
`PassManager::run` loads the dependent dialects for each pass into the
current context prior to invoking the individual passes. If the
dependent dialect is already loaded into the context, this should be a
no-op. However, if there are extensions registered in the
`DialectRegistry`, the dependent dialects are unconditionally registered
into the context.
This poses a problem for dynamic pass pipelines, however, because they
will likely be executing while the context is in an immutable state
(because of the parent pass pipeline being run).
To solve this, we'll update the extension registration API on
`DialectRegistry` to require a type ID for each extension that is
registered. Then, instead of unconditionally registered dialects into a
context if extensions are present, we'll check against the extension
type IDs already present in the context's internal `DialectRegistry`.
The context will only be marked as dirty if there are net-new extension
types present in the `DialectRegistry` populated by
`PassManager::getDependentDialects`.
Note: this PR removes the `addExtension` overload that utilizes
`std::function` as the parameter. This is because `std::function` is
copyable and potentially allocates memory for the contained function so
we can't use the function pointer as the unique type ID for the
extension.
Downstream changes required:
- Existing `DialectExtension` subclasses will need a type ID to be
registered for each subclass. More details on how to register a type ID
can be found here:
8b68e06731/mlir/include/mlir/Support/TypeID.h (L30)
- Existing uses of the `std::function` overload of `addExtension` will
need to be refactored into dedicated `DialectExtension` classes with
associated type IDs. The attached `std::function` can either be inlined
into or called directly from `DialectExtension::apply`.
---------
Co-authored-by: Mehdi Amini <joker.eph@gmail.com>
The LLVM Compiler Infrastructure
Welcome to the LLVM project!
This repository contains the source code for LLVM, a toolkit for the construction of highly optimized compilers, optimizers, and run-time environments.
The LLVM project has multiple components. The core of the project is itself called "LLVM". This contains all of the tools, libraries, and header files needed to process intermediate representations and convert them into object files. Tools include an assembler, disassembler, bitcode analyzer, and bitcode optimizer.
C-like languages use the Clang frontend. This component compiles C, C++, Objective-C, and Objective-C++ code into LLVM bitcode -- and from there into object files, using LLVM.
Other components include: the libc++ C++ standard library, the LLD linker, and more.
Getting the Source Code and Building LLVM
Consult the Getting Started with LLVM page for information on building and running LLVM.
For information on how to contribute to the LLVM project, please take a look at the Contributing to LLVM guide.
Getting in touch
Join the LLVM Discourse forums, Discord chat, LLVM Office Hours or Regular sync-ups.
The LLVM project has adopted a code of conduct for participants to all modes of communication within the project.