
As reames mentioned on related reviews, we don't need the nocapture requirement here. First of all, from an API perspective, this is not something that MemoryLocation::getForDest() should be checking in the first place, because it does not affect which memory this particular call can access; it's an orthogonal concern that should be handled by the caller if necessary. However, for both of the motivating users in DSE and InstCombine, we don't need the nocapture requirement, because the capture can either be purely local to the call (a pointer identity check that is irrelevant to us), be part of the return value (which we check is unused), or be written in the dest location, which we have determined to be dead. This allows us to remove the special handling for libcalls as well. Differential Revision: https://reviews.llvm.org/D116148
344 lines
12 KiB
C++
344 lines
12 KiB
C++
//===- MemoryLocation.cpp - Memory location descriptions -------------------==//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Analysis/MemoryLocation.h"
|
|
#include "llvm/Analysis/TargetLibraryInfo.h"
|
|
#include "llvm/IR/BasicBlock.h"
|
|
#include "llvm/IR/DataLayout.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/IntrinsicInst.h"
|
|
#include "llvm/IR/IntrinsicsARM.h"
|
|
#include "llvm/IR/LLVMContext.h"
|
|
#include "llvm/IR/Module.h"
|
|
#include "llvm/IR/Type.h"
|
|
using namespace llvm;
|
|
|
|
void LocationSize::print(raw_ostream &OS) const {
|
|
OS << "LocationSize::";
|
|
if (*this == beforeOrAfterPointer())
|
|
OS << "beforeOrAfterPointer";
|
|
else if (*this == afterPointer())
|
|
OS << "afterPointer";
|
|
else if (*this == mapEmpty())
|
|
OS << "mapEmpty";
|
|
else if (*this == mapTombstone())
|
|
OS << "mapTombstone";
|
|
else if (isPrecise())
|
|
OS << "precise(" << getValue() << ')';
|
|
else
|
|
OS << "upperBound(" << getValue() << ')';
|
|
}
|
|
|
|
MemoryLocation MemoryLocation::get(const LoadInst *LI) {
|
|
const auto &DL = LI->getModule()->getDataLayout();
|
|
|
|
return MemoryLocation(
|
|
LI->getPointerOperand(),
|
|
LocationSize::precise(DL.getTypeStoreSize(LI->getType())),
|
|
LI->getAAMetadata());
|
|
}
|
|
|
|
MemoryLocation MemoryLocation::get(const StoreInst *SI) {
|
|
const auto &DL = SI->getModule()->getDataLayout();
|
|
|
|
return MemoryLocation(SI->getPointerOperand(),
|
|
LocationSize::precise(DL.getTypeStoreSize(
|
|
SI->getValueOperand()->getType())),
|
|
SI->getAAMetadata());
|
|
}
|
|
|
|
MemoryLocation MemoryLocation::get(const VAArgInst *VI) {
|
|
return MemoryLocation(VI->getPointerOperand(),
|
|
LocationSize::afterPointer(), VI->getAAMetadata());
|
|
}
|
|
|
|
MemoryLocation MemoryLocation::get(const AtomicCmpXchgInst *CXI) {
|
|
const auto &DL = CXI->getModule()->getDataLayout();
|
|
|
|
return MemoryLocation(CXI->getPointerOperand(),
|
|
LocationSize::precise(DL.getTypeStoreSize(
|
|
CXI->getCompareOperand()->getType())),
|
|
CXI->getAAMetadata());
|
|
}
|
|
|
|
MemoryLocation MemoryLocation::get(const AtomicRMWInst *RMWI) {
|
|
const auto &DL = RMWI->getModule()->getDataLayout();
|
|
|
|
return MemoryLocation(RMWI->getPointerOperand(),
|
|
LocationSize::precise(DL.getTypeStoreSize(
|
|
RMWI->getValOperand()->getType())),
|
|
RMWI->getAAMetadata());
|
|
}
|
|
|
|
Optional<MemoryLocation> MemoryLocation::getOrNone(const Instruction *Inst) {
|
|
switch (Inst->getOpcode()) {
|
|
case Instruction::Load:
|
|
return get(cast<LoadInst>(Inst));
|
|
case Instruction::Store:
|
|
return get(cast<StoreInst>(Inst));
|
|
case Instruction::VAArg:
|
|
return get(cast<VAArgInst>(Inst));
|
|
case Instruction::AtomicCmpXchg:
|
|
return get(cast<AtomicCmpXchgInst>(Inst));
|
|
case Instruction::AtomicRMW:
|
|
return get(cast<AtomicRMWInst>(Inst));
|
|
default:
|
|
return None;
|
|
}
|
|
}
|
|
|
|
MemoryLocation MemoryLocation::getForSource(const MemTransferInst *MTI) {
|
|
return getForSource(cast<AnyMemTransferInst>(MTI));
|
|
}
|
|
|
|
MemoryLocation MemoryLocation::getForSource(const AtomicMemTransferInst *MTI) {
|
|
return getForSource(cast<AnyMemTransferInst>(MTI));
|
|
}
|
|
|
|
MemoryLocation MemoryLocation::getForSource(const AnyMemTransferInst *MTI) {
|
|
assert(MTI->getRawSource() == MTI->getArgOperand(1));
|
|
return getForArgument(MTI, 1, nullptr);
|
|
}
|
|
|
|
MemoryLocation MemoryLocation::getForDest(const MemIntrinsic *MI) {
|
|
return getForDest(cast<AnyMemIntrinsic>(MI));
|
|
}
|
|
|
|
MemoryLocation MemoryLocation::getForDest(const AtomicMemIntrinsic *MI) {
|
|
return getForDest(cast<AnyMemIntrinsic>(MI));
|
|
}
|
|
|
|
MemoryLocation MemoryLocation::getForDest(const AnyMemIntrinsic *MI) {
|
|
assert(MI->getRawDest() == MI->getArgOperand(0));
|
|
return getForArgument(MI, 0, nullptr);
|
|
}
|
|
|
|
Optional<MemoryLocation>
|
|
MemoryLocation::getForDest(const CallBase *CB, const TargetLibraryInfo &TLI) {
|
|
if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(CB)) {
|
|
if (auto *MemInst = dyn_cast<AnyMemIntrinsic>(CB))
|
|
return getForDest(MemInst);
|
|
|
|
switch (II->getIntrinsicID()) {
|
|
default:
|
|
return None;
|
|
case Intrinsic::init_trampoline:
|
|
return MemoryLocation::getForArgument(CB, 0, TLI);
|
|
case Intrinsic::masked_store:
|
|
return MemoryLocation::getForArgument(CB, 1, TLI);
|
|
}
|
|
}
|
|
|
|
if (!CB->onlyAccessesArgMemory())
|
|
return None;
|
|
|
|
if (CB->hasOperandBundles())
|
|
// TODO: remove implementation restriction
|
|
return None;
|
|
|
|
Value *UsedV = nullptr;
|
|
Optional<unsigned> UsedIdx;
|
|
for (unsigned i = 0; i < CB->arg_size(); i++) {
|
|
if (!CB->getArgOperand(i)->getType()->isPointerTy())
|
|
continue;
|
|
if (CB->onlyReadsMemory(i))
|
|
continue;
|
|
if (!UsedV) {
|
|
// First potentially writing parameter
|
|
UsedV = CB->getArgOperand(i);
|
|
UsedIdx = i;
|
|
continue;
|
|
}
|
|
UsedIdx = None;
|
|
if (UsedV != CB->getArgOperand(i))
|
|
// Can't describe writing to two distinct locations.
|
|
// TODO: This results in an inprecision when two values derived from the
|
|
// same object are passed as arguments to the same function.
|
|
return None;
|
|
}
|
|
if (!UsedV)
|
|
// We don't currently have a way to represent a "does not write" result
|
|
// and thus have to be conservative and return unknown.
|
|
return None;
|
|
|
|
if (UsedIdx)
|
|
return getForArgument(CB, *UsedIdx, &TLI);
|
|
return MemoryLocation::getBeforeOrAfter(UsedV, CB->getAAMetadata());
|
|
}
|
|
|
|
MemoryLocation MemoryLocation::getForArgument(const CallBase *Call,
|
|
unsigned ArgIdx,
|
|
const TargetLibraryInfo *TLI) {
|
|
AAMDNodes AATags = Call->getAAMetadata();
|
|
const Value *Arg = Call->getArgOperand(ArgIdx);
|
|
|
|
// We may be able to produce an exact size for known intrinsics.
|
|
if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Call)) {
|
|
const DataLayout &DL = II->getModule()->getDataLayout();
|
|
|
|
switch (II->getIntrinsicID()) {
|
|
default:
|
|
break;
|
|
case Intrinsic::memset:
|
|
case Intrinsic::memcpy:
|
|
case Intrinsic::memcpy_inline:
|
|
case Intrinsic::memmove:
|
|
case Intrinsic::memcpy_element_unordered_atomic:
|
|
case Intrinsic::memmove_element_unordered_atomic:
|
|
case Intrinsic::memset_element_unordered_atomic:
|
|
assert((ArgIdx == 0 || ArgIdx == 1) &&
|
|
"Invalid argument index for memory intrinsic");
|
|
if (ConstantInt *LenCI = dyn_cast<ConstantInt>(II->getArgOperand(2)))
|
|
return MemoryLocation(Arg, LocationSize::precise(LenCI->getZExtValue()),
|
|
AATags);
|
|
return MemoryLocation::getAfter(Arg, AATags);
|
|
|
|
case Intrinsic::lifetime_start:
|
|
case Intrinsic::lifetime_end:
|
|
case Intrinsic::invariant_start:
|
|
assert(ArgIdx == 1 && "Invalid argument index");
|
|
return MemoryLocation(
|
|
Arg,
|
|
LocationSize::precise(
|
|
cast<ConstantInt>(II->getArgOperand(0))->getZExtValue()),
|
|
AATags);
|
|
|
|
case Intrinsic::masked_load:
|
|
assert(ArgIdx == 0 && "Invalid argument index");
|
|
return MemoryLocation(
|
|
Arg,
|
|
LocationSize::upperBound(DL.getTypeStoreSize(II->getType())),
|
|
AATags);
|
|
|
|
case Intrinsic::masked_store:
|
|
assert(ArgIdx == 1 && "Invalid argument index");
|
|
return MemoryLocation(
|
|
Arg,
|
|
LocationSize::upperBound(
|
|
DL.getTypeStoreSize(II->getArgOperand(0)->getType())),
|
|
AATags);
|
|
|
|
case Intrinsic::invariant_end:
|
|
// The first argument to an invariant.end is a "descriptor" type (e.g. a
|
|
// pointer to a empty struct) which is never actually dereferenced.
|
|
if (ArgIdx == 0)
|
|
return MemoryLocation(Arg, LocationSize::precise(0), AATags);
|
|
assert(ArgIdx == 2 && "Invalid argument index");
|
|
return MemoryLocation(
|
|
Arg,
|
|
LocationSize::precise(
|
|
cast<ConstantInt>(II->getArgOperand(1))->getZExtValue()),
|
|
AATags);
|
|
|
|
case Intrinsic::arm_neon_vld1:
|
|
assert(ArgIdx == 0 && "Invalid argument index");
|
|
// LLVM's vld1 and vst1 intrinsics currently only support a single
|
|
// vector register.
|
|
return MemoryLocation(
|
|
Arg, LocationSize::precise(DL.getTypeStoreSize(II->getType())),
|
|
AATags);
|
|
|
|
case Intrinsic::arm_neon_vst1:
|
|
assert(ArgIdx == 0 && "Invalid argument index");
|
|
return MemoryLocation(Arg,
|
|
LocationSize::precise(DL.getTypeStoreSize(
|
|
II->getArgOperand(1)->getType())),
|
|
AATags);
|
|
}
|
|
|
|
assert(
|
|
!isa<AnyMemTransferInst>(II) &&
|
|
"all memory transfer intrinsics should be handled by the switch above");
|
|
}
|
|
|
|
// We can bound the aliasing properties of memset_pattern16 just as we can
|
|
// for memcpy/memset. This is particularly important because the
|
|
// LoopIdiomRecognizer likes to turn loops into calls to memset_pattern16
|
|
// whenever possible.
|
|
LibFunc F;
|
|
if (TLI && TLI->getLibFunc(*Call, F) && TLI->has(F)) {
|
|
switch (F) {
|
|
case LibFunc_strcpy:
|
|
case LibFunc_strcat:
|
|
case LibFunc_strncat:
|
|
assert((ArgIdx == 0 || ArgIdx == 1) && "Invalid argument index for str function");
|
|
return MemoryLocation::getAfter(Arg, AATags);
|
|
|
|
case LibFunc_memset_chk: {
|
|
assert(ArgIdx == 0 && "Invalid argument index for memset_chk");
|
|
LocationSize Size = LocationSize::afterPointer();
|
|
if (const auto *Len = dyn_cast<ConstantInt>(Call->getArgOperand(2))) {
|
|
// memset_chk writes at most Len bytes. It may write less, if Len
|
|
// exceeds the specified max size and aborts.
|
|
Size = LocationSize::upperBound(Len->getZExtValue());
|
|
}
|
|
return MemoryLocation(Arg, Size, AATags);
|
|
}
|
|
case LibFunc_strncpy: {
|
|
assert((ArgIdx == 0 || ArgIdx == 1) &&
|
|
"Invalid argument index for strncpy");
|
|
LocationSize Size = LocationSize::afterPointer();
|
|
if (const auto *Len = dyn_cast<ConstantInt>(Call->getArgOperand(2))) {
|
|
// strncpy is guaranteed to write Len bytes, but only reads up to Len
|
|
// bytes.
|
|
Size = ArgIdx == 0 ? LocationSize::precise(Len->getZExtValue())
|
|
: LocationSize::upperBound(Len->getZExtValue());
|
|
}
|
|
return MemoryLocation(Arg, Size, AATags);
|
|
}
|
|
case LibFunc_memset_pattern16:
|
|
case LibFunc_memset_pattern4:
|
|
case LibFunc_memset_pattern8:
|
|
assert((ArgIdx == 0 || ArgIdx == 1) &&
|
|
"Invalid argument index for memset_pattern16");
|
|
if (ArgIdx == 1) {
|
|
unsigned Size = 16;
|
|
if (F == LibFunc_memset_pattern4)
|
|
Size = 4;
|
|
else if (F == LibFunc_memset_pattern8)
|
|
Size = 8;
|
|
return MemoryLocation(Arg, LocationSize::precise(Size), AATags);
|
|
}
|
|
if (const ConstantInt *LenCI =
|
|
dyn_cast<ConstantInt>(Call->getArgOperand(2)))
|
|
return MemoryLocation(Arg, LocationSize::precise(LenCI->getZExtValue()),
|
|
AATags);
|
|
return MemoryLocation::getAfter(Arg, AATags);
|
|
case LibFunc_bcmp:
|
|
case LibFunc_memcmp:
|
|
assert((ArgIdx == 0 || ArgIdx == 1) &&
|
|
"Invalid argument index for memcmp/bcmp");
|
|
if (const ConstantInt *LenCI =
|
|
dyn_cast<ConstantInt>(Call->getArgOperand(2)))
|
|
return MemoryLocation(Arg, LocationSize::precise(LenCI->getZExtValue()),
|
|
AATags);
|
|
return MemoryLocation::getAfter(Arg, AATags);
|
|
case LibFunc_memchr:
|
|
assert((ArgIdx == 0) && "Invalid argument index for memchr");
|
|
if (const ConstantInt *LenCI =
|
|
dyn_cast<ConstantInt>(Call->getArgOperand(2)))
|
|
return MemoryLocation(Arg, LocationSize::precise(LenCI->getZExtValue()),
|
|
AATags);
|
|
return MemoryLocation::getAfter(Arg, AATags);
|
|
case LibFunc_memccpy:
|
|
assert((ArgIdx == 0 || ArgIdx == 1) &&
|
|
"Invalid argument index for memccpy");
|
|
// We only know an upper bound on the number of bytes read/written.
|
|
if (const ConstantInt *LenCI =
|
|
dyn_cast<ConstantInt>(Call->getArgOperand(3)))
|
|
return MemoryLocation(
|
|
Arg, LocationSize::upperBound(LenCI->getZExtValue()), AATags);
|
|
return MemoryLocation::getAfter(Arg, AATags);
|
|
default:
|
|
break;
|
|
};
|
|
}
|
|
|
|
return MemoryLocation::getBeforeOrAfter(Call->getArgOperand(ArgIdx), AATags);
|
|
}
|