scalar epilogue, the scalar ph must execute. Set the
|
|
// condition to false.
|
|
// 2) If (N - N%VF) == N, then we *don't* need to run the
|
|
// remainder. Thus if tail is to be folded, we know we don't need to run
|
|
// the remainder and we can set the condition to true.
|
|
// 3) Otherwise, construct a runtime check.
|
|
|
|
// We use the same DebugLoc as the scalar loop latch terminator instead of
|
|
// the corresponding compare because they may have ended up with different
|
|
// line numbers and we want to avoid awkward line stepping while debugging.
|
|
// E.g., if the compare has got a line number inside the loop.
|
|
DebugLoc LatchDL = LatchVPBB->getTerminator()->getDebugLoc();
|
|
VPBuilder Builder(MiddleVPBB);
|
|
VPValue *Cmp;
|
|
if (!RequiresScalarEpilogueCheck)
|
|
Cmp = Plan.getFalse();
|
|
else if (TailFolded)
|
|
Cmp = Plan.getOrAddLiveIn(
|
|
ConstantInt::getTrue(IntegerType::getInt1Ty(Plan.getContext())));
|
|
else
|
|
Cmp = Builder.createICmp(CmpInst::ICMP_EQ, Plan.getTripCount(),
|
|
&Plan.getVectorTripCount(), LatchDL, "cmp.n");
|
|
Builder.createNaryOp(VPInstruction::BranchOnCond, {Cmp}, LatchDL);
|
|
}
|
|
|
|
void VPlanTransforms::createLoopRegions(VPlan &Plan) {
|
|
VPDominatorTree VPDT;
|
|
VPDT.recalculate(Plan);
|
|
for (VPBlockBase *HeaderVPB : vp_post_order_shallow(Plan.getEntry()))
|
|
if (canonicalHeaderAndLatch(HeaderVPB, VPDT))
|
|
createLoopRegion(Plan, HeaderVPB);
|
|
|
|
VPRegionBlock *TopRegion = Plan.getVectorLoopRegion();
|
|
TopRegion->setName("vector loop");
|
|
TopRegion->getEntryBasicBlock()->setName("vector.body");
|
|
}
|
|
|
|
void VPlanTransforms::createExtractsForLiveOuts(VPlan &Plan) {
|
|
for (VPBasicBlock *EB : Plan.getExitBlocks()) {
|
|
VPBasicBlock *MiddleVPBB = Plan.getMiddleBlock();
|
|
VPBuilder B(MiddleVPBB, MiddleVPBB->getFirstNonPhi());
|
|
|
|
if (EB->getSinglePredecessor() != Plan.getMiddleBlock())
|
|
continue;
|
|
|
|
for (VPRecipeBase &R : EB->phis()) {
|
|
auto *ExitIRI = cast<VPIRPhi>(&R);
|
|
for (unsigned Idx = 0; Idx != ExitIRI->getNumIncoming(); ++Idx) {
|
|
VPRecipeBase *Inc = ExitIRI->getIncomingValue(Idx)->getDefiningRecipe();
|
|
if (!Inc || !Inc->getParent()->getParent())
|
|
continue;
|
|
assert(ExitIRI->getNumOperands() == 1 &&
|
|
ExitIRI->getParent()->getSinglePredecessor() == MiddleVPBB &&
|
|
"exit values from early exits must be fixed when branch to "
|
|
"early-exit is added");
|
|
ExitIRI->extractLastLaneOfFirstOperand(B);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Likelyhood of bypassing the vectorized loop due to a runtime check block,
|
|
// including memory overlap checks block and wrapping/unit-stride checks block.
|
|
static constexpr uint32_t CheckBypassWeights[] = {1, 127};
|
|
|
|
void VPlanTransforms::attachCheckBlock(VPlan &Plan, Value *Cond,
|
|
BasicBlock *CheckBlock,
|
|
bool AddBranchWeights) {
|
|
VPValue *CondVPV = Plan.getOrAddLiveIn(Cond);
|
|
VPBasicBlock *CheckBlockVPBB = Plan.createVPIRBasicBlock(CheckBlock);
|
|
VPBlockBase *VectorPH = Plan.getVectorPreheader();
|
|
VPBlockBase *ScalarPH = Plan.getScalarPreheader();
|
|
VPBlockBase *PreVectorPH = VectorPH->getSinglePredecessor();
|
|
VPBlockUtils::insertOnEdge(PreVectorPH, VectorPH, CheckBlockVPBB);
|
|
VPBlockUtils::connectBlocks(CheckBlockVPBB, ScalarPH);
|
|
CheckBlockVPBB->swapSuccessors();
|
|
|
|
// We just connected a new block to the scalar preheader. Update all
|
|
// VPPhis by adding an incoming value for it, replicating the last value.
|
|
unsigned NumPredecessors = ScalarPH->getNumPredecessors();
|
|
for (VPRecipeBase &R : cast<VPBasicBlock>(ScalarPH)->phis()) {
|
|
assert(isa<VPPhi>(&R) && "Phi expected to be VPPhi");
|
|
assert(cast<VPPhi>(&R)->getNumIncoming() == NumPredecessors - 1 &&
|
|
"must have incoming values for all operands");
|
|
R.addOperand(R.getOperand(NumPredecessors - 2));
|
|
}
|
|
|
|
VPIRMetadata VPBranchWeights;
|
|
auto *Term = VPBuilder(CheckBlockVPBB)
|
|
.createNaryOp(VPInstruction::BranchOnCond, {CondVPV},
|
|
Plan.getCanonicalIV()->getDebugLoc());
|
|
if (AddBranchWeights) {
|
|
MDBuilder MDB(Plan.getContext());
|
|
MDNode *BranchWeights =
|
|
MDB.createBranchWeights(CheckBypassWeights, /*IsExpected=*/false);
|
|
Term->addMetadata(LLVMContext::MD_prof, BranchWeights);
|
|
}
|
|
}
|
|
|
|
bool VPlanTransforms::handleMaxMinNumReductions(VPlan &Plan) {
|
|
auto GetMinMaxCompareValue = [](VPReductionPHIRecipe *RedPhiR) -> VPValue * {
|
|
auto *MinMaxR = dyn_cast<VPRecipeWithIRFlags>(
|
|
RedPhiR->getBackedgeValue()->getDefiningRecipe());
|
|
if (!MinMaxR)
|
|
return nullptr;
|
|
|
|
auto *RepR = dyn_cast<VPReplicateRecipe>(MinMaxR);
|
|
if (!isa<VPWidenIntrinsicRecipe>(MinMaxR) &&
|
|
!(RepR && isa<IntrinsicInst>(RepR->getUnderlyingInstr())))
|
|
return nullptr;
|
|
|
|
#ifndef NDEBUG
|
|
Intrinsic::ID RdxIntrinsicId =
|
|
RedPhiR->getRecurrenceKind() == RecurKind::FMaxNum ? Intrinsic::maxnum
|
|
: Intrinsic::minnum;
|
|
assert(((isa<VPWidenIntrinsicRecipe>(MinMaxR) &&
|
|
cast<VPWidenIntrinsicRecipe>(MinMaxR)->getVectorIntrinsicID() ==
|
|
RdxIntrinsicId) ||
|
|
(RepR && cast<IntrinsicInst>(RepR->getUnderlyingInstr())
|
|
->getIntrinsicID() == RdxIntrinsicId)) &&
|
|
"Intrinsic did not match recurrence kind");
|
|
#endif
|
|
|
|
if (MinMaxR->getOperand(0) == RedPhiR)
|
|
return MinMaxR->getOperand(1);
|
|
|
|
assert(MinMaxR->getOperand(1) == RedPhiR &&
|
|
"Reduction phi operand expected");
|
|
return MinMaxR->getOperand(0);
|
|
};
|
|
|
|
VPRegionBlock *LoopRegion = Plan.getVectorLoopRegion();
|
|
VPReductionPHIRecipe *RedPhiR = nullptr;
|
|
bool HasUnsupportedPhi = false;
|
|
for (auto &R : LoopRegion->getEntryBasicBlock()->phis()) {
|
|
if (isa<VPCanonicalIVPHIRecipe, VPWidenIntOrFpInductionRecipe>(&R))
|
|
continue;
|
|
auto *Cur = dyn_cast<VPReductionPHIRecipe>(&R);
|
|
if (!Cur) {
|
|
// TODO: Also support fixed-order recurrence phis.
|
|
HasUnsupportedPhi = true;
|
|
continue;
|
|
}
|
|
// For now, only a single reduction is supported.
|
|
// TODO: Support multiple MaxNum/MinNum reductions and other reductions.
|
|
if (RedPhiR)
|
|
return false;
|
|
if (Cur->getRecurrenceKind() != RecurKind::FMaxNum &&
|
|
Cur->getRecurrenceKind() != RecurKind::FMinNum) {
|
|
HasUnsupportedPhi = true;
|
|
continue;
|
|
}
|
|
RedPhiR = Cur;
|
|
}
|
|
|
|
if (!RedPhiR)
|
|
return true;
|
|
|
|
// We won't be able to resume execution in the scalar tail, if there are
|
|
// unsupported header phis or there is no scalar tail at all, due to
|
|
// tail-folding.
|
|
if (HasUnsupportedPhi || !Plan.hasScalarTail())
|
|
return false;
|
|
|
|
VPValue *MinMaxOp = GetMinMaxCompareValue(RedPhiR);
|
|
if (!MinMaxOp)
|
|
return false;
|
|
|
|
RecurKind RedPhiRK = RedPhiR->getRecurrenceKind();
|
|
assert((RedPhiRK == RecurKind::FMaxNum || RedPhiRK == RecurKind::FMinNum) &&
|
|
"unsupported reduction");
|
|
(void)RedPhiRK;
|
|
|
|
/// Check if the vector loop of \p Plan can early exit and restart
|
|
/// execution of last vector iteration in the scalar loop. This requires all
|
|
/// recipes up to early exit point be side-effect free as they are
|
|
/// re-executed. Currently we check that the loop is free of any recipe that
|
|
/// may write to memory. Expected to operate on an early VPlan w/o nested
|
|
/// regions.
|
|
for (VPBlockBase *VPB : vp_depth_first_shallow(
|
|
Plan.getVectorLoopRegion()->getEntryBasicBlock())) {
|
|
auto *VPBB = cast<VPBasicBlock>(VPB);
|
|
for (auto &R : *VPBB) {
|
|
if (R.mayWriteToMemory() &&
|
|
!match(&R, m_BranchOnCount(m_VPValue(), m_VPValue())))
|
|
return false;
|
|
}
|
|
}
|
|
|
|
VPBasicBlock *LatchVPBB = LoopRegion->getExitingBasicBlock();
|
|
VPBuilder Builder(LatchVPBB->getTerminator());
|
|
auto *LatchExitingBranch = cast<VPInstruction>(LatchVPBB->getTerminator());
|
|
assert(LatchExitingBranch->getOpcode() == VPInstruction::BranchOnCount &&
|
|
"Unexpected terminator");
|
|
auto *IsLatchExitTaken =
|
|
Builder.createICmp(CmpInst::ICMP_EQ, LatchExitingBranch->getOperand(0),
|
|
LatchExitingBranch->getOperand(1));
|
|
|
|
VPValue *IsNaN = Builder.createFCmp(CmpInst::FCMP_UNO, MinMaxOp, MinMaxOp);
|
|
VPValue *AnyNaN = Builder.createNaryOp(VPInstruction::AnyOf, {IsNaN});
|
|
auto *AnyExitTaken =
|
|
Builder.createNaryOp(Instruction::Or, {AnyNaN, IsLatchExitTaken});
|
|
Builder.createNaryOp(VPInstruction::BranchOnCond, AnyExitTaken);
|
|
LatchExitingBranch->eraseFromParent();
|
|
|
|
// If we exit early due to NaNs, compute the final reduction result based on
|
|
// the reduction phi at the beginning of the last vector iteration.
|
|
auto *RdxResult = find_singleton<VPSingleDefRecipe>(
|
|
RedPhiR->users(), [](VPUser *U, bool) -> VPSingleDefRecipe * {
|
|
auto *VPI = dyn_cast<VPInstruction>(U);
|
|
if (VPI && VPI->getOpcode() == VPInstruction::ComputeReductionResult)
|
|
return VPI;
|
|
return nullptr;
|
|
});
|
|
|
|
auto *MiddleVPBB = Plan.getMiddleBlock();
|
|
Builder.setInsertPoint(MiddleVPBB, MiddleVPBB->begin());
|
|
auto *NewSel =
|
|
Builder.createSelect(AnyNaN, RedPhiR, RdxResult->getOperand(1));
|
|
RdxResult->setOperand(1, NewSel);
|
|
|
|
auto *ScalarPH = Plan.getScalarPreheader();
|
|
// Update resume phis for inductions in the scalar preheader. If AnyNaN is
|
|
// true, the resume from the start of the last vector iteration via the
|
|
// canonical IV, otherwise from the original value.
|
|
for (auto &R : ScalarPH->phis()) {
|
|
auto *ResumeR = cast<VPPhi>(&R);
|
|
VPValue *VecV = ResumeR->getOperand(0);
|
|
if (VecV == RdxResult)
|
|
continue;
|
|
if (auto *DerivedIV = dyn_cast<VPDerivedIVRecipe>(VecV)) {
|
|
if (DerivedIV->getNumUsers() == 1 &&
|
|
DerivedIV->getOperand(1) == &Plan.getVectorTripCount()) {
|
|
auto *NewSel = Builder.createSelect(AnyNaN, Plan.getCanonicalIV(),
|
|
&Plan.getVectorTripCount());
|
|
DerivedIV->moveAfter(&*Builder.getInsertPoint());
|
|
DerivedIV->setOperand(1, NewSel);
|
|
continue;
|
|
}
|
|
}
|
|
// Bail out and abandon the current, partially modified, VPlan if we
|
|
// encounter resume phi that cannot be updated yet.
|
|
if (VecV != &Plan.getVectorTripCount()) {
|
|
LLVM_DEBUG(dbgs() << "Found resume phi we cannot update for VPlan with "
|
|
"FMaxNum/FMinNum reduction.\n");
|
|
return false;
|
|
}
|
|
auto *NewSel = Builder.createSelect(AnyNaN, Plan.getCanonicalIV(), VecV);
|
|
ResumeR->setOperand(0, NewSel);
|
|
}
|
|
|
|
auto *MiddleTerm = MiddleVPBB->getTerminator();
|
|
Builder.setInsertPoint(MiddleTerm);
|
|
VPValue *MiddleCond = MiddleTerm->getOperand(0);
|
|
VPValue *NewCond = Builder.createAnd(MiddleCond, Builder.createNot(AnyNaN));
|
|
MiddleTerm->setOperand(0, NewCond);
|
|
return true;
|
|
}
|