
The aim of this patch is to minimize the compilation time overhead of running Function Specialization. It is about 40% slower to run as a standalone pass (IPSCCP + FuncSpec vs IPSCCP with FuncSpec) according to my measurements. I compiled the llvm testsuite with NewPM-O3 + LTO and measured single threaded [user + system] time of IPSCCP and FuncSpec by passing the '-time-passes' option to lld. Then I compared the two configurations in terms of Instruction Count of the total compilation (not of the individual passes) as in https://llvm-compile-time-tracker.com. Geomean for non-LTO builds is -0.25% and LTO is -0.5% approximately. You can find more info below: https://discourse.llvm.org/t/rfc-should-we-enable-function-specialization/61518 Differential Revision: https://reviews.llvm.org/D126455
703 lines
25 KiB
C++
703 lines
25 KiB
C++
//===- FunctionSpecialization.cpp - Function Specialization ---------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This specialises functions with constant parameters. Constant parameters
|
|
// like function pointers and constant globals are propagated to the callee by
|
|
// specializing the function. The main benefit of this pass at the moment is
|
|
// that indirect calls are transformed into direct calls, which provides inline
|
|
// opportunities that the inliner would not have been able to achieve. That's
|
|
// why function specialisation is run before the inliner in the optimisation
|
|
// pipeline; that is by design. Otherwise, we would only benefit from constant
|
|
// passing, which is a valid use-case too, but hasn't been explored much in
|
|
// terms of performance uplifts, cost-model and compile-time impact.
|
|
//
|
|
// Current limitations:
|
|
// - It does not yet handle integer ranges. We do support "literal constants",
|
|
// but that's off by default under an option.
|
|
// - The cost-model could be further looked into (it mainly focuses on inlining
|
|
// benefits),
|
|
//
|
|
// Ideas:
|
|
// - With a function specialization attribute for arguments, we could have
|
|
// a direct way to steer function specialization, avoiding the cost-model,
|
|
// and thus control compile-times / code-size.
|
|
//
|
|
// Todos:
|
|
// - Specializing recursive functions relies on running the transformation a
|
|
// number of times, which is controlled by option
|
|
// `func-specialization-max-iters`. Thus, increasing this value and the
|
|
// number of iterations, will linearly increase the number of times recursive
|
|
// functions get specialized, see also the discussion in
|
|
// https://reviews.llvm.org/D106426 for details. Perhaps there is a
|
|
// compile-time friendlier way to control/limit the number of specialisations
|
|
// for recursive functions.
|
|
// - Don't transform the function if function specialization does not trigger;
|
|
// the SCCPSolver may make IR changes.
|
|
//
|
|
// References:
|
|
// - 2021 LLVM Dev Mtg “Introducing function specialisation, and can we enable
|
|
// it by default?”, https://www.youtube.com/watch?v=zJiCjeXgV5Q
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Transforms/IPO/FunctionSpecialization.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/Analysis/CodeMetrics.h"
|
|
#include "llvm/Analysis/InlineCost.h"
|
|
#include "llvm/Analysis/LoopInfo.h"
|
|
#include "llvm/Analysis/TargetTransformInfo.h"
|
|
#include "llvm/Analysis/ValueLattice.h"
|
|
#include "llvm/Analysis/ValueLatticeUtils.h"
|
|
#include "llvm/IR/IntrinsicInst.h"
|
|
#include "llvm/Transforms/Scalar/SCCP.h"
|
|
#include "llvm/Transforms/Utils/Cloning.h"
|
|
#include "llvm/Transforms/Utils/SCCPSolver.h"
|
|
#include "llvm/Transforms/Utils/SizeOpts.h"
|
|
#include <cmath>
|
|
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "function-specialization"
|
|
|
|
STATISTIC(NumFuncSpecialized, "Number of functions specialized");
|
|
|
|
static cl::opt<bool> ForceFunctionSpecialization(
|
|
"force-function-specialization", cl::init(false), cl::Hidden,
|
|
cl::desc("Force function specialization for every call site with a "
|
|
"constant argument"));
|
|
|
|
static cl::opt<unsigned> MaxClonesThreshold(
|
|
"func-specialization-max-clones", cl::Hidden,
|
|
cl::desc("The maximum number of clones allowed for a single function "
|
|
"specialization"),
|
|
cl::init(3));
|
|
|
|
static cl::opt<unsigned> SmallFunctionThreshold(
|
|
"func-specialization-size-threshold", cl::Hidden,
|
|
cl::desc("Don't specialize functions that have less than this theshold "
|
|
"number of instructions"),
|
|
cl::init(100));
|
|
|
|
static cl::opt<unsigned>
|
|
AvgLoopIterationCount("func-specialization-avg-iters-cost", cl::Hidden,
|
|
cl::desc("Average loop iteration count cost"),
|
|
cl::init(10));
|
|
|
|
static cl::opt<bool> SpecializeOnAddresses(
|
|
"func-specialization-on-address", cl::init(false), cl::Hidden,
|
|
cl::desc("Enable function specialization on the address of global values"));
|
|
|
|
// Disabled by default as it can significantly increase compilation times.
|
|
//
|
|
// https://llvm-compile-time-tracker.com
|
|
// https://github.com/nikic/llvm-compile-time-tracker
|
|
static cl::opt<bool> EnableSpecializationForLiteralConstant(
|
|
"function-specialization-for-literal-constant", cl::init(false), cl::Hidden,
|
|
cl::desc("Enable specialization of functions that take a literal constant "
|
|
"as an argument."));
|
|
|
|
Constant *FunctionSpecializer::getPromotableAlloca(AllocaInst *Alloca,
|
|
CallInst *Call) {
|
|
Value *StoreValue = nullptr;
|
|
for (auto *User : Alloca->users()) {
|
|
// We can't use llvm::isAllocaPromotable() as that would fail because of
|
|
// the usage in the CallInst, which is what we check here.
|
|
if (User == Call)
|
|
continue;
|
|
if (auto *Bitcast = dyn_cast<BitCastInst>(User)) {
|
|
if (!Bitcast->hasOneUse() || *Bitcast->user_begin() != Call)
|
|
return nullptr;
|
|
continue;
|
|
}
|
|
|
|
if (auto *Store = dyn_cast<StoreInst>(User)) {
|
|
// This is a duplicate store, bail out.
|
|
if (StoreValue || Store->isVolatile())
|
|
return nullptr;
|
|
StoreValue = Store->getValueOperand();
|
|
continue;
|
|
}
|
|
// Bail if there is any other unknown usage.
|
|
return nullptr;
|
|
}
|
|
return getCandidateConstant(StoreValue);
|
|
}
|
|
|
|
// A constant stack value is an AllocaInst that has a single constant
|
|
// value stored to it. Return this constant if such an alloca stack value
|
|
// is a function argument.
|
|
Constant *FunctionSpecializer::getConstantStackValue(CallInst *Call,
|
|
Value *Val) {
|
|
if (!Val)
|
|
return nullptr;
|
|
Val = Val->stripPointerCasts();
|
|
if (auto *ConstVal = dyn_cast<ConstantInt>(Val))
|
|
return ConstVal;
|
|
auto *Alloca = dyn_cast<AllocaInst>(Val);
|
|
if (!Alloca || !Alloca->getAllocatedType()->isIntegerTy())
|
|
return nullptr;
|
|
return getPromotableAlloca(Alloca, Call);
|
|
}
|
|
|
|
// To support specializing recursive functions, it is important to propagate
|
|
// constant arguments because after a first iteration of specialisation, a
|
|
// reduced example may look like this:
|
|
//
|
|
// define internal void @RecursiveFn(i32* arg1) {
|
|
// %temp = alloca i32, align 4
|
|
// store i32 2 i32* %temp, align 4
|
|
// call void @RecursiveFn.1(i32* nonnull %temp)
|
|
// ret void
|
|
// }
|
|
//
|
|
// Before a next iteration, we need to propagate the constant like so
|
|
// which allows further specialization in next iterations.
|
|
//
|
|
// @funcspec.arg = internal constant i32 2
|
|
//
|
|
// define internal void @someFunc(i32* arg1) {
|
|
// call void @otherFunc(i32* nonnull @funcspec.arg)
|
|
// ret void
|
|
// }
|
|
//
|
|
void FunctionSpecializer::promoteConstantStackValues() {
|
|
// Iterate over the argument tracked functions see if there
|
|
// are any new constant values for the call instruction via
|
|
// stack variables.
|
|
for (Function &F : M) {
|
|
if (!Solver.isArgumentTrackedFunction(&F))
|
|
continue;
|
|
|
|
for (auto *User : F.users()) {
|
|
|
|
auto *Call = dyn_cast<CallInst>(User);
|
|
if (!Call)
|
|
continue;
|
|
|
|
if (!Solver.isBlockExecutable(Call->getParent()))
|
|
continue;
|
|
|
|
bool Changed = false;
|
|
for (const Use &U : Call->args()) {
|
|
unsigned Idx = Call->getArgOperandNo(&U);
|
|
Value *ArgOp = Call->getArgOperand(Idx);
|
|
Type *ArgOpType = ArgOp->getType();
|
|
|
|
if (!Call->onlyReadsMemory(Idx) || !ArgOpType->isPointerTy())
|
|
continue;
|
|
|
|
auto *ConstVal = getConstantStackValue(Call, ArgOp);
|
|
if (!ConstVal)
|
|
continue;
|
|
|
|
Value *GV = new GlobalVariable(M, ConstVal->getType(), true,
|
|
GlobalValue::InternalLinkage, ConstVal,
|
|
"funcspec.arg");
|
|
if (ArgOpType != ConstVal->getType())
|
|
GV = ConstantExpr::getBitCast(cast<Constant>(GV), ArgOpType);
|
|
|
|
Call->setArgOperand(Idx, GV);
|
|
Changed = true;
|
|
}
|
|
|
|
// Add the changed CallInst to Solver Worklist
|
|
if (Changed)
|
|
Solver.visitCall(*Call);
|
|
}
|
|
}
|
|
}
|
|
|
|
// ssa_copy intrinsics are introduced by the SCCP solver. These intrinsics
|
|
// interfere with the promoteConstantStackValues() optimization.
|
|
static void removeSSACopy(Function &F) {
|
|
for (BasicBlock &BB : F) {
|
|
for (Instruction &Inst : llvm::make_early_inc_range(BB)) {
|
|
auto *II = dyn_cast<IntrinsicInst>(&Inst);
|
|
if (!II)
|
|
continue;
|
|
if (II->getIntrinsicID() != Intrinsic::ssa_copy)
|
|
continue;
|
|
Inst.replaceAllUsesWith(II->getOperand(0));
|
|
Inst.eraseFromParent();
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Remove any ssa_copy intrinsics that may have been introduced.
|
|
void FunctionSpecializer::cleanUpSSA() {
|
|
for (Function *F : SpecializedFuncs)
|
|
removeSSACopy(*F);
|
|
}
|
|
|
|
/// Attempt to specialize functions in the module to enable constant
|
|
/// propagation across function boundaries.
|
|
///
|
|
/// \returns true if at least one function is specialized.
|
|
bool FunctionSpecializer::run() {
|
|
bool Changed = false;
|
|
|
|
for (Function &F : M) {
|
|
if (!isCandidateFunction(&F))
|
|
continue;
|
|
|
|
auto Cost = getSpecializationCost(&F);
|
|
if (!Cost.isValid()) {
|
|
LLVM_DEBUG(dbgs() << "FnSpecialization: Invalid specialization cost.\n");
|
|
continue;
|
|
}
|
|
|
|
LLVM_DEBUG(dbgs() << "FnSpecialization: Specialization cost for "
|
|
<< F.getName() << " is " << Cost << "\n");
|
|
|
|
SmallVector<CallSpecBinding, 8> Specializations;
|
|
if (!findSpecializations(&F, Cost, Specializations)) {
|
|
LLVM_DEBUG(
|
|
dbgs() << "FnSpecialization: No possible specializations found\n");
|
|
continue;
|
|
}
|
|
|
|
Changed = true;
|
|
|
|
SmallVector<Function *, 4> Clones;
|
|
for (CallSpecBinding &Specialization : Specializations)
|
|
Clones.push_back(createSpecialization(&F, Specialization));
|
|
|
|
Solver.solveWhileResolvedUndefsIn(Clones);
|
|
updateCallSites(&F, Specializations);
|
|
}
|
|
|
|
promoteConstantStackValues();
|
|
|
|
LLVM_DEBUG(if (NbFunctionsSpecialized) dbgs()
|
|
<< "FnSpecialization: Specialized " << NbFunctionsSpecialized
|
|
<< " functions in module " << M.getName() << "\n");
|
|
|
|
NumFuncSpecialized += NbFunctionsSpecialized;
|
|
return Changed;
|
|
}
|
|
|
|
void FunctionSpecializer::removeDeadFunctions() {
|
|
for (Function *F : FullySpecialized) {
|
|
LLVM_DEBUG(dbgs() << "FnSpecialization: Removing dead function "
|
|
<< F->getName() << "\n");
|
|
if (FAM)
|
|
FAM->clear(*F, F->getName());
|
|
F->eraseFromParent();
|
|
}
|
|
FullySpecialized.clear();
|
|
}
|
|
|
|
// Compute the code metrics for function \p F.
|
|
CodeMetrics &FunctionSpecializer::analyzeFunction(Function *F) {
|
|
auto I = FunctionMetrics.insert({F, CodeMetrics()});
|
|
CodeMetrics &Metrics = I.first->second;
|
|
if (I.second) {
|
|
// The code metrics were not cached.
|
|
SmallPtrSet<const Value *, 32> EphValues;
|
|
CodeMetrics::collectEphemeralValues(F, &(GetAC)(*F), EphValues);
|
|
for (BasicBlock &BB : *F)
|
|
Metrics.analyzeBasicBlock(&BB, (GetTTI)(*F), EphValues);
|
|
|
|
LLVM_DEBUG(dbgs() << "FnSpecialization: Code size of function "
|
|
<< F->getName() << " is " << Metrics.NumInsts
|
|
<< " instructions\n");
|
|
}
|
|
return Metrics;
|
|
}
|
|
|
|
/// Clone the function \p F and remove the ssa_copy intrinsics added by
|
|
/// the SCCPSolver in the cloned version.
|
|
static Function *cloneCandidateFunction(Function *F) {
|
|
ValueToValueMapTy Mappings;
|
|
Function *Clone = CloneFunction(F, Mappings);
|
|
removeSSACopy(*Clone);
|
|
return Clone;
|
|
}
|
|
|
|
/// This function decides whether it's worthwhile to specialize function
|
|
/// \p F based on the known constant values its arguments can take on. It
|
|
/// only discovers potential specialization opportunities without actually
|
|
/// applying them.
|
|
///
|
|
/// \returns true if any specializations have been found.
|
|
bool FunctionSpecializer::findSpecializations(
|
|
Function *F, InstructionCost Cost,
|
|
SmallVectorImpl<CallSpecBinding> &WorkList) {
|
|
// Get a list of interesting arguments.
|
|
SmallVector<Argument *, 4> Args;
|
|
for (Argument &Arg : F->args())
|
|
if (isArgumentInteresting(&Arg))
|
|
Args.push_back(&Arg);
|
|
|
|
if (!Args.size())
|
|
return false;
|
|
|
|
// Find all the call sites for the function.
|
|
SpecializationMap Specializations;
|
|
for (User *U : F->users()) {
|
|
if (!isa<CallInst>(U) && !isa<InvokeInst>(U))
|
|
continue;
|
|
auto &CS = *cast<CallBase>(U);
|
|
|
|
// Skip irrelevant users.
|
|
if (CS.getCalledFunction() != F)
|
|
continue;
|
|
|
|
// If the call site has attribute minsize set, that callsite won't be
|
|
// specialized.
|
|
if (CS.hasFnAttr(Attribute::MinSize))
|
|
continue;
|
|
|
|
// If the parent of the call site will never be executed, we don't need
|
|
// to worry about the passed value.
|
|
if (!Solver.isBlockExecutable(CS.getParent()))
|
|
continue;
|
|
|
|
// Examine arguments and create specialization candidates from call sites
|
|
// with constant arguments.
|
|
bool Added = false;
|
|
for (Argument *A : Args) {
|
|
Constant *C = getCandidateConstant(CS.getArgOperand(A->getArgNo()));
|
|
if (!C)
|
|
continue;
|
|
|
|
if (!Added) {
|
|
Specializations[&CS] = {{}, 0 - Cost, nullptr};
|
|
Added = true;
|
|
}
|
|
|
|
SpecializationInfo &S = Specializations.back().second;
|
|
S.Gain += getSpecializationBonus(A, C, Solver.getLoopInfo(*F));
|
|
S.Args.push_back({A, C});
|
|
}
|
|
Added = false;
|
|
}
|
|
|
|
// Remove unprofitable specializations.
|
|
if (!ForceFunctionSpecialization)
|
|
Specializations.remove_if(
|
|
[](const auto &Entry) { return Entry.second.Gain <= 0; });
|
|
|
|
// Clear the MapVector and return the underlying vector.
|
|
WorkList = Specializations.takeVector();
|
|
|
|
// Sort the candidates in descending order.
|
|
llvm::stable_sort(WorkList, [](const auto &L, const auto &R) {
|
|
return L.second.Gain > R.second.Gain;
|
|
});
|
|
|
|
// Truncate the worklist to 'MaxClonesThreshold' candidates if necessary.
|
|
if (WorkList.size() > MaxClonesThreshold) {
|
|
LLVM_DEBUG(dbgs() << "FnSpecialization: Number of candidates exceed "
|
|
<< "the maximum number of clones threshold.\n"
|
|
<< "FnSpecialization: Truncating worklist to "
|
|
<< MaxClonesThreshold << " candidates.\n");
|
|
WorkList.erase(WorkList.begin() + MaxClonesThreshold, WorkList.end());
|
|
}
|
|
|
|
LLVM_DEBUG(dbgs() << "FnSpecialization: Specializations for function "
|
|
<< F->getName() << "\n";
|
|
for (const auto &Entry
|
|
: WorkList) {
|
|
dbgs() << "FnSpecialization: Gain = " << Entry.second.Gain
|
|
<< "\n";
|
|
for (const ArgInfo &Arg : Entry.second.Args)
|
|
dbgs() << "FnSpecialization: FormalArg = "
|
|
<< Arg.Formal->getNameOrAsOperand()
|
|
<< ", ActualArg = " << Arg.Actual->getNameOrAsOperand()
|
|
<< "\n";
|
|
});
|
|
|
|
return !WorkList.empty();
|
|
}
|
|
|
|
bool FunctionSpecializer::isCandidateFunction(Function *F) {
|
|
if (F->isDeclaration())
|
|
return false;
|
|
|
|
if (F->hasFnAttribute(Attribute::NoDuplicate))
|
|
return false;
|
|
|
|
if (!Solver.isArgumentTrackedFunction(F))
|
|
return false;
|
|
|
|
// Do not specialize the cloned function again.
|
|
if (SpecializedFuncs.contains(F))
|
|
return false;
|
|
|
|
// If we're optimizing the function for size, we shouldn't specialize it.
|
|
if (F->hasOptSize() ||
|
|
shouldOptimizeForSize(F, nullptr, nullptr, PGSOQueryType::IRPass))
|
|
return false;
|
|
|
|
// Exit if the function is not executable. There's no point in specializing
|
|
// a dead function.
|
|
if (!Solver.isBlockExecutable(&F->getEntryBlock()))
|
|
return false;
|
|
|
|
// It wastes time to specialize a function which would get inlined finally.
|
|
if (F->hasFnAttribute(Attribute::AlwaysInline))
|
|
return false;
|
|
|
|
LLVM_DEBUG(dbgs() << "FnSpecialization: Try function: " << F->getName()
|
|
<< "\n");
|
|
return true;
|
|
}
|
|
|
|
Function *
|
|
FunctionSpecializer::createSpecialization(Function *F,
|
|
CallSpecBinding &Specialization) {
|
|
Function *Clone = cloneCandidateFunction(F);
|
|
Specialization.second.Clone = Clone;
|
|
|
|
// Initialize the lattice state of the arguments of the function clone,
|
|
// marking the argument on which we specialized the function constant
|
|
// with the given value.
|
|
Solver.markArgInFuncSpecialization(Clone, Specialization.second.Args);
|
|
|
|
Solver.addArgumentTrackedFunction(Clone);
|
|
Solver.markBlockExecutable(&Clone->front());
|
|
|
|
// Mark all the specialized functions
|
|
SpecializedFuncs.insert(Clone);
|
|
NbFunctionsSpecialized++;
|
|
|
|
return Clone;
|
|
}
|
|
|
|
/// Compute and return the cost of specializing function \p F.
|
|
InstructionCost FunctionSpecializer::getSpecializationCost(Function *F) {
|
|
CodeMetrics &Metrics = analyzeFunction(F);
|
|
// If the code metrics reveal that we shouldn't duplicate the function, we
|
|
// shouldn't specialize it. Set the specialization cost to Invalid.
|
|
// Or if the lines of codes implies that this function is easy to get
|
|
// inlined so that we shouldn't specialize it.
|
|
if (Metrics.notDuplicatable || !Metrics.NumInsts.isValid() ||
|
|
(!ForceFunctionSpecialization &&
|
|
!F->hasFnAttribute(Attribute::NoInline) &&
|
|
Metrics.NumInsts < SmallFunctionThreshold))
|
|
return InstructionCost::getInvalid();
|
|
|
|
// Otherwise, set the specialization cost to be the cost of all the
|
|
// instructions in the function and penalty for specializing more functions.
|
|
unsigned Penalty = NbFunctionsSpecialized + 1;
|
|
return Metrics.NumInsts * InlineConstants::getInstrCost() * Penalty;
|
|
}
|
|
|
|
static InstructionCost getUserBonus(User *U, llvm::TargetTransformInfo &TTI,
|
|
const LoopInfo &LI) {
|
|
auto *I = dyn_cast_or_null<Instruction>(U);
|
|
// If not an instruction we do not know how to evaluate.
|
|
// Keep minimum possible cost for now so that it doesnt affect
|
|
// specialization.
|
|
if (!I)
|
|
return std::numeric_limits<unsigned>::min();
|
|
|
|
InstructionCost Cost =
|
|
TTI.getInstructionCost(U, TargetTransformInfo::TCK_SizeAndLatency);
|
|
|
|
// Increase the cost if it is inside the loop.
|
|
unsigned LoopDepth = LI.getLoopDepth(I->getParent());
|
|
Cost *= std::pow((double)AvgLoopIterationCount, LoopDepth);
|
|
|
|
// Traverse recursively if there are more uses.
|
|
// TODO: Any other instructions to be added here?
|
|
if (I->mayReadFromMemory() || I->isCast())
|
|
for (auto *User : I->users())
|
|
Cost += getUserBonus(User, TTI, LI);
|
|
|
|
return Cost;
|
|
}
|
|
|
|
/// Compute a bonus for replacing argument \p A with constant \p C.
|
|
InstructionCost
|
|
FunctionSpecializer::getSpecializationBonus(Argument *A, Constant *C,
|
|
const LoopInfo &LI) {
|
|
Function *F = A->getParent();
|
|
auto &TTI = (GetTTI)(*F);
|
|
LLVM_DEBUG(dbgs() << "FnSpecialization: Analysing bonus for constant: "
|
|
<< C->getNameOrAsOperand() << "\n");
|
|
|
|
InstructionCost TotalCost = 0;
|
|
for (auto *U : A->users()) {
|
|
TotalCost += getUserBonus(U, TTI, LI);
|
|
LLVM_DEBUG(dbgs() << "FnSpecialization: User cost ";
|
|
TotalCost.print(dbgs()); dbgs() << " for: " << *U << "\n");
|
|
}
|
|
|
|
// The below heuristic is only concerned with exposing inlining
|
|
// opportunities via indirect call promotion. If the argument is not a
|
|
// (potentially casted) function pointer, give up.
|
|
Function *CalledFunction = dyn_cast<Function>(C->stripPointerCasts());
|
|
if (!CalledFunction)
|
|
return TotalCost;
|
|
|
|
// Get TTI for the called function (used for the inline cost).
|
|
auto &CalleeTTI = (GetTTI)(*CalledFunction);
|
|
|
|
// Look at all the call sites whose called value is the argument.
|
|
// Specializing the function on the argument would allow these indirect
|
|
// calls to be promoted to direct calls. If the indirect call promotion
|
|
// would likely enable the called function to be inlined, specializing is a
|
|
// good idea.
|
|
int Bonus = 0;
|
|
for (User *U : A->users()) {
|
|
if (!isa<CallInst>(U) && !isa<InvokeInst>(U))
|
|
continue;
|
|
auto *CS = cast<CallBase>(U);
|
|
if (CS->getCalledOperand() != A)
|
|
continue;
|
|
|
|
// Get the cost of inlining the called function at this call site. Note
|
|
// that this is only an estimate. The called function may eventually
|
|
// change in a way that leads to it not being inlined here, even though
|
|
// inlining looks profitable now. For example, one of its called
|
|
// functions may be inlined into it, making the called function too large
|
|
// to be inlined into this call site.
|
|
//
|
|
// We apply a boost for performing indirect call promotion by increasing
|
|
// the default threshold by the threshold for indirect calls.
|
|
auto Params = getInlineParams();
|
|
Params.DefaultThreshold += InlineConstants::IndirectCallThreshold;
|
|
InlineCost IC =
|
|
getInlineCost(*CS, CalledFunction, Params, CalleeTTI, GetAC, GetTLI);
|
|
|
|
// We clamp the bonus for this call to be between zero and the default
|
|
// threshold.
|
|
if (IC.isAlways())
|
|
Bonus += Params.DefaultThreshold;
|
|
else if (IC.isVariable() && IC.getCostDelta() > 0)
|
|
Bonus += IC.getCostDelta();
|
|
|
|
LLVM_DEBUG(dbgs() << "FnSpecialization: Inlining bonus " << Bonus
|
|
<< " for user " << *U << "\n");
|
|
}
|
|
|
|
return TotalCost + Bonus;
|
|
}
|
|
|
|
/// Determine if it is possible to specialise the function for constant values
|
|
/// of the formal parameter \p A.
|
|
bool FunctionSpecializer::isArgumentInteresting(Argument *A) {
|
|
// No point in specialization if the argument is unused.
|
|
if (A->user_empty())
|
|
return false;
|
|
|
|
// For now, don't attempt to specialize functions based on the values of
|
|
// composite types.
|
|
Type *ArgTy = A->getType();
|
|
if (!ArgTy->isSingleValueType())
|
|
return false;
|
|
|
|
// Specialization of integer and floating point types needs to be explicitly
|
|
// enabled.
|
|
if (!EnableSpecializationForLiteralConstant &&
|
|
(ArgTy->isIntegerTy() || ArgTy->isFloatingPointTy()))
|
|
return false;
|
|
|
|
// SCCP solver does not record an argument that will be constructed on
|
|
// stack.
|
|
if (A->hasByValAttr() && !A->getParent()->onlyReadsMemory())
|
|
return false;
|
|
|
|
// Check the lattice value and decide if we should attemt to specialize,
|
|
// based on this argument. No point in specialization, if the lattice value
|
|
// is already a constant.
|
|
const ValueLatticeElement &LV = Solver.getLatticeValueFor(A);
|
|
if (LV.isUnknownOrUndef() || LV.isConstant() ||
|
|
(LV.isConstantRange() && LV.getConstantRange().isSingleElement())) {
|
|
LLVM_DEBUG(dbgs() << "FnSpecialization: Nothing to do, argument "
|
|
<< A->getNameOrAsOperand() << " is already constant\n");
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/// Check if the valuy \p V (an actual argument) is a constant or can only
|
|
/// have a constant value. Return that constant.
|
|
Constant *FunctionSpecializer::getCandidateConstant(Value *V) {
|
|
if (isa<PoisonValue>(V))
|
|
return nullptr;
|
|
|
|
// TrackValueOfGlobalVariable only tracks scalar global variables.
|
|
if (auto *GV = dyn_cast<GlobalVariable>(V)) {
|
|
// Check if we want to specialize on the address of non-constant
|
|
// global values.
|
|
if (!GV->isConstant() && !SpecializeOnAddresses)
|
|
return nullptr;
|
|
|
|
if (!GV->getValueType()->isSingleValueType())
|
|
return nullptr;
|
|
}
|
|
|
|
// Select for possible specialisation values that are constants or
|
|
// are deduced to be constants or constant ranges with a single element.
|
|
Constant *C = dyn_cast<Constant>(V);
|
|
if (!C) {
|
|
const ValueLatticeElement &LV = Solver.getLatticeValueFor(V);
|
|
if (LV.isConstant())
|
|
C = LV.getConstant();
|
|
else if (LV.isConstantRange() && LV.getConstantRange().isSingleElement()) {
|
|
assert(V->getType()->isIntegerTy() && "Non-integral constant range");
|
|
C = Constant::getIntegerValue(V->getType(),
|
|
*LV.getConstantRange().getSingleElement());
|
|
} else
|
|
return nullptr;
|
|
}
|
|
|
|
LLVM_DEBUG(dbgs() << "FnSpecialization: Found interesting argument "
|
|
<< V->getNameOrAsOperand() << "\n");
|
|
|
|
return C;
|
|
}
|
|
|
|
/// Redirects callsites of function \p F to its specialized copies.
|
|
void FunctionSpecializer::updateCallSites(
|
|
Function *F, SmallVectorImpl<CallSpecBinding> &Specializations) {
|
|
SmallVector<CallBase *, 8> ToUpdate;
|
|
for (User *U : F->users()) {
|
|
if (auto *CS = dyn_cast<CallBase>(U))
|
|
if (CS->getCalledFunction() == F &&
|
|
Solver.isBlockExecutable(CS->getParent()))
|
|
ToUpdate.push_back(CS);
|
|
}
|
|
|
|
unsigned NCallsLeft = ToUpdate.size();
|
|
for (CallBase *CS : ToUpdate) {
|
|
// Decrement the counter if the callsite is either recursive or updated.
|
|
bool ShouldDecrementCount = CS->getFunction() == F;
|
|
for (CallSpecBinding &Specialization : Specializations) {
|
|
Function *Clone = Specialization.second.Clone;
|
|
SmallVectorImpl<ArgInfo> &Args = Specialization.second.Args;
|
|
|
|
if (any_of(Args, [CS, this](const ArgInfo &Arg) {
|
|
unsigned ArgNo = Arg.Formal->getArgNo();
|
|
return getCandidateConstant(CS->getArgOperand(ArgNo)) != Arg.Actual;
|
|
}))
|
|
continue;
|
|
|
|
LLVM_DEBUG(dbgs() << "FnSpecialization: Replacing call site " << *CS
|
|
<< " with " << Clone->getName() << "\n");
|
|
|
|
CS->setCalledFunction(Clone);
|
|
ShouldDecrementCount = true;
|
|
break;
|
|
}
|
|
if (ShouldDecrementCount)
|
|
--NCallsLeft;
|
|
}
|
|
|
|
// If the function has been completely specialized, the original function
|
|
// is no longer needed. Mark it unreachable.
|
|
if (NCallsLeft == 0) {
|
|
Solver.markFunctionUnreachable(F);
|
|
FullySpecialized.insert(F);
|
|
}
|
|
}
|