llvm-project/llvm/lib/Analysis/ConstraintSystem.cpp
Zain Jaffal 869c87ad10 [ConstraintElimination] Change debug output to display variable names.
Previously when constraint system outputs the rows in the system the variables used are x1,2...n making it hard to infer which ones they relate to in the IR

Reviewed By: fhahn

Differential Revision: https://reviews.llvm.org/D142618
2023-02-15 15:07:48 +00:00

168 lines
5.4 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

//===- ConstraintSytem.cpp - A system of linear constraints. ----*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "llvm/Analysis/ConstraintSystem.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Support/Debug.h"
#include <string>
using namespace llvm;
#define DEBUG_TYPE "constraint-system"
bool ConstraintSystem::eliminateUsingFM() {
// Implementation of FourierMotzkin elimination, with some tricks from the
// paper Pugh, William. "The Omega test: a fast and practical integer
// programming algorithm for dependence
// analysis."
// Supercomputing'91: Proceedings of the 1991 ACM/
// IEEE conference on Supercomputing. IEEE, 1991.
assert(!Constraints.empty() &&
"should only be called for non-empty constraint systems");
unsigned NumVariables = Constraints[0].size();
uint32_t NewGCD = 1;
unsigned LastIdx = NumVariables - 1;
// First, either remove the variable in place if it is 0 or add the row to
// RemainingRows and remove it from the system.
SmallVector<SmallVector<int64_t, 8>, 4> RemainingRows;
for (unsigned R1 = 0; R1 < Constraints.size();) {
SmallVector<int64_t, 8> &Row1 = Constraints[R1];
int64_t LowerLast = Row1[LastIdx];
if (LowerLast == 0) {
Row1.pop_back();
R1++;
} else {
std::swap(Constraints[R1], Constraints.back());
RemainingRows.push_back(std::move(Constraints.back()));
Constraints.pop_back();
}
}
// Process rows where the variable is != 0.
unsigned NumRemainingConstraints = RemainingRows.size();
for (unsigned R1 = 0; R1 < NumRemainingConstraints; R1++) {
// FIXME do not use copy
for (unsigned R2 = R1 + 1; R2 < NumRemainingConstraints; R2++) {
if (R1 == R2)
continue;
int64_t UpperLast = RemainingRows[R2][LastIdx];
int64_t LowerLast = RemainingRows[R1][LastIdx];
assert(
UpperLast != 0 && LowerLast != 0 &&
"RemainingRows should only contain rows where the variable is != 0");
if ((LowerLast < 0 && UpperLast < 0) || (LowerLast > 0 && UpperLast > 0))
continue;
unsigned LowerR = R1;
unsigned UpperR = R2;
if (UpperLast < 0) {
std::swap(LowerR, UpperR);
std::swap(LowerLast, UpperLast);
}
SmallVector<int64_t, 8> NR;
for (unsigned I = 0; I < LastIdx; I++) {
int64_t M1, M2, N;
int64_t UpperV = RemainingRows[UpperR][I];
if (MulOverflow(UpperV, ((-1) * LowerLast / GCD), M1))
return false;
int64_t LowerV = RemainingRows[LowerR][I];
if (MulOverflow(LowerV, (UpperLast / GCD), M2))
return false;
if (AddOverflow(M1, M2, N))
return false;
NR.push_back(N);
NewGCD =
APIntOps::GreatestCommonDivisor({32, (uint32_t)N}, {32, NewGCD})
.getZExtValue();
}
Constraints.push_back(std::move(NR));
// Give up if the new system gets too big.
if (Constraints.size() > 500)
return false;
}
}
GCD = NewGCD;
return true;
}
bool ConstraintSystem::mayHaveSolutionImpl() {
while (!Constraints.empty() && Constraints[0].size() > 1) {
if (!eliminateUsingFM())
return true;
}
if (Constraints.empty() || Constraints[0].size() > 1)
return true;
return all_of(Constraints, [](auto &R) { return R[0] >= 0; });
}
SmallVector<std::string> ConstraintSystem::getVarNamesList() const {
SmallVector<std::string> Names(Value2Index.size(), "");
for (auto &[V, Index] : Value2Index) {
std::string OperandName;
if (V->getName().empty())
OperandName = V->getNameOrAsOperand();
else
OperandName = std::string("%") + V->getName().str();
Names[Index - 1] = OperandName;
}
return Names;
}
void ConstraintSystem::dump() const {
if (Constraints.empty())
return;
SmallVector<std::string> Names = getVarNamesList();
for (const auto &Row : Constraints) {
SmallVector<std::string, 16> Parts;
for (unsigned I = 1, S = Row.size(); I < S; ++I) {
if (Row[I] == 0)
continue;
std::string Coefficient;
if (Row[I] != 1)
Coefficient = std::to_string(Row[I]) + " * ";
Parts.push_back(Coefficient + Names[I - 1]);
}
assert(!Parts.empty() && "need to have at least some parts");
LLVM_DEBUG(dbgs() << join(Parts, std::string(" + "))
<< " <= " << std::to_string(Row[0]) << "\n");
}
}
bool ConstraintSystem::mayHaveSolution() {
LLVM_DEBUG(dump());
bool HasSolution = mayHaveSolutionImpl();
LLVM_DEBUG(dbgs() << (HasSolution ? "sat" : "unsat") << "\n");
return HasSolution;
}
bool ConstraintSystem::isConditionImplied(SmallVector<int64_t, 8> R) const {
// If all variable coefficients are 0, we have 'C >= 0'. If the constant is >=
// 0, R is always true, regardless of the system.
if (all_of(ArrayRef(R).drop_front(1), [](int64_t C) { return C == 0; }))
return R[0] >= 0;
// If there is no solution with the negation of R added to the system, the
// condition must hold based on the existing constraints.
R = ConstraintSystem::negate(R);
auto NewSystem = *this;
NewSystem.addVariableRow(R);
return !NewSystem.mayHaveSolution();
}