
We can get the `mvendorid/marchid/mimpid` via hwprobe and then we can compare these IDs with those defined in processors to find the CPU name. With this change, `-mcpu/-mtune=native` can set the proper name.
249 lines
7.3 KiB
C++
249 lines
7.3 KiB
C++
//===-- RISCVTargetParser.cpp - Parser for target features ------*- C++ -*-===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements a target parser to recognise hardware features
|
|
// for RISC-V CPUs.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/TargetParser/RISCVTargetParser.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/StringSwitch.h"
|
|
#include "llvm/TargetParser/RISCVISAInfo.h"
|
|
|
|
namespace llvm {
|
|
namespace RISCV {
|
|
|
|
enum CPUKind : unsigned {
|
|
#define PROC(ENUM, NAME, DEFAULT_MARCH, FAST_SCALAR_UNALIGN, \
|
|
FAST_VECTOR_UNALIGN, MVENDORID, MARCHID, MIMPID) \
|
|
CK_##ENUM,
|
|
#define TUNE_PROC(ENUM, NAME) CK_##ENUM,
|
|
#include "llvm/TargetParser/RISCVTargetParserDef.inc"
|
|
};
|
|
|
|
constexpr CPUInfo RISCVCPUInfo[] = {
|
|
#define PROC(ENUM, NAME, DEFAULT_MARCH, FAST_SCALAR_UNALIGN, \
|
|
FAST_VECTOR_UNALIGN, MVENDORID, MARCHID, MIMPID) \
|
|
{ \
|
|
NAME, \
|
|
DEFAULT_MARCH, \
|
|
FAST_SCALAR_UNALIGN, \
|
|
FAST_VECTOR_UNALIGN, \
|
|
{MVENDORID, MARCHID, MIMPID}, \
|
|
},
|
|
#include "llvm/TargetParser/RISCVTargetParserDef.inc"
|
|
};
|
|
|
|
static const CPUInfo *getCPUInfoByName(StringRef CPU) {
|
|
for (auto &C : RISCVCPUInfo)
|
|
if (C.Name == CPU)
|
|
return &C;
|
|
return nullptr;
|
|
}
|
|
|
|
bool hasFastScalarUnalignedAccess(StringRef CPU) {
|
|
const CPUInfo *Info = getCPUInfoByName(CPU);
|
|
return Info && Info->FastScalarUnalignedAccess;
|
|
}
|
|
|
|
bool hasFastVectorUnalignedAccess(StringRef CPU) {
|
|
const CPUInfo *Info = getCPUInfoByName(CPU);
|
|
return Info && Info->FastVectorUnalignedAccess;
|
|
}
|
|
|
|
bool hasValidCPUModel(StringRef CPU) { return getCPUModel(CPU).isValid(); }
|
|
|
|
CPUModel getCPUModel(StringRef CPU) {
|
|
const CPUInfo *Info = getCPUInfoByName(CPU);
|
|
if (!Info)
|
|
return {0, 0, 0};
|
|
return Info->Model;
|
|
}
|
|
|
|
StringRef getCPUNameFromCPUModel(const CPUModel &Model) {
|
|
if (!Model.isValid())
|
|
return "";
|
|
|
|
for (auto &C : RISCVCPUInfo)
|
|
if (C.Model == Model)
|
|
return C.Name;
|
|
return "";
|
|
}
|
|
|
|
bool parseCPU(StringRef CPU, bool IsRV64) {
|
|
const CPUInfo *Info = getCPUInfoByName(CPU);
|
|
|
|
if (!Info)
|
|
return false;
|
|
return Info->is64Bit() == IsRV64;
|
|
}
|
|
|
|
bool parseTuneCPU(StringRef TuneCPU, bool IsRV64) {
|
|
std::optional<CPUKind> Kind =
|
|
llvm::StringSwitch<std::optional<CPUKind>>(TuneCPU)
|
|
#define TUNE_PROC(ENUM, NAME) .Case(NAME, CK_##ENUM)
|
|
#include "llvm/TargetParser/RISCVTargetParserDef.inc"
|
|
.Default(std::nullopt);
|
|
|
|
if (Kind.has_value())
|
|
return true;
|
|
|
|
// Fallback to parsing as a CPU.
|
|
return parseCPU(TuneCPU, IsRV64);
|
|
}
|
|
|
|
StringRef getMArchFromMcpu(StringRef CPU) {
|
|
const CPUInfo *Info = getCPUInfoByName(CPU);
|
|
if (!Info)
|
|
return "";
|
|
return Info->DefaultMarch;
|
|
}
|
|
|
|
void fillValidCPUArchList(SmallVectorImpl<StringRef> &Values, bool IsRV64) {
|
|
for (const auto &C : RISCVCPUInfo) {
|
|
if (IsRV64 == C.is64Bit())
|
|
Values.emplace_back(C.Name);
|
|
}
|
|
}
|
|
|
|
void fillValidTuneCPUArchList(SmallVectorImpl<StringRef> &Values, bool IsRV64) {
|
|
for (const auto &C : RISCVCPUInfo) {
|
|
if (IsRV64 == C.is64Bit())
|
|
Values.emplace_back(C.Name);
|
|
}
|
|
#define TUNE_PROC(ENUM, NAME) Values.emplace_back(StringRef(NAME));
|
|
#include "llvm/TargetParser/RISCVTargetParserDef.inc"
|
|
}
|
|
|
|
// This function is currently used by IREE, so it's not dead code.
|
|
void getFeaturesForCPU(StringRef CPU,
|
|
SmallVectorImpl<std::string> &EnabledFeatures,
|
|
bool NeedPlus) {
|
|
StringRef MarchFromCPU = llvm::RISCV::getMArchFromMcpu(CPU);
|
|
if (MarchFromCPU == "")
|
|
return;
|
|
|
|
EnabledFeatures.clear();
|
|
auto RII = RISCVISAInfo::parseArchString(
|
|
MarchFromCPU, /* EnableExperimentalExtension */ true);
|
|
|
|
if (llvm::errorToBool(RII.takeError()))
|
|
return;
|
|
|
|
std::vector<std::string> FeatStrings =
|
|
(*RII)->toFeatures(/* AddAllExtensions */ false);
|
|
for (const auto &F : FeatStrings)
|
|
if (NeedPlus)
|
|
EnabledFeatures.push_back(F);
|
|
else
|
|
EnabledFeatures.push_back(F.substr(1));
|
|
}
|
|
|
|
} // namespace RISCV
|
|
|
|
namespace RISCVVType {
|
|
// Encode VTYPE into the binary format used by the the VSETVLI instruction which
|
|
// is used by our MC layer representation.
|
|
//
|
|
// Bits | Name | Description
|
|
// -----+------------+------------------------------------------------
|
|
// 7 | vma | Vector mask agnostic
|
|
// 6 | vta | Vector tail agnostic
|
|
// 5:3 | vsew[2:0] | Standard element width (SEW) setting
|
|
// 2:0 | vlmul[2:0] | Vector register group multiplier (LMUL) setting
|
|
unsigned encodeVTYPE(VLMUL VLMul, unsigned SEW, bool TailAgnostic,
|
|
bool MaskAgnostic) {
|
|
assert(isValidSEW(SEW) && "Invalid SEW");
|
|
unsigned VLMulBits = static_cast<unsigned>(VLMul);
|
|
unsigned VSEWBits = encodeSEW(SEW);
|
|
unsigned VTypeI = (VSEWBits << 3) | (VLMulBits & 0x7);
|
|
if (TailAgnostic)
|
|
VTypeI |= 0x40;
|
|
if (MaskAgnostic)
|
|
VTypeI |= 0x80;
|
|
|
|
return VTypeI;
|
|
}
|
|
|
|
unsigned encodeXSfmmVType(unsigned SEW, unsigned Widen, bool AltFmt) {
|
|
assert(isValidSEW(SEW) && "Invalid SEW");
|
|
assert((Widen == 1 || Widen == 2 || Widen == 4) && "Invalid Widen");
|
|
unsigned VSEWBits = encodeSEW(SEW);
|
|
unsigned TWiden = Log2_32(Widen) + 1;
|
|
unsigned VTypeI = (VSEWBits << 3) | AltFmt << 8 | TWiden << 9;
|
|
return VTypeI;
|
|
}
|
|
|
|
std::pair<unsigned, bool> decodeVLMUL(VLMUL VLMul) {
|
|
switch (VLMul) {
|
|
default:
|
|
llvm_unreachable("Unexpected LMUL value!");
|
|
case LMUL_1:
|
|
case LMUL_2:
|
|
case LMUL_4:
|
|
case LMUL_8:
|
|
return std::make_pair(1 << static_cast<unsigned>(VLMul), false);
|
|
case LMUL_F2:
|
|
case LMUL_F4:
|
|
case LMUL_F8:
|
|
return std::make_pair(1 << (8 - static_cast<unsigned>(VLMul)), true);
|
|
}
|
|
}
|
|
|
|
void printVType(unsigned VType, raw_ostream &OS) {
|
|
unsigned Sew = getSEW(VType);
|
|
OS << "e" << Sew;
|
|
|
|
unsigned LMul;
|
|
bool Fractional;
|
|
std::tie(LMul, Fractional) = decodeVLMUL(getVLMUL(VType));
|
|
|
|
if (Fractional)
|
|
OS << ", mf";
|
|
else
|
|
OS << ", m";
|
|
OS << LMul;
|
|
|
|
if (isTailAgnostic(VType))
|
|
OS << ", ta";
|
|
else
|
|
OS << ", tu";
|
|
|
|
if (isMaskAgnostic(VType))
|
|
OS << ", ma";
|
|
else
|
|
OS << ", mu";
|
|
}
|
|
|
|
unsigned getSEWLMULRatio(unsigned SEW, VLMUL VLMul) {
|
|
unsigned LMul;
|
|
bool Fractional;
|
|
std::tie(LMul, Fractional) = decodeVLMUL(VLMul);
|
|
|
|
// Convert LMul to a fixed point value with 3 fractional bits.
|
|
LMul = Fractional ? (8 / LMul) : (LMul * 8);
|
|
|
|
assert(SEW >= 8 && "Unexpected SEW value");
|
|
return (SEW * 8) / LMul;
|
|
}
|
|
|
|
std::optional<VLMUL> getSameRatioLMUL(unsigned SEW, VLMUL VLMul, unsigned EEW) {
|
|
unsigned Ratio = RISCVVType::getSEWLMULRatio(SEW, VLMul);
|
|
unsigned EMULFixedPoint = (EEW * 8) / Ratio;
|
|
bool Fractional = EMULFixedPoint < 8;
|
|
unsigned EMUL = Fractional ? 8 / EMULFixedPoint : EMULFixedPoint / 8;
|
|
if (!isValidLMUL(EMUL, Fractional))
|
|
return std::nullopt;
|
|
return RISCVVType::encodeLMUL(EMUL, Fractional);
|
|
}
|
|
|
|
} // namespace RISCVVType
|
|
|
|
} // namespace llvm
|