llvm-project/llvm/lib/CodeGen/SelectOptimize.cpp
Sotiris Apostolakis 8b42bc5662 [SelectOpti][3/5] Base Heuristics
This patch adds the base heuristics for determining whether branches are more profitable than conditional moves.
Base heuristics apply to all code apart from inner-most loops.

Depends on D122259

Reviewed By: davidxl

Differential Revision: https://reviews.llvm.org/D120231
2022-05-23 22:01:12 -04:00

543 lines
20 KiB
C++

//===--- SelectOptimize.cpp - Convert select to branches if profitable ---===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This pass converts selects to conditional jumps when profitable.
//
//===----------------------------------------------------------------------===//
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/BlockFrequencyInfo.h"
#include "llvm/Analysis/BranchProbabilityInfo.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
#include "llvm/Analysis/ProfileSummaryInfo.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/TargetLowering.h"
#include "llvm/CodeGen/TargetPassConfig.h"
#include "llvm/CodeGen/TargetSchedule.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/Instruction.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Transforms/Utils/SizeOpts.h"
#include <algorithm>
#include <memory>
#include <queue>
#include <stack>
#include <string>
using namespace llvm;
#define DEBUG_TYPE "select-optimize"
STATISTIC(NumSelectOptAnalyzed,
"Number of select groups considered for conversion to branch");
STATISTIC(NumSelectConvertedExpColdOperand,
"Number of select groups converted due to expensive cold operand");
STATISTIC(NumSelectConvertedHighPred,
"Number of select groups converted due to high-predictability");
STATISTIC(NumSelectUnPred,
"Number of select groups not converted due to unpredictability");
STATISTIC(NumSelectColdBB,
"Number of select groups not converted due to cold basic block");
STATISTIC(NumSelectsConverted, "Number of selects converted");
static cl::opt<unsigned> ColdOperandThreshold(
"cold-operand-threshold",
cl::desc("Maximum frequency of path for an operand to be considered cold."),
cl::init(20), cl::Hidden);
static cl::opt<unsigned> ColdOperandMaxCostMultiplier(
"cold-operand-max-cost-multiplier",
cl::desc("Maximum cost multiplier of TCC_expensive for the dependence "
"slice of a cold operand to be considered inexpensive."),
cl::init(1), cl::Hidden);
namespace {
class SelectOptimize : public FunctionPass {
const TargetMachine *TM = nullptr;
const TargetSubtargetInfo *TSI;
const TargetLowering *TLI = nullptr;
const TargetTransformInfo *TTI = nullptr;
const LoopInfo *LI;
DominatorTree *DT;
std::unique_ptr<BlockFrequencyInfo> BFI;
std::unique_ptr<BranchProbabilityInfo> BPI;
ProfileSummaryInfo *PSI;
OptimizationRemarkEmitter *ORE;
public:
static char ID;
SelectOptimize() : FunctionPass(ID) {
initializeSelectOptimizePass(*PassRegistry::getPassRegistry());
}
bool runOnFunction(Function &F) override;
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.addRequired<ProfileSummaryInfoWrapperPass>();
AU.addRequired<TargetPassConfig>();
AU.addRequired<TargetTransformInfoWrapperPass>();
AU.addRequired<DominatorTreeWrapperPass>();
AU.addRequired<LoopInfoWrapperPass>();
AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
}
private:
// Select groups consist of consecutive select instructions with the same
// condition.
using SelectGroup = SmallVector<SelectInst *, 2>;
using SelectGroups = SmallVector<SelectGroup, 2>;
// Converts select instructions of a function to conditional jumps when deemed
// profitable. Returns true if at least one select was converted.
bool optimizeSelects(Function &F);
// Heuristics for determining which select instructions can be profitably
// conveted to branches. Separate heuristics for selects in inner-most loops
// and the rest of code regions (base heuristics for non-inner-most loop
// regions).
void optimizeSelectsBase(Function &F, SelectGroups &ProfSIGroups);
void optimizeSelectsInnerLoops(Function &F, SelectGroups &ProfSIGroups);
// Converts to branches the select groups that were deemed
// profitable-to-convert.
void convertProfitableSIGroups(SelectGroups &ProfSIGroups);
// Splits selects of a given basic block into select groups.
void collectSelectGroups(BasicBlock &BB, SelectGroups &SIGroups);
// Determines for which select groups it is profitable converting to branches
// (base heuristics).
void findProfitableSIGroupsBase(SelectGroups &SIGroups,
SelectGroups &ProfSIGroups);
// Determines if a select group should be converted to a branch (base
// heuristics).
bool isConvertToBranchProfitableBase(const SmallVector<SelectInst *, 2> &ASI);
// Returns true if there are expensive instructions in the cold value
// operand's (if any) dependence slice of any of the selects of the given
// group.
bool hasExpensiveColdOperand(const SmallVector<SelectInst *, 2> &ASI);
// For a given source instruction, collect its backwards dependence slice
// consisting of instructions exclusively computed for producing the operands
// of the source instruction.
void getExclBackwardsSlice(Instruction *I,
SmallVector<Instruction *, 2> &Slice);
// Returns true if the condition of the select is highly predictable.
bool isSelectHighlyPredictable(const SelectInst *SI);
// Returns true if the target architecture supports lowering a given select.
bool isSelectKindSupported(SelectInst *SI);
};
} // namespace
char SelectOptimize::ID = 0;
INITIALIZE_PASS_BEGIN(SelectOptimize, DEBUG_TYPE, "Optimize selects", false,
false)
INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
INITIALIZE_PASS_END(SelectOptimize, DEBUG_TYPE, "Optimize selects", false,
false)
FunctionPass *llvm::createSelectOptimizePass() { return new SelectOptimize(); }
bool SelectOptimize::runOnFunction(Function &F) {
TM = &getAnalysis<TargetPassConfig>().getTM<TargetMachine>();
TSI = TM->getSubtargetImpl(F);
TLI = TSI->getTargetLowering();
// If none of the select types is supported then skip this pass.
// This is an optimization pass. Legality issues will be handled by
// instruction selection.
if (!TLI->isSelectSupported(TargetLowering::ScalarValSelect) &&
!TLI->isSelectSupported(TargetLowering::ScalarCondVectorVal) &&
!TLI->isSelectSupported(TargetLowering::VectorMaskSelect))
return false;
TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
BPI.reset(new BranchProbabilityInfo(F, *LI));
BFI.reset(new BlockFrequencyInfo(F, *BPI, *LI));
PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
// When optimizing for size, selects are preferable over branches.
if (F.hasOptSize() || llvm::shouldOptimizeForSize(&F, PSI, BFI.get()))
return false;
return optimizeSelects(F);
}
bool SelectOptimize::optimizeSelects(Function &F) {
// Determine for which select groups it is profitable converting to branches.
SelectGroups ProfSIGroups;
// Base heuristics apply only to non-loops and outer loops.
optimizeSelectsBase(F, ProfSIGroups);
// Separate heuristics for inner-most loops.
optimizeSelectsInnerLoops(F, ProfSIGroups);
// Convert to branches the select groups that were deemed
// profitable-to-convert.
convertProfitableSIGroups(ProfSIGroups);
// Code modified if at least one select group was converted.
return !ProfSIGroups.empty();
}
void SelectOptimize::optimizeSelectsBase(Function &F,
SelectGroups &ProfSIGroups) {
// Collect all the select groups.
SelectGroups SIGroups;
for (BasicBlock &BB : F) {
// Base heuristics apply only to non-loops and outer loops.
Loop *L = LI->getLoopFor(&BB);
if (L && L->isInnermost())
continue;
collectSelectGroups(BB, SIGroups);
}
// Determine for which select groups it is profitable converting to branches.
findProfitableSIGroupsBase(SIGroups, ProfSIGroups);
}
void SelectOptimize::optimizeSelectsInnerLoops(Function &F,
SelectGroups &ProfSIGroups) {}
/// If \p isTrue is true, return the true value of \p SI, otherwise return
/// false value of \p SI. If the true/false value of \p SI is defined by any
/// select instructions in \p Selects, look through the defining select
/// instruction until the true/false value is not defined in \p Selects.
static Value *
getTrueOrFalseValue(SelectInst *SI, bool isTrue,
const SmallPtrSet<const Instruction *, 2> &Selects) {
Value *V = nullptr;
for (SelectInst *DefSI = SI; DefSI != nullptr && Selects.count(DefSI);
DefSI = dyn_cast<SelectInst>(V)) {
assert(DefSI->getCondition() == SI->getCondition() &&
"The condition of DefSI does not match with SI");
V = (isTrue ? DefSI->getTrueValue() : DefSI->getFalseValue());
}
assert(V && "Failed to get select true/false value");
return V;
}
void SelectOptimize::convertProfitableSIGroups(SelectGroups &ProfSIGroups) {
for (SelectGroup &ASI : ProfSIGroups) {
// TODO: eliminate the redundancy of logic transforming selects to branches
// by removing CodeGenPrepare::optimizeSelectInst and optimizing here
// selects for all cases (with and without profile information).
// Transform a sequence like this:
// start:
// %cmp = cmp uge i32 %a, %b
// %sel = select i1 %cmp, i32 %c, i32 %d
//
// Into:
// start:
// %cmp = cmp uge i32 %a, %b
// %cmp.frozen = freeze %cmp
// br i1 %cmp.frozen, label %select.end, label %select.false
// select.false:
// br label %select.end
// select.end:
// %sel = phi i32 [ %c, %start ], [ %d, %select.false ]
//
// %cmp should be frozen, otherwise it may introduce undefined behavior.
// We split the block containing the select(s) into two blocks.
SelectInst *SI = ASI.front();
SelectInst *LastSI = ASI.back();
BasicBlock *StartBlock = SI->getParent();
BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(LastSI));
BasicBlock *EndBlock = StartBlock->splitBasicBlock(SplitPt, "select.end");
BFI->setBlockFreq(EndBlock, BFI->getBlockFreq(StartBlock).getFrequency());
// Delete the unconditional branch that was just created by the split.
StartBlock->getTerminator()->eraseFromParent();
// Move any debug/pseudo instructions that were in-between the select
// group to the newly-created end block.
SmallVector<Instruction *, 2> DebugPseudoINS;
auto DIt = SI->getIterator();
while (&*DIt != LastSI) {
if (DIt->isDebugOrPseudoInst())
DebugPseudoINS.push_back(&*DIt);
DIt++;
}
for (auto DI : DebugPseudoINS) {
DI->moveBefore(&*EndBlock->getFirstInsertionPt());
}
// These are the new basic blocks for the conditional branch.
// For now, no instruction sinking to the true/false blocks.
// Thus both True and False blocks will be empty.
BasicBlock *TrueBlock = nullptr, *FalseBlock = nullptr;
// Use the 'false' side for a new input value to the PHI.
FalseBlock = BasicBlock::Create(SI->getContext(), "select.false",
EndBlock->getParent(), EndBlock);
auto *FalseBranch = BranchInst::Create(EndBlock, FalseBlock);
FalseBranch->setDebugLoc(SI->getDebugLoc());
// For the 'true' side the path originates from the start block from the
// point view of the new PHI.
TrueBlock = StartBlock;
// Insert the real conditional branch based on the original condition.
BasicBlock *TT, *FT;
TT = EndBlock;
FT = FalseBlock;
IRBuilder<> IB(SI);
auto *CondFr =
IB.CreateFreeze(SI->getCondition(), SI->getName() + ".frozen");
IB.CreateCondBr(CondFr, TT, FT, SI);
SmallPtrSet<const Instruction *, 2> INS;
INS.insert(ASI.begin(), ASI.end());
// Use reverse iterator because later select may use the value of the
// earlier select, and we need to propagate value through earlier select
// to get the PHI operand.
for (auto It = ASI.rbegin(); It != ASI.rend(); ++It) {
SelectInst *SI = *It;
// The select itself is replaced with a PHI Node.
PHINode *PN = PHINode::Create(SI->getType(), 2, "", &EndBlock->front());
PN->takeName(SI);
PN->addIncoming(getTrueOrFalseValue(SI, true, INS), TrueBlock);
PN->addIncoming(getTrueOrFalseValue(SI, false, INS), FalseBlock);
PN->setDebugLoc(SI->getDebugLoc());
SI->replaceAllUsesWith(PN);
SI->eraseFromParent();
INS.erase(SI);
++NumSelectsConverted;
}
}
}
void SelectOptimize::collectSelectGroups(BasicBlock &BB,
SelectGroups &SIGroups) {
BasicBlock::iterator BBIt = BB.begin();
while (BBIt != BB.end()) {
Instruction *I = &*BBIt++;
if (SelectInst *SI = dyn_cast<SelectInst>(I)) {
SelectGroup SIGroup;
SIGroup.push_back(SI);
while (BBIt != BB.end()) {
Instruction *NI = &*BBIt;
SelectInst *NSI = dyn_cast<SelectInst>(NI);
if (NSI && SI->getCondition() == NSI->getCondition()) {
SIGroup.push_back(NSI);
} else if (!NI->isDebugOrPseudoInst()) {
// Debug/pseudo instructions should be skipped and not prevent the
// formation of a select group.
break;
}
++BBIt;
}
// If the select type is not supported, no point optimizing it.
// Instruction selection will take care of it.
if (!isSelectKindSupported(SI))
continue;
SIGroups.push_back(SIGroup);
}
}
}
void SelectOptimize::findProfitableSIGroupsBase(SelectGroups &SIGroups,
SelectGroups &ProfSIGroups) {
for (SelectGroup &ASI : SIGroups) {
++NumSelectOptAnalyzed;
if (isConvertToBranchProfitableBase(ASI))
ProfSIGroups.push_back(ASI);
}
}
bool SelectOptimize::isConvertToBranchProfitableBase(
const SmallVector<SelectInst *, 2> &ASI) {
SelectInst *SI = ASI.front();
OptimizationRemark OR(DEBUG_TYPE, "SelectOpti", SI);
OptimizationRemarkMissed ORmiss(DEBUG_TYPE, "SelectOpti", SI);
// Skip cold basic blocks. Better to optimize for size for cold blocks.
if (PSI->isColdBlock(SI->getParent(), BFI.get())) {
++NumSelectColdBB;
ORmiss << "Not converted to branch because of cold basic block. ";
ORE->emit(ORmiss);
return false;
}
// If unpredictable, branch form is less profitable.
if (SI->getMetadata(LLVMContext::MD_unpredictable)) {
++NumSelectUnPred;
ORmiss << "Not converted to branch because of unpredictable branch. ";
ORE->emit(ORmiss);
return false;
}
// If highly predictable, branch form is more profitable, unless a
// predictable select is inexpensive in the target architecture.
if (isSelectHighlyPredictable(SI) && TLI->isPredictableSelectExpensive()) {
++NumSelectConvertedHighPred;
OR << "Converted to branch because of highly predictable branch. ";
ORE->emit(OR);
return true;
}
// Look for expensive instructions in the cold operand's (if any) dependence
// slice of any of the selects in the group.
if (hasExpensiveColdOperand(ASI)) {
++NumSelectConvertedExpColdOperand;
OR << "Converted to branch because of expensive cold operand.";
ORE->emit(OR);
return true;
}
ORmiss << "Not profitable to convert to branch (base heuristic).";
ORE->emit(ORmiss);
return false;
}
static InstructionCost divideNearest(InstructionCost Numerator,
uint64_t Denominator) {
return (Numerator + (Denominator / 2)) / Denominator;
}
bool SelectOptimize::hasExpensiveColdOperand(
const SmallVector<SelectInst *, 2> &ASI) {
bool ColdOperand = false;
uint64_t TrueWeight, FalseWeight, TotalWeight;
if (ASI.front()->extractProfMetadata(TrueWeight, FalseWeight)) {
uint64_t MinWeight = std::min(TrueWeight, FalseWeight);
TotalWeight = TrueWeight + FalseWeight;
// Is there a path with frequency <ColdOperandThreshold% (default:20%) ?
ColdOperand = TotalWeight * ColdOperandThreshold > 100 * MinWeight;
} else if (PSI->hasProfileSummary()) {
OptimizationRemarkMissed ORmiss(DEBUG_TYPE, "SelectOpti", ASI.front());
ORmiss << "Profile data available but missing branch-weights metadata for "
"select instruction. ";
ORE->emit(ORmiss);
}
if (!ColdOperand)
return false;
// Check if the cold path's dependence slice is expensive for any of the
// selects of the group.
for (SelectInst *SI : ASI) {
Instruction *ColdI = nullptr;
uint64_t HotWeight;
if (TrueWeight < FalseWeight) {
ColdI = dyn_cast<Instruction>(SI->getTrueValue());
HotWeight = FalseWeight;
} else {
ColdI = dyn_cast<Instruction>(SI->getFalseValue());
HotWeight = TrueWeight;
}
if (ColdI) {
SmallVector<Instruction *, 2> ColdSlice;
getExclBackwardsSlice(ColdI, ColdSlice);
InstructionCost SliceCost = 0;
for (auto *ColdII : ColdSlice) {
SliceCost +=
TTI->getInstructionCost(ColdII, TargetTransformInfo::TCK_Latency);
}
// The colder the cold value operand of the select is the more expensive
// the cmov becomes for computing the cold value operand every time. Thus,
// the colder the cold operand is the more its cost counts.
// Get nearest integer cost adjusted for coldness.
InstructionCost AdjSliceCost =
divideNearest(SliceCost * HotWeight, TotalWeight);
if (AdjSliceCost >=
ColdOperandMaxCostMultiplier * TargetTransformInfo::TCC_Expensive)
return true;
}
}
return false;
}
// For a given source instruction, collect its backwards dependence slice
// consisting of instructions exclusively computed for the purpose of producing
// the operands of the source instruction. As an approximation
// (sufficiently-accurate in practice), we populate this set with the
// instructions of the backwards dependence slice that only have one-use and
// form an one-use chain that leads to the source instruction.
void SelectOptimize::getExclBackwardsSlice(
Instruction *I, SmallVector<Instruction *, 2> &Slice) {
SmallPtrSet<Instruction *, 2> Visited;
std::queue<Instruction *> Worklist;
Worklist.push(I);
while (!Worklist.empty()) {
Instruction *II = Worklist.front();
Worklist.pop();
// Avoid cycles.
if (Visited.count(II))
continue;
Visited.insert(II);
if (!II->hasOneUse())
continue;
// Avoid considering instructions with less frequency than the source
// instruction (i.e., avoid colder code regions of the dependence slice).
if (BFI->getBlockFreq(II->getParent()) < BFI->getBlockFreq(I->getParent()))
continue;
// Eligible one-use instruction added to the dependence slice.
Slice.push_back(II);
// Explore all the operands of the current instruction to expand the slice.
for (unsigned k = 0; k < II->getNumOperands(); ++k)
if (auto *OpI = dyn_cast<Instruction>(II->getOperand(k)))
Worklist.push(OpI);
}
}
bool SelectOptimize::isSelectHighlyPredictable(const SelectInst *SI) {
uint64_t TrueWeight, FalseWeight;
if (SI->extractProfMetadata(TrueWeight, FalseWeight)) {
uint64_t Max = std::max(TrueWeight, FalseWeight);
uint64_t Sum = TrueWeight + FalseWeight;
if (Sum != 0) {
auto Probability = BranchProbability::getBranchProbability(Max, Sum);
if (Probability > TTI->getPredictableBranchThreshold())
return true;
}
}
return false;
}
bool SelectOptimize::isSelectKindSupported(SelectInst *SI) {
bool VectorCond = !SI->getCondition()->getType()->isIntegerTy(1);
if (VectorCond)
return false;
TargetLowering::SelectSupportKind SelectKind;
if (SI->getType()->isVectorTy())
SelectKind = TargetLowering::ScalarCondVectorVal;
else
SelectKind = TargetLowering::ScalarValSelect;
return TLI->isSelectSupported(SelectKind);
}