
Currently this optimization only occurs for `mul`, but this generalizes that for any operation that has a fixed point of `0`. There is similar logic within `EarlyCSE` pass, but that is stricter in terms of `poison` propagation so will not optimize for many operations. Alive2 Proofs: `and`: https://alive2.llvm.org/ce/z/RraasX ; base-case https://alive2.llvm.org/ce/z/gzfFTX ; commuted-case https://alive2.llvm.org/ce/z/63XaoX ; compare against undef https://alive2.llvm.org/ce/z/MVRVNd ; select undef https://alive2.llvm.org/ce/z/2bsoYG ; vector https://alive2.llvm.org/ce/z/xByeX- ; vector compare against undef https://alive2.llvm.org/ce/z/zNdzmZ ; vector select undef `fshl`: https://alive2.llvm.org/ce/z/U3_PG3 ; base-case https://alive2.llvm.org/ce/z/BWCnxT ; compare against undef https://alive2.llvm.org/ce/z/8HGAE_ ; select undef ; vector times out `fshr`: https://alive2.llvm.org/ce/z/o6F47G ; base-case https://alive2.llvm.org/ce/z/fVnBXy ; compare against undef https://alive2.llvm.org/ce/z/suymYJ ; select undef ; vector times out `umin`: https://alive2.llvm.org/ce/z/GGMqf6 ; base-case https://alive2.llvm.org/ce/z/6cx5-k ; commuted-case https://alive2.llvm.org/ce/z/W5d9tz ; compare against undef https://alive2.llvm.org/ce/z/nKbaUn ; select undef https://alive2.llvm.org/ce/z/gxEGqc ; vector https://alive2.llvm.org/ce/z/_SDpi_ ; vector compare against undef `sdiv`: https://alive2.llvm.org/ce/z/5XGs3q `srem`: https://alive2.llvm.org/ce/z/vXAnQM `udiv`: https://alive2.llvm.org/ce/z/e6_8Ug `urem`: https://alive2.llvm.org/ce/z/VmM2SL `shl`: https://alive2.llvm.org/ce/z/aCZr3u ; Argument with range https://alive2.llvm.org/ce/z/YgDy8C ; Instruction with known bits https://alive2.llvm.org/ce/z/6pIxR6 ; Constant `lshr`: https://alive2.llvm.org/ce/z/WCCBej `ashr: https://alive2.llvm.org/ce/z/egV4TR --------- Co-authored-by: Ryan Buchner <rbuchner@ventanamicro.com> Co-authored-by: Yingwei Zheng <dtcxzyw@qq.com>
4524 lines
175 KiB
C++
4524 lines
175 KiB
C++
//===- InstCombineSelect.cpp ----------------------------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements the visitSelect function.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "InstCombineInternal.h"
|
|
#include "llvm/ADT/APInt.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/Analysis/AssumptionCache.h"
|
|
#include "llvm/Analysis/CmpInstAnalysis.h"
|
|
#include "llvm/Analysis/InstructionSimplify.h"
|
|
#include "llvm/Analysis/OverflowInstAnalysis.h"
|
|
#include "llvm/Analysis/ValueTracking.h"
|
|
#include "llvm/Analysis/VectorUtils.h"
|
|
#include "llvm/IR/BasicBlock.h"
|
|
#include "llvm/IR/Constant.h"
|
|
#include "llvm/IR/ConstantRange.h"
|
|
#include "llvm/IR/Constants.h"
|
|
#include "llvm/IR/DerivedTypes.h"
|
|
#include "llvm/IR/FMF.h"
|
|
#include "llvm/IR/IRBuilder.h"
|
|
#include "llvm/IR/InstrTypes.h"
|
|
#include "llvm/IR/Instruction.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/IntrinsicInst.h"
|
|
#include "llvm/IR/Intrinsics.h"
|
|
#include "llvm/IR/Operator.h"
|
|
#include "llvm/IR/PatternMatch.h"
|
|
#include "llvm/IR/Type.h"
|
|
#include "llvm/IR/User.h"
|
|
#include "llvm/IR/Value.h"
|
|
#include "llvm/Support/Casting.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/KnownBits.h"
|
|
#include "llvm/Transforms/InstCombine/InstCombiner.h"
|
|
#include <cassert>
|
|
#include <utility>
|
|
|
|
#define DEBUG_TYPE "instcombine"
|
|
#include "llvm/Transforms/Utils/InstructionWorklist.h"
|
|
|
|
using namespace llvm;
|
|
using namespace PatternMatch;
|
|
|
|
|
|
/// Replace a select operand based on an equality comparison with the identity
|
|
/// constant of a binop.
|
|
static Instruction *foldSelectBinOpIdentity(SelectInst &Sel,
|
|
const TargetLibraryInfo &TLI,
|
|
InstCombinerImpl &IC) {
|
|
// The select condition must be an equality compare with a constant operand.
|
|
Value *X;
|
|
Constant *C;
|
|
CmpPredicate Pred;
|
|
if (!match(Sel.getCondition(), m_Cmp(Pred, m_Value(X), m_Constant(C))))
|
|
return nullptr;
|
|
|
|
bool IsEq;
|
|
if (ICmpInst::isEquality(Pred))
|
|
IsEq = Pred == ICmpInst::ICMP_EQ;
|
|
else if (Pred == FCmpInst::FCMP_OEQ)
|
|
IsEq = true;
|
|
else if (Pred == FCmpInst::FCMP_UNE)
|
|
IsEq = false;
|
|
else
|
|
return nullptr;
|
|
|
|
// A select operand must be a binop.
|
|
BinaryOperator *BO;
|
|
if (!match(Sel.getOperand(IsEq ? 1 : 2), m_BinOp(BO)))
|
|
return nullptr;
|
|
|
|
// The compare constant must be the identity constant for that binop.
|
|
// If this a floating-point compare with 0.0, any zero constant will do.
|
|
Type *Ty = BO->getType();
|
|
Constant *IdC = ConstantExpr::getBinOpIdentity(BO->getOpcode(), Ty, true);
|
|
if (IdC != C) {
|
|
if (!IdC || !CmpInst::isFPPredicate(Pred))
|
|
return nullptr;
|
|
if (!match(IdC, m_AnyZeroFP()) || !match(C, m_AnyZeroFP()))
|
|
return nullptr;
|
|
}
|
|
|
|
// Last, match the compare variable operand with a binop operand.
|
|
Value *Y;
|
|
if (!BO->isCommutative() && !match(BO, m_BinOp(m_Value(Y), m_Specific(X))))
|
|
return nullptr;
|
|
if (!match(BO, m_c_BinOp(m_Value(Y), m_Specific(X))))
|
|
return nullptr;
|
|
|
|
// +0.0 compares equal to -0.0, and so it does not behave as required for this
|
|
// transform. Bail out if we can not exclude that possibility.
|
|
if (isa<FPMathOperator>(BO))
|
|
if (!BO->hasNoSignedZeros() &&
|
|
!cannotBeNegativeZero(Y,
|
|
IC.getSimplifyQuery().getWithInstruction(&Sel)))
|
|
return nullptr;
|
|
|
|
// BO = binop Y, X
|
|
// S = { select (cmp eq X, C), BO, ? } or { select (cmp ne X, C), ?, BO }
|
|
// =>
|
|
// S = { select (cmp eq X, C), Y, ? } or { select (cmp ne X, C), ?, Y }
|
|
return IC.replaceOperand(Sel, IsEq ? 1 : 2, Y);
|
|
}
|
|
|
|
/// This folds:
|
|
/// select (icmp eq (and X, C1)), TC, FC
|
|
/// iff C1 is a power 2 and the difference between TC and FC is a power-of-2.
|
|
/// To something like:
|
|
/// (shr (and (X, C1)), (log2(C1) - log2(TC-FC))) + FC
|
|
/// Or:
|
|
/// (shl (and (X, C1)), (log2(TC-FC) - log2(C1))) + FC
|
|
/// With some variations depending if FC is larger than TC, or the shift
|
|
/// isn't needed, or the bit widths don't match.
|
|
static Value *foldSelectICmpAnd(SelectInst &Sel, Value *CondVal, Value *TrueVal,
|
|
Value *FalseVal, Value *V, const APInt &AndMask,
|
|
bool CreateAnd,
|
|
InstCombiner::BuilderTy &Builder) {
|
|
const APInt *SelTC, *SelFC;
|
|
if (!match(TrueVal, m_APInt(SelTC)) || !match(FalseVal, m_APInt(SelFC)))
|
|
return nullptr;
|
|
|
|
Type *SelType = Sel.getType();
|
|
// In general, when both constants are non-zero, we would need an offset to
|
|
// replace the select. This would require more instructions than we started
|
|
// with. But there's one special-case that we handle here because it can
|
|
// simplify/reduce the instructions.
|
|
const APInt &TC = *SelTC;
|
|
const APInt &FC = *SelFC;
|
|
if (!TC.isZero() && !FC.isZero()) {
|
|
if (TC.getBitWidth() != AndMask.getBitWidth())
|
|
return nullptr;
|
|
// If we have to create an 'and', then we must kill the cmp to not
|
|
// increase the instruction count.
|
|
if (CreateAnd && !CondVal->hasOneUse())
|
|
return nullptr;
|
|
|
|
// (V & AndMaskC) == 0 ? TC : FC --> TC | (V & AndMaskC)
|
|
// (V & AndMaskC) == 0 ? TC : FC --> TC ^ (V & AndMaskC)
|
|
// (V & AndMaskC) == 0 ? TC : FC --> TC + (V & AndMaskC)
|
|
// (V & AndMaskC) == 0 ? TC : FC --> TC - (V & AndMaskC)
|
|
Constant *TCC = ConstantInt::get(SelType, TC);
|
|
Constant *FCC = ConstantInt::get(SelType, FC);
|
|
Constant *MaskC = ConstantInt::get(SelType, AndMask);
|
|
for (auto Opc : {Instruction::Or, Instruction::Xor, Instruction::Add,
|
|
Instruction::Sub}) {
|
|
if (ConstantFoldBinaryOpOperands(Opc, TCC, MaskC, Sel.getDataLayout()) ==
|
|
FCC) {
|
|
if (CreateAnd)
|
|
V = Builder.CreateAnd(V, MaskC);
|
|
return Builder.CreateBinOp(Opc, TCC, V);
|
|
}
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
// Make sure one of the select arms is a power-of-2.
|
|
if (!TC.isPowerOf2() && !FC.isPowerOf2())
|
|
return nullptr;
|
|
|
|
// Determine which shift is needed to transform result of the 'and' into the
|
|
// desired result.
|
|
const APInt &ValC = !TC.isZero() ? TC : FC;
|
|
unsigned ValZeros = ValC.logBase2();
|
|
unsigned AndZeros = AndMask.logBase2();
|
|
bool ShouldNotVal = !TC.isZero();
|
|
bool NeedShift = ValZeros != AndZeros;
|
|
bool NeedZExtTrunc =
|
|
SelType->getScalarSizeInBits() != V->getType()->getScalarSizeInBits();
|
|
|
|
// If we would need to create an 'and' + 'shift' + 'xor' + cast to replace
|
|
// a 'select' + 'icmp', then this transformation would result in more
|
|
// instructions and potentially interfere with other folding.
|
|
if (CreateAnd + ShouldNotVal + NeedShift + NeedZExtTrunc >
|
|
1 + CondVal->hasOneUse())
|
|
return nullptr;
|
|
|
|
// Insert the 'and' instruction on the input to the truncate.
|
|
if (CreateAnd)
|
|
V = Builder.CreateAnd(V, ConstantInt::get(V->getType(), AndMask));
|
|
|
|
// If types don't match, we can still convert the select by introducing a zext
|
|
// or a trunc of the 'and'.
|
|
if (ValZeros > AndZeros) {
|
|
V = Builder.CreateZExtOrTrunc(V, SelType);
|
|
V = Builder.CreateShl(V, ValZeros - AndZeros);
|
|
} else if (ValZeros < AndZeros) {
|
|
V = Builder.CreateLShr(V, AndZeros - ValZeros);
|
|
V = Builder.CreateZExtOrTrunc(V, SelType);
|
|
} else {
|
|
V = Builder.CreateZExtOrTrunc(V, SelType);
|
|
}
|
|
|
|
// Okay, now we know that everything is set up, we just don't know whether we
|
|
// have a icmp_ne or icmp_eq and whether the true or false val is the zero.
|
|
if (ShouldNotVal)
|
|
V = Builder.CreateXor(V, ValC);
|
|
|
|
return V;
|
|
}
|
|
|
|
/// We want to turn code that looks like this:
|
|
/// %C = or %A, %B
|
|
/// %D = select %cond, %C, %A
|
|
/// into:
|
|
/// %C = select %cond, %B, 0
|
|
/// %D = or %A, %C
|
|
///
|
|
/// Assuming that the specified instruction is an operand to the select, return
|
|
/// a bitmask indicating which operands of this instruction are foldable if they
|
|
/// equal the other incoming value of the select.
|
|
static unsigned getSelectFoldableOperands(BinaryOperator *I) {
|
|
switch (I->getOpcode()) {
|
|
case Instruction::Add:
|
|
case Instruction::FAdd:
|
|
case Instruction::Mul:
|
|
case Instruction::FMul:
|
|
case Instruction::And:
|
|
case Instruction::Or:
|
|
case Instruction::Xor:
|
|
return 3; // Can fold through either operand.
|
|
case Instruction::Sub: // Can only fold on the amount subtracted.
|
|
case Instruction::FSub:
|
|
case Instruction::FDiv: // Can only fold on the divisor amount.
|
|
case Instruction::Shl: // Can only fold on the shift amount.
|
|
case Instruction::LShr:
|
|
case Instruction::AShr:
|
|
return 1;
|
|
default:
|
|
return 0; // Cannot fold
|
|
}
|
|
}
|
|
|
|
/// We have (select c, TI, FI), and we know that TI and FI have the same opcode.
|
|
Instruction *InstCombinerImpl::foldSelectOpOp(SelectInst &SI, Instruction *TI,
|
|
Instruction *FI) {
|
|
// Don't break up min/max patterns. The hasOneUse checks below prevent that
|
|
// for most cases, but vector min/max with bitcasts can be transformed. If the
|
|
// one-use restrictions are eased for other patterns, we still don't want to
|
|
// obfuscate min/max.
|
|
if ((match(&SI, m_SMin(m_Value(), m_Value())) ||
|
|
match(&SI, m_SMax(m_Value(), m_Value())) ||
|
|
match(&SI, m_UMin(m_Value(), m_Value())) ||
|
|
match(&SI, m_UMax(m_Value(), m_Value()))))
|
|
return nullptr;
|
|
|
|
// If this is a cast from the same type, merge.
|
|
Value *Cond = SI.getCondition();
|
|
Type *CondTy = Cond->getType();
|
|
if (TI->getNumOperands() == 1 && TI->isCast()) {
|
|
Type *FIOpndTy = FI->getOperand(0)->getType();
|
|
if (TI->getOperand(0)->getType() != FIOpndTy)
|
|
return nullptr;
|
|
|
|
// The select condition may be a vector. We may only change the operand
|
|
// type if the vector width remains the same (and matches the condition).
|
|
if (auto *CondVTy = dyn_cast<VectorType>(CondTy)) {
|
|
if (!FIOpndTy->isVectorTy() ||
|
|
CondVTy->getElementCount() !=
|
|
cast<VectorType>(FIOpndTy)->getElementCount())
|
|
return nullptr;
|
|
|
|
// TODO: If the backend knew how to deal with casts better, we could
|
|
// remove this limitation. For now, there's too much potential to create
|
|
// worse codegen by promoting the select ahead of size-altering casts
|
|
// (PR28160).
|
|
//
|
|
// Note that ValueTracking's matchSelectPattern() looks through casts
|
|
// without checking 'hasOneUse' when it matches min/max patterns, so this
|
|
// transform may end up happening anyway.
|
|
if (TI->getOpcode() != Instruction::BitCast &&
|
|
(!TI->hasOneUse() || !FI->hasOneUse()))
|
|
return nullptr;
|
|
} else if (!TI->hasOneUse() || !FI->hasOneUse()) {
|
|
// TODO: The one-use restrictions for a scalar select could be eased if
|
|
// the fold of a select in visitLoadInst() was enhanced to match a pattern
|
|
// that includes a cast.
|
|
return nullptr;
|
|
}
|
|
|
|
// Fold this by inserting a select from the input values.
|
|
Value *NewSI =
|
|
Builder.CreateSelect(Cond, TI->getOperand(0), FI->getOperand(0),
|
|
SI.getName() + ".v", &SI);
|
|
return CastInst::Create(Instruction::CastOps(TI->getOpcode()), NewSI,
|
|
TI->getType());
|
|
}
|
|
|
|
Value *OtherOpT, *OtherOpF;
|
|
bool MatchIsOpZero;
|
|
auto getCommonOp = [&](Instruction *TI, Instruction *FI, bool Commute,
|
|
bool Swapped = false) -> Value * {
|
|
assert(!(Commute && Swapped) &&
|
|
"Commute and Swapped can't set at the same time");
|
|
if (!Swapped) {
|
|
if (TI->getOperand(0) == FI->getOperand(0)) {
|
|
OtherOpT = TI->getOperand(1);
|
|
OtherOpF = FI->getOperand(1);
|
|
MatchIsOpZero = true;
|
|
return TI->getOperand(0);
|
|
} else if (TI->getOperand(1) == FI->getOperand(1)) {
|
|
OtherOpT = TI->getOperand(0);
|
|
OtherOpF = FI->getOperand(0);
|
|
MatchIsOpZero = false;
|
|
return TI->getOperand(1);
|
|
}
|
|
}
|
|
|
|
if (!Commute && !Swapped)
|
|
return nullptr;
|
|
|
|
// If we are allowing commute or swap of operands, then
|
|
// allow a cross-operand match. In that case, MatchIsOpZero
|
|
// means that TI's operand 0 (FI's operand 1) is the common op.
|
|
if (TI->getOperand(0) == FI->getOperand(1)) {
|
|
OtherOpT = TI->getOperand(1);
|
|
OtherOpF = FI->getOperand(0);
|
|
MatchIsOpZero = true;
|
|
return TI->getOperand(0);
|
|
} else if (TI->getOperand(1) == FI->getOperand(0)) {
|
|
OtherOpT = TI->getOperand(0);
|
|
OtherOpF = FI->getOperand(1);
|
|
MatchIsOpZero = false;
|
|
return TI->getOperand(1);
|
|
}
|
|
return nullptr;
|
|
};
|
|
|
|
if (TI->hasOneUse() || FI->hasOneUse()) {
|
|
// Cond ? -X : -Y --> -(Cond ? X : Y)
|
|
Value *X, *Y;
|
|
if (match(TI, m_FNeg(m_Value(X))) && match(FI, m_FNeg(m_Value(Y)))) {
|
|
// Intersect FMF from the fneg instructions and union those with the
|
|
// select.
|
|
FastMathFlags FMF = TI->getFastMathFlags();
|
|
FMF &= FI->getFastMathFlags();
|
|
FMF |= SI.getFastMathFlags();
|
|
Value *NewSel =
|
|
Builder.CreateSelect(Cond, X, Y, SI.getName() + ".v", &SI);
|
|
if (auto *NewSelI = dyn_cast<Instruction>(NewSel))
|
|
NewSelI->setFastMathFlags(FMF);
|
|
Instruction *NewFNeg = UnaryOperator::CreateFNeg(NewSel);
|
|
NewFNeg->setFastMathFlags(FMF);
|
|
return NewFNeg;
|
|
}
|
|
|
|
// Min/max intrinsic with a common operand can have the common operand
|
|
// pulled after the select. This is the same transform as below for binops,
|
|
// but specialized for intrinsic matching and without the restrictive uses
|
|
// clause.
|
|
auto *TII = dyn_cast<IntrinsicInst>(TI);
|
|
auto *FII = dyn_cast<IntrinsicInst>(FI);
|
|
if (TII && FII && TII->getIntrinsicID() == FII->getIntrinsicID()) {
|
|
if (match(TII, m_MaxOrMin(m_Value(), m_Value()))) {
|
|
if (Value *MatchOp = getCommonOp(TI, FI, true)) {
|
|
Value *NewSel =
|
|
Builder.CreateSelect(Cond, OtherOpT, OtherOpF, "minmaxop", &SI);
|
|
return CallInst::Create(TII->getCalledFunction(), {NewSel, MatchOp});
|
|
}
|
|
}
|
|
|
|
// select c, (ldexp v, e0), (ldexp v, e1) -> ldexp v, (select c, e0, e1)
|
|
// select c, (ldexp v0, e), (ldexp v1, e) -> ldexp (select c, v0, v1), e
|
|
//
|
|
// select c, (ldexp v0, e0), (ldexp v1, e1) ->
|
|
// ldexp (select c, v0, v1), (select c, e0, e1)
|
|
if (TII->getIntrinsicID() == Intrinsic::ldexp) {
|
|
Value *LdexpVal0 = TII->getArgOperand(0);
|
|
Value *LdexpExp0 = TII->getArgOperand(1);
|
|
Value *LdexpVal1 = FII->getArgOperand(0);
|
|
Value *LdexpExp1 = FII->getArgOperand(1);
|
|
if (LdexpExp0->getType() == LdexpExp1->getType()) {
|
|
FPMathOperator *SelectFPOp = cast<FPMathOperator>(&SI);
|
|
FastMathFlags FMF = cast<FPMathOperator>(TII)->getFastMathFlags();
|
|
FMF &= cast<FPMathOperator>(FII)->getFastMathFlags();
|
|
FMF |= SelectFPOp->getFastMathFlags();
|
|
|
|
Value *SelectVal = Builder.CreateSelect(Cond, LdexpVal0, LdexpVal1);
|
|
Value *SelectExp = Builder.CreateSelect(Cond, LdexpExp0, LdexpExp1);
|
|
|
|
CallInst *NewLdexp = Builder.CreateIntrinsic(
|
|
TII->getType(), Intrinsic::ldexp, {SelectVal, SelectExp});
|
|
NewLdexp->setFastMathFlags(FMF);
|
|
return replaceInstUsesWith(SI, NewLdexp);
|
|
}
|
|
}
|
|
}
|
|
|
|
auto CreateCmpSel = [&](std::optional<CmpPredicate> P,
|
|
bool Swapped) -> CmpInst * {
|
|
if (!P)
|
|
return nullptr;
|
|
auto *MatchOp = getCommonOp(TI, FI, ICmpInst::isEquality(*P),
|
|
ICmpInst::isRelational(*P) && Swapped);
|
|
if (!MatchOp)
|
|
return nullptr;
|
|
Value *NewSel = Builder.CreateSelect(Cond, OtherOpT, OtherOpF,
|
|
SI.getName() + ".v", &SI);
|
|
return new ICmpInst(MatchIsOpZero ? *P
|
|
: ICmpInst::getSwappedCmpPredicate(*P),
|
|
MatchOp, NewSel);
|
|
};
|
|
|
|
// icmp with a common operand also can have the common operand
|
|
// pulled after the select.
|
|
CmpPredicate TPred, FPred;
|
|
if (match(TI, m_ICmp(TPred, m_Value(), m_Value())) &&
|
|
match(FI, m_ICmp(FPred, m_Value(), m_Value()))) {
|
|
if (auto *R =
|
|
CreateCmpSel(CmpPredicate::getMatching(TPred, FPred), false))
|
|
return R;
|
|
if (auto *R =
|
|
CreateCmpSel(CmpPredicate::getMatching(
|
|
TPred, ICmpInst::getSwappedCmpPredicate(FPred)),
|
|
true))
|
|
return R;
|
|
}
|
|
}
|
|
|
|
// Only handle binary operators (including two-operand getelementptr) with
|
|
// one-use here. As with the cast case above, it may be possible to relax the
|
|
// one-use constraint, but that needs be examined carefully since it may not
|
|
// reduce the total number of instructions.
|
|
if (TI->getNumOperands() != 2 || FI->getNumOperands() != 2 ||
|
|
!TI->isSameOperationAs(FI) ||
|
|
(!isa<BinaryOperator>(TI) && !isa<GetElementPtrInst>(TI)) ||
|
|
!TI->hasOneUse() || !FI->hasOneUse())
|
|
return nullptr;
|
|
|
|
// Figure out if the operations have any operands in common.
|
|
Value *MatchOp = getCommonOp(TI, FI, TI->isCommutative());
|
|
if (!MatchOp)
|
|
return nullptr;
|
|
|
|
// If the select condition is a vector, the operands of the original select's
|
|
// operands also must be vectors. This may not be the case for getelementptr
|
|
// for example.
|
|
if (CondTy->isVectorTy() && (!OtherOpT->getType()->isVectorTy() ||
|
|
!OtherOpF->getType()->isVectorTy()))
|
|
return nullptr;
|
|
|
|
// If we are sinking div/rem after a select, we may need to freeze the
|
|
// condition because div/rem may induce immediate UB with a poison operand.
|
|
// For example, the following transform is not safe if Cond can ever be poison
|
|
// because we can replace poison with zero and then we have div-by-zero that
|
|
// didn't exist in the original code:
|
|
// Cond ? x/y : x/z --> x / (Cond ? y : z)
|
|
auto *BO = dyn_cast<BinaryOperator>(TI);
|
|
if (BO && BO->isIntDivRem() && !isGuaranteedNotToBePoison(Cond)) {
|
|
// A udiv/urem with a common divisor is safe because UB can only occur with
|
|
// div-by-zero, and that would be present in the original code.
|
|
if (BO->getOpcode() == Instruction::SDiv ||
|
|
BO->getOpcode() == Instruction::SRem || MatchIsOpZero)
|
|
Cond = Builder.CreateFreeze(Cond);
|
|
}
|
|
|
|
// If we reach here, they do have operations in common.
|
|
Value *NewSI = Builder.CreateSelect(Cond, OtherOpT, OtherOpF,
|
|
SI.getName() + ".v", &SI);
|
|
Value *Op0 = MatchIsOpZero ? MatchOp : NewSI;
|
|
Value *Op1 = MatchIsOpZero ? NewSI : MatchOp;
|
|
if (auto *BO = dyn_cast<BinaryOperator>(TI)) {
|
|
BinaryOperator *NewBO = BinaryOperator::Create(BO->getOpcode(), Op0, Op1);
|
|
NewBO->copyIRFlags(TI);
|
|
NewBO->andIRFlags(FI);
|
|
return NewBO;
|
|
}
|
|
if (auto *TGEP = dyn_cast<GetElementPtrInst>(TI)) {
|
|
auto *FGEP = cast<GetElementPtrInst>(FI);
|
|
Type *ElementType = TGEP->getSourceElementType();
|
|
return GetElementPtrInst::Create(
|
|
ElementType, Op0, Op1, TGEP->getNoWrapFlags() & FGEP->getNoWrapFlags());
|
|
}
|
|
llvm_unreachable("Expected BinaryOperator or GEP");
|
|
return nullptr;
|
|
}
|
|
|
|
static bool isSelect01(const APInt &C1I, const APInt &C2I) {
|
|
if (!C1I.isZero() && !C2I.isZero()) // One side must be zero.
|
|
return false;
|
|
return C1I.isOne() || C1I.isAllOnes() || C2I.isOne() || C2I.isAllOnes();
|
|
}
|
|
|
|
/// Try to fold the select into one of the operands to allow further
|
|
/// optimization.
|
|
Instruction *InstCombinerImpl::foldSelectIntoOp(SelectInst &SI, Value *TrueVal,
|
|
Value *FalseVal) {
|
|
// See the comment above getSelectFoldableOperands for a description of the
|
|
// transformation we are doing here.
|
|
auto TryFoldSelectIntoOp = [&](SelectInst &SI, Value *TrueVal,
|
|
Value *FalseVal,
|
|
bool Swapped) -> Instruction * {
|
|
auto *TVI = dyn_cast<BinaryOperator>(TrueVal);
|
|
if (!TVI || !TVI->hasOneUse() || isa<Constant>(FalseVal))
|
|
return nullptr;
|
|
|
|
unsigned SFO = getSelectFoldableOperands(TVI);
|
|
unsigned OpToFold = 0;
|
|
if ((SFO & 1) && FalseVal == TVI->getOperand(0))
|
|
OpToFold = 1;
|
|
else if ((SFO & 2) && FalseVal == TVI->getOperand(1))
|
|
OpToFold = 2;
|
|
|
|
if (!OpToFold)
|
|
return nullptr;
|
|
|
|
FastMathFlags FMF;
|
|
if (isa<FPMathOperator>(&SI))
|
|
FMF = SI.getFastMathFlags();
|
|
Constant *C = ConstantExpr::getBinOpIdentity(
|
|
TVI->getOpcode(), TVI->getType(), true, FMF.noSignedZeros());
|
|
Value *OOp = TVI->getOperand(2 - OpToFold);
|
|
// Avoid creating select between 2 constants unless it's selecting
|
|
// between 0, 1 and -1.
|
|
const APInt *OOpC;
|
|
bool OOpIsAPInt = match(OOp, m_APInt(OOpC));
|
|
if (isa<Constant>(OOp) &&
|
|
(!OOpIsAPInt || !isSelect01(C->getUniqueInteger(), *OOpC)))
|
|
return nullptr;
|
|
|
|
// If the false value is a NaN then we have that the floating point math
|
|
// operation in the transformed code may not preserve the exact NaN
|
|
// bit-pattern -- e.g. `fadd sNaN, 0.0 -> qNaN`.
|
|
// This makes the transformation incorrect since the original program would
|
|
// have preserved the exact NaN bit-pattern.
|
|
// Avoid the folding if the false value might be a NaN.
|
|
if (isa<FPMathOperator>(&SI) &&
|
|
!computeKnownFPClass(FalseVal, FMF, fcNan, &SI).isKnownNeverNaN())
|
|
return nullptr;
|
|
|
|
Value *NewSel = Builder.CreateSelect(SI.getCondition(), Swapped ? C : OOp,
|
|
Swapped ? OOp : C, "", &SI);
|
|
if (isa<FPMathOperator>(&SI))
|
|
cast<Instruction>(NewSel)->setFastMathFlags(FMF);
|
|
NewSel->takeName(TVI);
|
|
BinaryOperator *BO =
|
|
BinaryOperator::Create(TVI->getOpcode(), FalseVal, NewSel);
|
|
BO->copyIRFlags(TVI);
|
|
if (isa<FPMathOperator>(&SI)) {
|
|
// Merge poison generating flags from the select.
|
|
BO->setHasNoNaNs(BO->hasNoNaNs() && FMF.noNaNs());
|
|
BO->setHasNoInfs(BO->hasNoInfs() && FMF.noInfs());
|
|
// Merge no-signed-zeros flag from the select.
|
|
// Otherwise we may produce zeros with different sign.
|
|
BO->setHasNoSignedZeros(BO->hasNoSignedZeros() && FMF.noSignedZeros());
|
|
}
|
|
return BO;
|
|
};
|
|
|
|
if (Instruction *R = TryFoldSelectIntoOp(SI, TrueVal, FalseVal, false))
|
|
return R;
|
|
|
|
if (Instruction *R = TryFoldSelectIntoOp(SI, FalseVal, TrueVal, true))
|
|
return R;
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
/// Try to fold a select to a min/max intrinsic. Many cases are already handled
|
|
/// by matchDecomposedSelectPattern but here we handle the cases where more
|
|
/// extensive modification of the IR is required.
|
|
static Value *foldSelectICmpMinMax(const ICmpInst *Cmp, Value *TVal,
|
|
Value *FVal,
|
|
InstCombiner::BuilderTy &Builder,
|
|
const SimplifyQuery &SQ) {
|
|
const Value *CmpLHS = Cmp->getOperand(0);
|
|
const Value *CmpRHS = Cmp->getOperand(1);
|
|
ICmpInst::Predicate Pred = Cmp->getPredicate();
|
|
|
|
// (X > Y) ? X : (Y - 1) ==> MIN(X, Y - 1)
|
|
// (X < Y) ? X : (Y + 1) ==> MAX(X, Y + 1)
|
|
// This transformation is valid when overflow corresponding to the sign of
|
|
// the comparison is poison and we must drop the non-matching overflow flag.
|
|
if (CmpRHS == TVal) {
|
|
std::swap(CmpLHS, CmpRHS);
|
|
Pred = CmpInst::getSwappedPredicate(Pred);
|
|
}
|
|
|
|
// TODO: consider handling 'or disjoint' as well, though these would need to
|
|
// be converted to 'add' instructions.
|
|
if (!(CmpLHS == TVal && isa<Instruction>(FVal)))
|
|
return nullptr;
|
|
|
|
if (Pred == CmpInst::ICMP_SGT &&
|
|
match(FVal, m_NSWAdd(m_Specific(CmpRHS), m_One()))) {
|
|
cast<Instruction>(FVal)->setHasNoUnsignedWrap(false);
|
|
return Builder.CreateBinaryIntrinsic(Intrinsic::smax, TVal, FVal);
|
|
}
|
|
|
|
if (Pred == CmpInst::ICMP_SLT &&
|
|
match(FVal, m_NSWAdd(m_Specific(CmpRHS), m_AllOnes()))) {
|
|
cast<Instruction>(FVal)->setHasNoUnsignedWrap(false);
|
|
return Builder.CreateBinaryIntrinsic(Intrinsic::smin, TVal, FVal);
|
|
}
|
|
|
|
if (Pred == CmpInst::ICMP_UGT &&
|
|
match(FVal, m_NUWAdd(m_Specific(CmpRHS), m_One()))) {
|
|
cast<Instruction>(FVal)->setHasNoSignedWrap(false);
|
|
return Builder.CreateBinaryIntrinsic(Intrinsic::umax, TVal, FVal);
|
|
}
|
|
|
|
// Note: We must use isKnownNonZero here because "sub nuw %x, 1" will be
|
|
// canonicalized to "add %x, -1" discarding the nuw flag.
|
|
if (Pred == CmpInst::ICMP_ULT &&
|
|
match(FVal, m_Add(m_Specific(CmpRHS), m_AllOnes())) &&
|
|
isKnownNonZero(CmpRHS, SQ)) {
|
|
cast<Instruction>(FVal)->setHasNoSignedWrap(false);
|
|
cast<Instruction>(FVal)->setHasNoUnsignedWrap(false);
|
|
return Builder.CreateBinaryIntrinsic(Intrinsic::umin, TVal, FVal);
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
/// We want to turn:
|
|
/// (select (icmp eq (and X, Y), 0), (and (lshr X, Z), 1), 1)
|
|
/// into:
|
|
/// zext (icmp ne i32 (and X, (or Y, (shl 1, Z))), 0)
|
|
/// Note:
|
|
/// Z may be 0 if lshr is missing.
|
|
/// Worst-case scenario is that we will replace 5 instructions with 5 different
|
|
/// instructions, but we got rid of select.
|
|
static Instruction *foldSelectICmpAndAnd(Type *SelType, const ICmpInst *Cmp,
|
|
Value *TVal, Value *FVal,
|
|
InstCombiner::BuilderTy &Builder) {
|
|
if (!(Cmp->hasOneUse() && Cmp->getOperand(0)->hasOneUse() &&
|
|
Cmp->getPredicate() == ICmpInst::ICMP_EQ &&
|
|
match(Cmp->getOperand(1), m_Zero()) && match(FVal, m_One())))
|
|
return nullptr;
|
|
|
|
// The TrueVal has general form of: and %B, 1
|
|
Value *B;
|
|
if (!match(TVal, m_OneUse(m_And(m_Value(B), m_One()))))
|
|
return nullptr;
|
|
|
|
// Where %B may be optionally shifted: lshr %X, %Z.
|
|
Value *X, *Z;
|
|
const bool HasShift = match(B, m_OneUse(m_LShr(m_Value(X), m_Value(Z))));
|
|
|
|
// The shift must be valid.
|
|
// TODO: This restricts the fold to constant shift amounts. Is there a way to
|
|
// handle variable shifts safely? PR47012
|
|
if (HasShift &&
|
|
!match(Z, m_SpecificInt_ICMP(CmpInst::ICMP_ULT,
|
|
APInt(SelType->getScalarSizeInBits(),
|
|
SelType->getScalarSizeInBits()))))
|
|
return nullptr;
|
|
|
|
if (!HasShift)
|
|
X = B;
|
|
|
|
Value *Y;
|
|
if (!match(Cmp->getOperand(0), m_c_And(m_Specific(X), m_Value(Y))))
|
|
return nullptr;
|
|
|
|
// ((X & Y) == 0) ? ((X >> Z) & 1) : 1 --> (X & (Y | (1 << Z))) != 0
|
|
// ((X & Y) == 0) ? (X & 1) : 1 --> (X & (Y | 1)) != 0
|
|
Constant *One = ConstantInt::get(SelType, 1);
|
|
Value *MaskB = HasShift ? Builder.CreateShl(One, Z) : One;
|
|
Value *FullMask = Builder.CreateOr(Y, MaskB);
|
|
Value *MaskedX = Builder.CreateAnd(X, FullMask);
|
|
Value *ICmpNeZero = Builder.CreateIsNotNull(MaskedX);
|
|
return new ZExtInst(ICmpNeZero, SelType);
|
|
}
|
|
|
|
/// We want to turn:
|
|
/// (select (icmp eq (and X, C1), 0), 0, (shl [nsw/nuw] X, C2));
|
|
/// iff C1 is a mask and the number of its leading zeros is equal to C2
|
|
/// into:
|
|
/// shl X, C2
|
|
static Value *foldSelectICmpAndZeroShl(const ICmpInst *Cmp, Value *TVal,
|
|
Value *FVal,
|
|
InstCombiner::BuilderTy &Builder) {
|
|
CmpPredicate Pred;
|
|
Value *AndVal;
|
|
if (!match(Cmp, m_ICmp(Pred, m_Value(AndVal), m_Zero())))
|
|
return nullptr;
|
|
|
|
if (Pred == ICmpInst::ICMP_NE) {
|
|
Pred = ICmpInst::ICMP_EQ;
|
|
std::swap(TVal, FVal);
|
|
}
|
|
|
|
Value *X;
|
|
const APInt *C2, *C1;
|
|
if (Pred != ICmpInst::ICMP_EQ ||
|
|
!match(AndVal, m_And(m_Value(X), m_APInt(C1))) ||
|
|
!match(TVal, m_Zero()) || !match(FVal, m_Shl(m_Specific(X), m_APInt(C2))))
|
|
return nullptr;
|
|
|
|
if (!C1->isMask() ||
|
|
C1->countLeadingZeros() != static_cast<unsigned>(C2->getZExtValue()))
|
|
return nullptr;
|
|
|
|
auto *FI = dyn_cast<Instruction>(FVal);
|
|
if (!FI)
|
|
return nullptr;
|
|
|
|
FI->setHasNoSignedWrap(false);
|
|
FI->setHasNoUnsignedWrap(false);
|
|
return FVal;
|
|
}
|
|
|
|
/// We want to turn:
|
|
/// (select (icmp sgt x, C), lshr (X, Y), ashr (X, Y)); iff C s>= -1
|
|
/// (select (icmp slt x, C), ashr (X, Y), lshr (X, Y)); iff C s>= 0
|
|
/// into:
|
|
/// ashr (X, Y)
|
|
static Value *foldSelectICmpLshrAshr(const ICmpInst *IC, Value *TrueVal,
|
|
Value *FalseVal,
|
|
InstCombiner::BuilderTy &Builder) {
|
|
ICmpInst::Predicate Pred = IC->getPredicate();
|
|
Value *CmpLHS = IC->getOperand(0);
|
|
Value *CmpRHS = IC->getOperand(1);
|
|
if (!CmpRHS->getType()->isIntOrIntVectorTy())
|
|
return nullptr;
|
|
|
|
Value *X, *Y;
|
|
unsigned Bitwidth = CmpRHS->getType()->getScalarSizeInBits();
|
|
if ((Pred != ICmpInst::ICMP_SGT ||
|
|
!match(CmpRHS, m_SpecificInt_ICMP(ICmpInst::ICMP_SGE,
|
|
APInt::getAllOnes(Bitwidth)))) &&
|
|
(Pred != ICmpInst::ICMP_SLT ||
|
|
!match(CmpRHS, m_SpecificInt_ICMP(ICmpInst::ICMP_SGE,
|
|
APInt::getZero(Bitwidth)))))
|
|
return nullptr;
|
|
|
|
// Canonicalize so that ashr is in FalseVal.
|
|
if (Pred == ICmpInst::ICMP_SLT)
|
|
std::swap(TrueVal, FalseVal);
|
|
|
|
if (match(TrueVal, m_LShr(m_Value(X), m_Value(Y))) &&
|
|
match(FalseVal, m_AShr(m_Specific(X), m_Specific(Y))) &&
|
|
match(CmpLHS, m_Specific(X))) {
|
|
const auto *Ashr = cast<Instruction>(FalseVal);
|
|
// if lshr is not exact and ashr is, this new ashr must not be exact.
|
|
bool IsExact = Ashr->isExact() && cast<Instruction>(TrueVal)->isExact();
|
|
return Builder.CreateAShr(X, Y, IC->getName(), IsExact);
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
/// We want to turn:
|
|
/// (select (icmp eq (and X, C1), 0), Y, (BinOp Y, C2))
|
|
/// into:
|
|
/// IF C2 u>= C1
|
|
/// (BinOp Y, (shl (and X, C1), C3))
|
|
/// ELSE
|
|
/// (BinOp Y, (lshr (and X, C1), C3))
|
|
/// iff:
|
|
/// 0 on the RHS is the identity value (i.e add, xor, shl, etc...)
|
|
/// C1 and C2 are both powers of 2
|
|
/// where:
|
|
/// IF C2 u>= C1
|
|
/// C3 = Log(C2) - Log(C1)
|
|
/// ELSE
|
|
/// C3 = Log(C1) - Log(C2)
|
|
///
|
|
/// This transform handles cases where:
|
|
/// 1. The icmp predicate is inverted
|
|
/// 2. The select operands are reversed
|
|
/// 3. The magnitude of C2 and C1 are flipped
|
|
static Value *foldSelectICmpAndBinOp(Value *CondVal, Value *TrueVal,
|
|
Value *FalseVal, Value *V,
|
|
const APInt &AndMask, bool CreateAnd,
|
|
InstCombiner::BuilderTy &Builder) {
|
|
// Only handle integer compares.
|
|
if (!TrueVal->getType()->isIntOrIntVectorTy())
|
|
return nullptr;
|
|
|
|
unsigned C1Log = AndMask.logBase2();
|
|
Value *Y;
|
|
BinaryOperator *BinOp;
|
|
const APInt *C2;
|
|
bool NeedXor;
|
|
if (match(FalseVal, m_BinOp(m_Specific(TrueVal), m_Power2(C2)))) {
|
|
Y = TrueVal;
|
|
BinOp = cast<BinaryOperator>(FalseVal);
|
|
NeedXor = false;
|
|
} else if (match(TrueVal, m_BinOp(m_Specific(FalseVal), m_Power2(C2)))) {
|
|
Y = FalseVal;
|
|
BinOp = cast<BinaryOperator>(TrueVal);
|
|
NeedXor = true;
|
|
} else {
|
|
return nullptr;
|
|
}
|
|
|
|
// Check that 0 on RHS is identity value for this binop.
|
|
auto *IdentityC =
|
|
ConstantExpr::getBinOpIdentity(BinOp->getOpcode(), BinOp->getType(),
|
|
/*AllowRHSConstant*/ true);
|
|
if (IdentityC == nullptr || !IdentityC->isNullValue())
|
|
return nullptr;
|
|
|
|
unsigned C2Log = C2->logBase2();
|
|
|
|
bool NeedShift = C1Log != C2Log;
|
|
bool NeedZExtTrunc = Y->getType()->getScalarSizeInBits() !=
|
|
V->getType()->getScalarSizeInBits();
|
|
|
|
// Make sure we don't create more instructions than we save.
|
|
if ((NeedShift + NeedXor + NeedZExtTrunc + CreateAnd) >
|
|
(CondVal->hasOneUse() + BinOp->hasOneUse()))
|
|
return nullptr;
|
|
|
|
if (CreateAnd) {
|
|
// Insert the AND instruction on the input to the truncate.
|
|
V = Builder.CreateAnd(V, ConstantInt::get(V->getType(), AndMask));
|
|
}
|
|
|
|
if (C2Log > C1Log) {
|
|
V = Builder.CreateZExtOrTrunc(V, Y->getType());
|
|
V = Builder.CreateShl(V, C2Log - C1Log);
|
|
} else if (C1Log > C2Log) {
|
|
V = Builder.CreateLShr(V, C1Log - C2Log);
|
|
V = Builder.CreateZExtOrTrunc(V, Y->getType());
|
|
} else
|
|
V = Builder.CreateZExtOrTrunc(V, Y->getType());
|
|
|
|
if (NeedXor)
|
|
V = Builder.CreateXor(V, *C2);
|
|
|
|
auto *Res = Builder.CreateBinOp(BinOp->getOpcode(), Y, V);
|
|
if (auto *BO = dyn_cast<BinaryOperator>(Res))
|
|
BO->copyIRFlags(BinOp);
|
|
return Res;
|
|
}
|
|
|
|
/// Canonicalize a set or clear of a masked set of constant bits to
|
|
/// select-of-constants form.
|
|
static Instruction *foldSetClearBits(SelectInst &Sel,
|
|
InstCombiner::BuilderTy &Builder) {
|
|
Value *Cond = Sel.getCondition();
|
|
Value *T = Sel.getTrueValue();
|
|
Value *F = Sel.getFalseValue();
|
|
Type *Ty = Sel.getType();
|
|
Value *X;
|
|
const APInt *NotC, *C;
|
|
|
|
// Cond ? (X & ~C) : (X | C) --> (X & ~C) | (Cond ? 0 : C)
|
|
if (match(T, m_And(m_Value(X), m_APInt(NotC))) &&
|
|
match(F, m_OneUse(m_Or(m_Specific(X), m_APInt(C)))) && *NotC == ~(*C)) {
|
|
Constant *Zero = ConstantInt::getNullValue(Ty);
|
|
Constant *OrC = ConstantInt::get(Ty, *C);
|
|
Value *NewSel = Builder.CreateSelect(Cond, Zero, OrC, "masksel", &Sel);
|
|
return BinaryOperator::CreateOr(T, NewSel);
|
|
}
|
|
|
|
// Cond ? (X | C) : (X & ~C) --> (X & ~C) | (Cond ? C : 0)
|
|
if (match(F, m_And(m_Value(X), m_APInt(NotC))) &&
|
|
match(T, m_OneUse(m_Or(m_Specific(X), m_APInt(C)))) && *NotC == ~(*C)) {
|
|
Constant *Zero = ConstantInt::getNullValue(Ty);
|
|
Constant *OrC = ConstantInt::get(Ty, *C);
|
|
Value *NewSel = Builder.CreateSelect(Cond, OrC, Zero, "masksel", &Sel);
|
|
return BinaryOperator::CreateOr(F, NewSel);
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
// select (x == 0), 0, x * y --> freeze(y) * x
|
|
// select (y == 0), 0, x * y --> freeze(x) * y
|
|
// select (x == 0), undef, x * y --> freeze(y) * x
|
|
// select (x == undef), 0, x * y --> freeze(y) * x
|
|
// Usage of mul instead of 0 will make the result more poisonous,
|
|
// so the operand that was not checked in the condition should be frozen.
|
|
// The latter folding is applied only when a constant compared with x is
|
|
// is a vector consisting of 0 and undefs. If a constant compared with x
|
|
// is a scalar undefined value or undefined vector then an expression
|
|
// should be already folded into a constant.
|
|
//
|
|
// This also holds all operations such that Op(0) == 0
|
|
// e.g. Shl, Umin, etc
|
|
static Instruction *foldSelectZeroOrFixedOp(SelectInst &SI,
|
|
InstCombinerImpl &IC) {
|
|
auto *CondVal = SI.getCondition();
|
|
auto *TrueVal = SI.getTrueValue();
|
|
auto *FalseVal = SI.getFalseValue();
|
|
Value *X, *Y;
|
|
CmpPredicate Predicate;
|
|
|
|
// Assuming that constant compared with zero is not undef (but it may be
|
|
// a vector with some undef elements). Otherwise (when a constant is undef)
|
|
// the select expression should be already simplified.
|
|
if (!match(CondVal, m_ICmp(Predicate, m_Value(X), m_Zero())) ||
|
|
!ICmpInst::isEquality(Predicate))
|
|
return nullptr;
|
|
|
|
if (Predicate == ICmpInst::ICMP_NE)
|
|
std::swap(TrueVal, FalseVal);
|
|
|
|
// Check that TrueVal is a constant instead of matching it with m_Zero()
|
|
// to handle the case when it is a scalar undef value or a vector containing
|
|
// non-zero elements that are masked by undef elements in the compare
|
|
// constant.
|
|
auto *TrueValC = dyn_cast<Constant>(TrueVal);
|
|
if (TrueValC == nullptr || !isa<Instruction>(FalseVal))
|
|
return nullptr;
|
|
|
|
bool FreezeY;
|
|
if (match(FalseVal, m_c_Mul(m_Specific(X), m_Value(Y))) ||
|
|
match(FalseVal, m_c_And(m_Specific(X), m_Value(Y))) ||
|
|
match(FalseVal, m_FShl(m_Specific(X), m_Specific(X), m_Value(Y))) ||
|
|
match(FalseVal, m_FShr(m_Specific(X), m_Specific(X), m_Value(Y))) ||
|
|
match(FalseVal,
|
|
m_c_Intrinsic<Intrinsic::umin>(m_Specific(X), m_Value(Y)))) {
|
|
FreezeY = true;
|
|
} else if (match(FalseVal, m_IDiv(m_Specific(X), m_Value(Y))) ||
|
|
match(FalseVal, m_IRem(m_Specific(X), m_Value(Y)))) {
|
|
FreezeY = false;
|
|
} else {
|
|
return nullptr;
|
|
}
|
|
|
|
auto *ZeroC = cast<Constant>(cast<Instruction>(CondVal)->getOperand(1));
|
|
auto *MergedC = Constant::mergeUndefsWith(TrueValC, ZeroC);
|
|
// If X is compared with 0 then TrueVal could be either zero or undef.
|
|
// m_Zero match vectors containing some undef elements, but for scalars
|
|
// m_Undef should be used explicitly.
|
|
if (!match(MergedC, m_Zero()) && !match(MergedC, m_Undef()))
|
|
return nullptr;
|
|
|
|
auto *FalseValI = cast<Instruction>(FalseVal);
|
|
if (FreezeY) {
|
|
auto *FrY = IC.InsertNewInstBefore(new FreezeInst(Y, Y->getName() + ".fr"),
|
|
FalseValI->getIterator());
|
|
IC.replaceOperand(*FalseValI,
|
|
FalseValI->getOperand(0) == Y
|
|
? 0
|
|
: (FalseValI->getOperand(1) == Y ? 1 : 2),
|
|
FrY);
|
|
}
|
|
return IC.replaceInstUsesWith(SI, FalseValI);
|
|
}
|
|
|
|
/// Transform patterns such as (a > b) ? a - b : 0 into usub.sat(a, b).
|
|
/// There are 8 commuted/swapped variants of this pattern.
|
|
static Value *canonicalizeSaturatedSubtract(const ICmpInst *ICI,
|
|
const Value *TrueVal,
|
|
const Value *FalseVal,
|
|
InstCombiner::BuilderTy &Builder) {
|
|
ICmpInst::Predicate Pred = ICI->getPredicate();
|
|
Value *A = ICI->getOperand(0);
|
|
Value *B = ICI->getOperand(1);
|
|
|
|
// (b > a) ? 0 : a - b -> (b <= a) ? a - b : 0
|
|
// (a == 0) ? 0 : a - 1 -> (a != 0) ? a - 1 : 0
|
|
if (match(TrueVal, m_Zero())) {
|
|
Pred = ICmpInst::getInversePredicate(Pred);
|
|
std::swap(TrueVal, FalseVal);
|
|
}
|
|
|
|
if (!match(FalseVal, m_Zero()))
|
|
return nullptr;
|
|
|
|
// ugt 0 is canonicalized to ne 0 and requires special handling
|
|
// (a != 0) ? a + -1 : 0 -> usub.sat(a, 1)
|
|
if (Pred == ICmpInst::ICMP_NE) {
|
|
if (match(B, m_Zero()) && match(TrueVal, m_Add(m_Specific(A), m_AllOnes())))
|
|
return Builder.CreateBinaryIntrinsic(Intrinsic::usub_sat, A,
|
|
ConstantInt::get(A->getType(), 1));
|
|
return nullptr;
|
|
}
|
|
|
|
if (!ICmpInst::isUnsigned(Pred))
|
|
return nullptr;
|
|
|
|
if (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_ULT) {
|
|
// (b < a) ? a - b : 0 -> (a > b) ? a - b : 0
|
|
std::swap(A, B);
|
|
Pred = ICmpInst::getSwappedPredicate(Pred);
|
|
}
|
|
|
|
assert((Pred == ICmpInst::ICMP_UGE || Pred == ICmpInst::ICMP_UGT) &&
|
|
"Unexpected isUnsigned predicate!");
|
|
|
|
// Ensure the sub is of the form:
|
|
// (a > b) ? a - b : 0 -> usub.sat(a, b)
|
|
// (a > b) ? b - a : 0 -> -usub.sat(a, b)
|
|
// Checking for both a-b and a+(-b) as a constant.
|
|
bool IsNegative = false;
|
|
const APInt *C;
|
|
if (match(TrueVal, m_Sub(m_Specific(B), m_Specific(A))) ||
|
|
(match(A, m_APInt(C)) &&
|
|
match(TrueVal, m_Add(m_Specific(B), m_SpecificInt(-*C)))))
|
|
IsNegative = true;
|
|
else if (!match(TrueVal, m_Sub(m_Specific(A), m_Specific(B))) &&
|
|
!(match(B, m_APInt(C)) &&
|
|
match(TrueVal, m_Add(m_Specific(A), m_SpecificInt(-*C)))))
|
|
return nullptr;
|
|
|
|
// If we are adding a negate and the sub and icmp are used anywhere else, we
|
|
// would end up with more instructions.
|
|
if (IsNegative && !TrueVal->hasOneUse() && !ICI->hasOneUse())
|
|
return nullptr;
|
|
|
|
// (a > b) ? a - b : 0 -> usub.sat(a, b)
|
|
// (a > b) ? b - a : 0 -> -usub.sat(a, b)
|
|
Value *Result = Builder.CreateBinaryIntrinsic(Intrinsic::usub_sat, A, B);
|
|
if (IsNegative)
|
|
Result = Builder.CreateNeg(Result);
|
|
return Result;
|
|
}
|
|
|
|
static Value *canonicalizeSaturatedAdd(ICmpInst *Cmp, Value *TVal, Value *FVal,
|
|
InstCombiner::BuilderTy &Builder) {
|
|
if (!Cmp->hasOneUse())
|
|
return nullptr;
|
|
|
|
// Match unsigned saturated add with constant.
|
|
Value *Cmp0 = Cmp->getOperand(0);
|
|
Value *Cmp1 = Cmp->getOperand(1);
|
|
ICmpInst::Predicate Pred = Cmp->getPredicate();
|
|
Value *X;
|
|
const APInt *C;
|
|
|
|
// Match unsigned saturated add of 2 variables with an unnecessary 'not'.
|
|
// There are 8 commuted variants.
|
|
// Canonicalize -1 (saturated result) to true value of the select.
|
|
if (match(FVal, m_AllOnes())) {
|
|
std::swap(TVal, FVal);
|
|
Pred = CmpInst::getInversePredicate(Pred);
|
|
}
|
|
if (!match(TVal, m_AllOnes()))
|
|
return nullptr;
|
|
|
|
// uge -1 is canonicalized to eq -1 and requires special handling
|
|
// (a == -1) ? -1 : a + 1 -> uadd.sat(a, 1)
|
|
if (Pred == ICmpInst::ICMP_EQ) {
|
|
if (match(FVal, m_Add(m_Specific(Cmp0), m_One())) &&
|
|
match(Cmp1, m_AllOnes())) {
|
|
return Builder.CreateBinaryIntrinsic(
|
|
Intrinsic::uadd_sat, Cmp0, ConstantInt::get(Cmp0->getType(), 1));
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
if ((Pred == ICmpInst::ICMP_UGE || Pred == ICmpInst::ICMP_UGT) &&
|
|
match(FVal, m_Add(m_Specific(Cmp0), m_APIntAllowPoison(C))) &&
|
|
match(Cmp1, m_SpecificIntAllowPoison(~*C))) {
|
|
// (X u> ~C) ? -1 : (X + C) --> uadd.sat(X, C)
|
|
// (X u>= ~C)? -1 : (X + C) --> uadd.sat(X, C)
|
|
return Builder.CreateBinaryIntrinsic(Intrinsic::uadd_sat, Cmp0,
|
|
ConstantInt::get(Cmp0->getType(), *C));
|
|
}
|
|
|
|
// Negative one does not work here because X u> -1 ? -1, X + -1 is not a
|
|
// saturated add.
|
|
if (Pred == ICmpInst::ICMP_UGT &&
|
|
match(FVal, m_Add(m_Specific(Cmp0), m_APIntAllowPoison(C))) &&
|
|
match(Cmp1, m_SpecificIntAllowPoison(~*C - 1)) && !C->isAllOnes()) {
|
|
// (X u> ~C - 1) ? -1 : (X + C) --> uadd.sat(X, C)
|
|
return Builder.CreateBinaryIntrinsic(Intrinsic::uadd_sat, Cmp0,
|
|
ConstantInt::get(Cmp0->getType(), *C));
|
|
}
|
|
|
|
// Zero does not work here because X u>= 0 ? -1 : X -> is always -1, which is
|
|
// not a saturated add.
|
|
if (Pred == ICmpInst::ICMP_UGE &&
|
|
match(FVal, m_Add(m_Specific(Cmp0), m_APIntAllowPoison(C))) &&
|
|
match(Cmp1, m_SpecificIntAllowPoison(-*C)) && !C->isZero()) {
|
|
// (X u >= -C) ? -1 : (X + C) --> uadd.sat(X, C)
|
|
return Builder.CreateBinaryIntrinsic(Intrinsic::uadd_sat, Cmp0,
|
|
ConstantInt::get(Cmp0->getType(), *C));
|
|
}
|
|
|
|
// Canonicalize predicate to less-than or less-or-equal-than.
|
|
if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) {
|
|
std::swap(Cmp0, Cmp1);
|
|
Pred = CmpInst::getSwappedPredicate(Pred);
|
|
}
|
|
if (Pred != ICmpInst::ICMP_ULT && Pred != ICmpInst::ICMP_ULE)
|
|
return nullptr;
|
|
|
|
// Match unsigned saturated add of 2 variables with an unnecessary 'not'.
|
|
// Strictness of the comparison is irrelevant.
|
|
Value *Y;
|
|
if (match(Cmp0, m_Not(m_Value(X))) &&
|
|
match(FVal, m_c_Add(m_Specific(X), m_Value(Y))) && Y == Cmp1) {
|
|
// (~X u< Y) ? -1 : (X + Y) --> uadd.sat(X, Y)
|
|
// (~X u< Y) ? -1 : (Y + X) --> uadd.sat(X, Y)
|
|
return Builder.CreateBinaryIntrinsic(Intrinsic::uadd_sat, X, Y);
|
|
}
|
|
// The 'not' op may be included in the sum but not the compare.
|
|
// Strictness of the comparison is irrelevant.
|
|
X = Cmp0;
|
|
Y = Cmp1;
|
|
if (match(FVal, m_c_Add(m_NotForbidPoison(m_Specific(X)), m_Specific(Y)))) {
|
|
// (X u< Y) ? -1 : (~X + Y) --> uadd.sat(~X, Y)
|
|
// (X u< Y) ? -1 : (Y + ~X) --> uadd.sat(Y, ~X)
|
|
BinaryOperator *BO = cast<BinaryOperator>(FVal);
|
|
return Builder.CreateBinaryIntrinsic(
|
|
Intrinsic::uadd_sat, BO->getOperand(0), BO->getOperand(1));
|
|
}
|
|
// The overflow may be detected via the add wrapping round.
|
|
// This is only valid for strict comparison!
|
|
if (Pred == ICmpInst::ICMP_ULT &&
|
|
match(Cmp0, m_c_Add(m_Specific(Cmp1), m_Value(Y))) &&
|
|
match(FVal, m_c_Add(m_Specific(Cmp1), m_Specific(Y)))) {
|
|
// ((X + Y) u< X) ? -1 : (X + Y) --> uadd.sat(X, Y)
|
|
// ((X + Y) u< Y) ? -1 : (X + Y) --> uadd.sat(X, Y)
|
|
return Builder.CreateBinaryIntrinsic(Intrinsic::uadd_sat, Cmp1, Y);
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
/// Try to match patterns with select and subtract as absolute difference.
|
|
static Value *foldAbsDiff(ICmpInst *Cmp, Value *TVal, Value *FVal,
|
|
InstCombiner::BuilderTy &Builder) {
|
|
auto *TI = dyn_cast<Instruction>(TVal);
|
|
auto *FI = dyn_cast<Instruction>(FVal);
|
|
if (!TI || !FI)
|
|
return nullptr;
|
|
|
|
// Normalize predicate to gt/lt rather than ge/le.
|
|
ICmpInst::Predicate Pred = Cmp->getStrictPredicate();
|
|
Value *A = Cmp->getOperand(0);
|
|
Value *B = Cmp->getOperand(1);
|
|
|
|
// Normalize "A - B" as the true value of the select.
|
|
if (match(FI, m_Sub(m_Specific(A), m_Specific(B)))) {
|
|
std::swap(FI, TI);
|
|
Pred = ICmpInst::getSwappedPredicate(Pred);
|
|
}
|
|
|
|
// With any pair of no-wrap subtracts:
|
|
// (A > B) ? (A - B) : (B - A) --> abs(A - B)
|
|
if (Pred == CmpInst::ICMP_SGT &&
|
|
match(TI, m_Sub(m_Specific(A), m_Specific(B))) &&
|
|
match(FI, m_Sub(m_Specific(B), m_Specific(A))) &&
|
|
(TI->hasNoSignedWrap() || TI->hasNoUnsignedWrap()) &&
|
|
(FI->hasNoSignedWrap() || FI->hasNoUnsignedWrap())) {
|
|
// The remaining subtract is not "nuw" any more.
|
|
// If there's one use of the subtract (no other use than the use we are
|
|
// about to replace), then we know that the sub is "nsw" in this context
|
|
// even if it was only "nuw" before. If there's another use, then we can't
|
|
// add "nsw" to the existing instruction because it may not be safe in the
|
|
// other user's context.
|
|
TI->setHasNoUnsignedWrap(false);
|
|
if (!TI->hasNoSignedWrap())
|
|
TI->setHasNoSignedWrap(TI->hasOneUse());
|
|
return Builder.CreateBinaryIntrinsic(Intrinsic::abs, TI, Builder.getTrue());
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
/// Fold the following code sequence:
|
|
/// \code
|
|
/// int a = ctlz(x & -x);
|
|
// x ? 31 - a : a;
|
|
// // or
|
|
// x ? 31 - a : 32;
|
|
/// \code
|
|
///
|
|
/// into:
|
|
/// cttz(x)
|
|
static Instruction *foldSelectCtlzToCttz(ICmpInst *ICI, Value *TrueVal,
|
|
Value *FalseVal,
|
|
InstCombiner::BuilderTy &Builder) {
|
|
unsigned BitWidth = TrueVal->getType()->getScalarSizeInBits();
|
|
if (!ICI->isEquality() || !match(ICI->getOperand(1), m_Zero()))
|
|
return nullptr;
|
|
|
|
if (ICI->getPredicate() == ICmpInst::ICMP_NE)
|
|
std::swap(TrueVal, FalseVal);
|
|
|
|
Value *Ctlz;
|
|
if (!match(FalseVal,
|
|
m_Xor(m_Value(Ctlz), m_SpecificInt(BitWidth - 1))))
|
|
return nullptr;
|
|
|
|
if (!match(Ctlz, m_Intrinsic<Intrinsic::ctlz>()))
|
|
return nullptr;
|
|
|
|
if (TrueVal != Ctlz && !match(TrueVal, m_SpecificInt(BitWidth)))
|
|
return nullptr;
|
|
|
|
Value *X = ICI->getOperand(0);
|
|
auto *II = cast<IntrinsicInst>(Ctlz);
|
|
if (!match(II->getOperand(0), m_c_And(m_Specific(X), m_Neg(m_Specific(X)))))
|
|
return nullptr;
|
|
|
|
Function *F = Intrinsic::getOrInsertDeclaration(
|
|
II->getModule(), Intrinsic::cttz, II->getType());
|
|
return CallInst::Create(F, {X, II->getArgOperand(1)});
|
|
}
|
|
|
|
/// Attempt to fold a cttz/ctlz followed by a icmp plus select into a single
|
|
/// call to cttz/ctlz with flag 'is_zero_poison' cleared.
|
|
///
|
|
/// For example, we can fold the following code sequence:
|
|
/// \code
|
|
/// %0 = tail call i32 @llvm.cttz.i32(i32 %x, i1 true)
|
|
/// %1 = icmp ne i32 %x, 0
|
|
/// %2 = select i1 %1, i32 %0, i32 32
|
|
/// \code
|
|
///
|
|
/// into:
|
|
/// %0 = tail call i32 @llvm.cttz.i32(i32 %x, i1 false)
|
|
static Value *foldSelectCttzCtlz(ICmpInst *ICI, Value *TrueVal, Value *FalseVal,
|
|
InstCombinerImpl &IC) {
|
|
ICmpInst::Predicate Pred = ICI->getPredicate();
|
|
Value *CmpLHS = ICI->getOperand(0);
|
|
Value *CmpRHS = ICI->getOperand(1);
|
|
|
|
// Check if the select condition compares a value for equality.
|
|
if (!ICI->isEquality())
|
|
return nullptr;
|
|
|
|
Value *SelectArg = FalseVal;
|
|
Value *ValueOnZero = TrueVal;
|
|
if (Pred == ICmpInst::ICMP_NE)
|
|
std::swap(SelectArg, ValueOnZero);
|
|
|
|
// Skip zero extend/truncate.
|
|
Value *Count = nullptr;
|
|
if (!match(SelectArg, m_ZExt(m_Value(Count))) &&
|
|
!match(SelectArg, m_Trunc(m_Value(Count))))
|
|
Count = SelectArg;
|
|
|
|
// Check that 'Count' is a call to intrinsic cttz/ctlz. Also check that the
|
|
// input to the cttz/ctlz is used as LHS for the compare instruction.
|
|
Value *X;
|
|
if (!match(Count, m_Intrinsic<Intrinsic::cttz>(m_Value(X))) &&
|
|
!match(Count, m_Intrinsic<Intrinsic::ctlz>(m_Value(X))))
|
|
return nullptr;
|
|
|
|
// (X == 0) ? BitWidth : ctz(X)
|
|
// (X == -1) ? BitWidth : ctz(~X)
|
|
// (X == Y) ? BitWidth : ctz(X ^ Y)
|
|
if ((X != CmpLHS || !match(CmpRHS, m_Zero())) &&
|
|
(!match(X, m_Not(m_Specific(CmpLHS))) || !match(CmpRHS, m_AllOnes())) &&
|
|
!match(X, m_c_Xor(m_Specific(CmpLHS), m_Specific(CmpRHS))))
|
|
return nullptr;
|
|
|
|
IntrinsicInst *II = cast<IntrinsicInst>(Count);
|
|
|
|
// Check if the value propagated on zero is a constant number equal to the
|
|
// sizeof in bits of 'Count'.
|
|
unsigned SizeOfInBits = Count->getType()->getScalarSizeInBits();
|
|
if (match(ValueOnZero, m_SpecificInt(SizeOfInBits))) {
|
|
// Explicitly clear the 'is_zero_poison' flag. It's always valid to go from
|
|
// true to false on this flag, so we can replace it for all users.
|
|
II->setArgOperand(1, ConstantInt::getFalse(II->getContext()));
|
|
// A range annotation on the intrinsic may no longer be valid.
|
|
II->dropPoisonGeneratingAnnotations();
|
|
IC.addToWorklist(II);
|
|
return SelectArg;
|
|
}
|
|
|
|
// The ValueOnZero is not the bitwidth. But if the cttz/ctlz (and optional
|
|
// zext/trunc) have one use (ending at the select), the cttz/ctlz result will
|
|
// not be used if the input is zero. Relax to 'zero is poison' for that case.
|
|
if (II->hasOneUse() && SelectArg->hasOneUse() &&
|
|
!match(II->getArgOperand(1), m_One())) {
|
|
II->setArgOperand(1, ConstantInt::getTrue(II->getContext()));
|
|
// noundef attribute on the intrinsic may no longer be valid.
|
|
II->dropUBImplyingAttrsAndMetadata();
|
|
IC.addToWorklist(II);
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
static Value *canonicalizeSPF(ICmpInst &Cmp, Value *TrueVal, Value *FalseVal,
|
|
InstCombinerImpl &IC) {
|
|
Value *LHS, *RHS;
|
|
// TODO: What to do with pointer min/max patterns?
|
|
if (!TrueVal->getType()->isIntOrIntVectorTy())
|
|
return nullptr;
|
|
|
|
SelectPatternFlavor SPF =
|
|
matchDecomposedSelectPattern(&Cmp, TrueVal, FalseVal, LHS, RHS).Flavor;
|
|
if (SPF == SelectPatternFlavor::SPF_ABS ||
|
|
SPF == SelectPatternFlavor::SPF_NABS) {
|
|
if (!Cmp.hasOneUse() && !RHS->hasOneUse())
|
|
return nullptr; // TODO: Relax this restriction.
|
|
|
|
// Note that NSW flag can only be propagated for normal, non-negated abs!
|
|
bool IntMinIsPoison = SPF == SelectPatternFlavor::SPF_ABS &&
|
|
match(RHS, m_NSWNeg(m_Specific(LHS)));
|
|
Constant *IntMinIsPoisonC =
|
|
ConstantInt::get(Type::getInt1Ty(Cmp.getContext()), IntMinIsPoison);
|
|
Value *Abs =
|
|
IC.Builder.CreateBinaryIntrinsic(Intrinsic::abs, LHS, IntMinIsPoisonC);
|
|
|
|
if (SPF == SelectPatternFlavor::SPF_NABS)
|
|
return IC.Builder.CreateNeg(Abs); // Always without NSW flag!
|
|
return Abs;
|
|
}
|
|
|
|
if (SelectPatternResult::isMinOrMax(SPF)) {
|
|
Intrinsic::ID IntrinsicID = getMinMaxIntrinsic(SPF);
|
|
return IC.Builder.CreateBinaryIntrinsic(IntrinsicID, LHS, RHS);
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
bool InstCombinerImpl::replaceInInstruction(Value *V, Value *Old, Value *New,
|
|
unsigned Depth) {
|
|
// Conservatively limit replacement to two instructions upwards.
|
|
if (Depth == 2)
|
|
return false;
|
|
|
|
assert(!isa<Constant>(Old) && "Only replace non-constant values");
|
|
|
|
auto *I = dyn_cast<Instruction>(V);
|
|
if (!I || !I->hasOneUse() ||
|
|
!isSafeToSpeculativelyExecuteWithVariableReplaced(I))
|
|
return false;
|
|
|
|
// Forbid potentially lane-crossing instructions.
|
|
if (Old->getType()->isVectorTy() && !isNotCrossLaneOperation(I))
|
|
return false;
|
|
|
|
bool Changed = false;
|
|
for (Use &U : I->operands()) {
|
|
if (U == Old) {
|
|
replaceUse(U, New);
|
|
Worklist.add(I);
|
|
Changed = true;
|
|
} else {
|
|
Changed |= replaceInInstruction(U, Old, New, Depth + 1);
|
|
}
|
|
}
|
|
return Changed;
|
|
}
|
|
|
|
/// If we have a select with an equality comparison, then we know the value in
|
|
/// one of the arms of the select. See if substituting this value into an arm
|
|
/// and simplifying the result yields the same value as the other arm.
|
|
///
|
|
/// To make this transform safe, we must drop poison-generating flags
|
|
/// (nsw, etc) if we simplified to a binop because the select may be guarding
|
|
/// that poison from propagating. If the existing binop already had no
|
|
/// poison-generating flags, then this transform can be done by instsimplify.
|
|
///
|
|
/// Consider:
|
|
/// %cmp = icmp eq i32 %x, 2147483647
|
|
/// %add = add nsw i32 %x, 1
|
|
/// %sel = select i1 %cmp, i32 -2147483648, i32 %add
|
|
///
|
|
/// We can't replace %sel with %add unless we strip away the flags.
|
|
/// TODO: Wrapping flags could be preserved in some cases with better analysis.
|
|
Instruction *InstCombinerImpl::foldSelectValueEquivalence(SelectInst &Sel,
|
|
CmpInst &Cmp) {
|
|
// Canonicalize the pattern to an equivalence on the predicate by swapping the
|
|
// select operands.
|
|
Value *TrueVal = Sel.getTrueValue(), *FalseVal = Sel.getFalseValue();
|
|
bool Swapped = false;
|
|
if (Cmp.isEquivalence(/*Invert=*/true)) {
|
|
std::swap(TrueVal, FalseVal);
|
|
Swapped = true;
|
|
} else if (!Cmp.isEquivalence()) {
|
|
return nullptr;
|
|
}
|
|
|
|
Value *CmpLHS = Cmp.getOperand(0), *CmpRHS = Cmp.getOperand(1);
|
|
auto ReplaceOldOpWithNewOp = [&](Value *OldOp,
|
|
Value *NewOp) -> Instruction * {
|
|
// In X == Y ? f(X) : Z, try to evaluate f(Y) and replace the operand.
|
|
// Take care to avoid replacing X == Y ? X : Z with X == Y ? Y : Z, as that
|
|
// would lead to an infinite replacement cycle.
|
|
// If we will be able to evaluate f(Y) to a constant, we can allow undef,
|
|
// otherwise Y cannot be undef as we might pick different values for undef
|
|
// in the cmp and in f(Y).
|
|
if (TrueVal == OldOp && (isa<Constant>(OldOp) || !isa<Constant>(NewOp)))
|
|
return nullptr;
|
|
|
|
if (Value *V = simplifyWithOpReplaced(TrueVal, OldOp, NewOp, SQ,
|
|
/* AllowRefinement=*/true)) {
|
|
// Need some guarantees about the new simplified op to ensure we don't inf
|
|
// loop.
|
|
// If we simplify to a constant, replace if we aren't creating new undef.
|
|
if (match(V, m_ImmConstant()) &&
|
|
isGuaranteedNotToBeUndef(V, SQ.AC, &Sel, &DT))
|
|
return replaceOperand(Sel, Swapped ? 2 : 1, V);
|
|
|
|
// If NewOp is a constant and OldOp is not replace iff NewOp doesn't
|
|
// contain and undef elements.
|
|
// Make sure that V is always simpler than TrueVal, otherwise we might
|
|
// end up in an infinite loop.
|
|
if (match(NewOp, m_ImmConstant()) ||
|
|
(isa<Instruction>(TrueVal) &&
|
|
is_contained(cast<Instruction>(TrueVal)->operands(), V))) {
|
|
if (isGuaranteedNotToBeUndef(NewOp, SQ.AC, &Sel, &DT))
|
|
return replaceOperand(Sel, Swapped ? 2 : 1, V);
|
|
return nullptr;
|
|
}
|
|
}
|
|
|
|
// Even if TrueVal does not simplify, we can directly replace a use of
|
|
// CmpLHS with CmpRHS, as long as the instruction is not used anywhere
|
|
// else and is safe to speculatively execute (we may end up executing it
|
|
// with different operands, which should not cause side-effects or trigger
|
|
// undefined behavior). Only do this if CmpRHS is a constant, as
|
|
// profitability is not clear for other cases.
|
|
if (OldOp == CmpLHS && match(NewOp, m_ImmConstant()) &&
|
|
!match(OldOp, m_Constant()) &&
|
|
isGuaranteedNotToBeUndef(NewOp, SQ.AC, &Sel, &DT))
|
|
if (replaceInInstruction(TrueVal, OldOp, NewOp))
|
|
return &Sel;
|
|
return nullptr;
|
|
};
|
|
|
|
if (Instruction *R = ReplaceOldOpWithNewOp(CmpLHS, CmpRHS))
|
|
return R;
|
|
if (Instruction *R = ReplaceOldOpWithNewOp(CmpRHS, CmpLHS))
|
|
return R;
|
|
|
|
auto *FalseInst = dyn_cast<Instruction>(FalseVal);
|
|
if (!FalseInst)
|
|
return nullptr;
|
|
|
|
// InstSimplify already performed this fold if it was possible subject to
|
|
// current poison-generating flags. Check whether dropping poison-generating
|
|
// flags enables the transform.
|
|
|
|
// Try each equivalence substitution possibility.
|
|
// We have an 'EQ' comparison, so the select's false value will propagate.
|
|
// Example:
|
|
// (X == 42) ? 43 : (X + 1) --> (X == 42) ? (X + 1) : (X + 1) --> X + 1
|
|
SmallVector<Instruction *> DropFlags;
|
|
if (simplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, SQ,
|
|
/* AllowRefinement */ false,
|
|
&DropFlags) == TrueVal ||
|
|
simplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, SQ,
|
|
/* AllowRefinement */ false,
|
|
&DropFlags) == TrueVal) {
|
|
for (Instruction *I : DropFlags) {
|
|
I->dropPoisonGeneratingAnnotations();
|
|
Worklist.add(I);
|
|
}
|
|
|
|
return replaceInstUsesWith(Sel, FalseVal);
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
/// Fold the following code sequence:
|
|
/// \code
|
|
/// %XeqZ = icmp eq i64 %X, %Z
|
|
/// %YeqZ = icmp eq i64 %Y, %Z
|
|
/// %XeqY = icmp eq i64 %X, %Y
|
|
/// %not.YeqZ = xor i1 %YeqZ, true
|
|
/// %and = select i1 %not.YeqZ, i1 %XeqY, i1 false
|
|
/// %equal = select i1 %XeqZ, i1 %YeqZ, i1 %and
|
|
/// \code
|
|
///
|
|
/// into:
|
|
/// %equal = icmp eq i64 %X, %Y
|
|
Instruction *InstCombinerImpl::foldSelectEqualityTest(SelectInst &Sel) {
|
|
Value *X, *Y, *Z;
|
|
Value *XeqY, *XeqZ = Sel.getCondition(), *YeqZ = Sel.getTrueValue();
|
|
|
|
if (!match(XeqZ, m_SpecificICmp(ICmpInst::ICMP_EQ, m_Value(X), m_Value(Z))))
|
|
return nullptr;
|
|
|
|
if (!match(YeqZ,
|
|
m_c_SpecificICmp(ICmpInst::ICMP_EQ, m_Value(Y), m_Specific(Z))))
|
|
std::swap(X, Z);
|
|
|
|
if (!match(YeqZ,
|
|
m_c_SpecificICmp(ICmpInst::ICMP_EQ, m_Value(Y), m_Specific(Z))))
|
|
return nullptr;
|
|
|
|
if (!match(Sel.getFalseValue(),
|
|
m_c_LogicalAnd(m_Not(m_Specific(YeqZ)), m_Value(XeqY))))
|
|
return nullptr;
|
|
|
|
if (!match(XeqY,
|
|
m_c_SpecificICmp(ICmpInst::ICMP_EQ, m_Specific(X), m_Specific(Y))))
|
|
return nullptr;
|
|
|
|
cast<ICmpInst>(XeqY)->setSameSign(false);
|
|
return replaceInstUsesWith(Sel, XeqY);
|
|
}
|
|
|
|
// See if this is a pattern like:
|
|
// %old_cmp1 = icmp slt i32 %x, C2
|
|
// %old_replacement = select i1 %old_cmp1, i32 %target_low, i32 %target_high
|
|
// %old_x_offseted = add i32 %x, C1
|
|
// %old_cmp0 = icmp ult i32 %old_x_offseted, C0
|
|
// %r = select i1 %old_cmp0, i32 %x, i32 %old_replacement
|
|
// This can be rewritten as more canonical pattern:
|
|
// %new_cmp1 = icmp slt i32 %x, -C1
|
|
// %new_cmp2 = icmp sge i32 %x, C0-C1
|
|
// %new_clamped_low = select i1 %new_cmp1, i32 %target_low, i32 %x
|
|
// %r = select i1 %new_cmp2, i32 %target_high, i32 %new_clamped_low
|
|
// Iff -C1 s<= C2 s<= C0-C1
|
|
// Also ULT predicate can also be UGT iff C0 != -1 (+invert result)
|
|
// SLT predicate can also be SGT iff C2 != INT_MAX (+invert res.)
|
|
static Value *canonicalizeClampLike(SelectInst &Sel0, ICmpInst &Cmp0,
|
|
InstCombiner::BuilderTy &Builder,
|
|
InstCombiner &IC) {
|
|
Value *X = Sel0.getTrueValue();
|
|
Value *Sel1 = Sel0.getFalseValue();
|
|
|
|
// First match the condition of the outermost select.
|
|
// Said condition must be one-use.
|
|
if (!Cmp0.hasOneUse())
|
|
return nullptr;
|
|
ICmpInst::Predicate Pred0 = Cmp0.getPredicate();
|
|
Value *Cmp00 = Cmp0.getOperand(0);
|
|
Constant *C0;
|
|
if (!match(Cmp0.getOperand(1),
|
|
m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C0))))
|
|
return nullptr;
|
|
|
|
if (!isa<SelectInst>(Sel1)) {
|
|
Pred0 = ICmpInst::getInversePredicate(Pred0);
|
|
std::swap(X, Sel1);
|
|
}
|
|
|
|
// Canonicalize Cmp0 into ult or uge.
|
|
// FIXME: we shouldn't care about lanes that are 'undef' in the end?
|
|
switch (Pred0) {
|
|
case ICmpInst::Predicate::ICMP_ULT:
|
|
case ICmpInst::Predicate::ICMP_UGE:
|
|
// Although icmp ult %x, 0 is an unusual thing to try and should generally
|
|
// have been simplified, it does not verify with undef inputs so ensure we
|
|
// are not in a strange state.
|
|
if (!match(C0, m_SpecificInt_ICMP(
|
|
ICmpInst::Predicate::ICMP_NE,
|
|
APInt::getZero(C0->getType()->getScalarSizeInBits()))))
|
|
return nullptr;
|
|
break; // Great!
|
|
case ICmpInst::Predicate::ICMP_ULE:
|
|
case ICmpInst::Predicate::ICMP_UGT:
|
|
// We want to canonicalize it to 'ult' or 'uge', so we'll need to increment
|
|
// C0, which again means it must not have any all-ones elements.
|
|
if (!match(C0,
|
|
m_SpecificInt_ICMP(
|
|
ICmpInst::Predicate::ICMP_NE,
|
|
APInt::getAllOnes(C0->getType()->getScalarSizeInBits()))))
|
|
return nullptr; // Can't do, have all-ones element[s].
|
|
Pred0 = ICmpInst::getFlippedStrictnessPredicate(Pred0);
|
|
C0 = InstCombiner::AddOne(C0);
|
|
break;
|
|
default:
|
|
return nullptr; // Unknown predicate.
|
|
}
|
|
|
|
// Now that we've canonicalized the ICmp, we know the X we expect;
|
|
// the select in other hand should be one-use.
|
|
if (!Sel1->hasOneUse())
|
|
return nullptr;
|
|
|
|
// If the types do not match, look through any truncs to the underlying
|
|
// instruction.
|
|
if (Cmp00->getType() != X->getType() && X->hasOneUse())
|
|
match(X, m_TruncOrSelf(m_Value(X)));
|
|
|
|
// We now can finish matching the condition of the outermost select:
|
|
// it should either be the X itself, or an addition of some constant to X.
|
|
Constant *C1;
|
|
if (Cmp00 == X)
|
|
C1 = ConstantInt::getNullValue(X->getType());
|
|
else if (!match(Cmp00,
|
|
m_Add(m_Specific(X),
|
|
m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C1)))))
|
|
return nullptr;
|
|
|
|
Value *Cmp1;
|
|
CmpPredicate Pred1;
|
|
Constant *C2;
|
|
Value *ReplacementLow, *ReplacementHigh;
|
|
if (!match(Sel1, m_Select(m_Value(Cmp1), m_Value(ReplacementLow),
|
|
m_Value(ReplacementHigh))) ||
|
|
!match(Cmp1,
|
|
m_ICmp(Pred1, m_Specific(X),
|
|
m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C2)))))
|
|
return nullptr;
|
|
|
|
if (!Cmp1->hasOneUse() && (Cmp00 == X || !Cmp00->hasOneUse()))
|
|
return nullptr; // Not enough one-use instructions for the fold.
|
|
// FIXME: this restriction could be relaxed if Cmp1 can be reused as one of
|
|
// two comparisons we'll need to build.
|
|
|
|
// Canonicalize Cmp1 into the form we expect.
|
|
// FIXME: we shouldn't care about lanes that are 'undef' in the end?
|
|
switch (Pred1) {
|
|
case ICmpInst::Predicate::ICMP_SLT:
|
|
break;
|
|
case ICmpInst::Predicate::ICMP_SLE:
|
|
// We'd have to increment C2 by one, and for that it must not have signed
|
|
// max element, but then it would have been canonicalized to 'slt' before
|
|
// we get here. So we can't do anything useful with 'sle'.
|
|
return nullptr;
|
|
case ICmpInst::Predicate::ICMP_SGT:
|
|
// We want to canonicalize it to 'slt', so we'll need to increment C2,
|
|
// which again means it must not have any signed max elements.
|
|
if (!match(C2,
|
|
m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_NE,
|
|
APInt::getSignedMaxValue(
|
|
C2->getType()->getScalarSizeInBits()))))
|
|
return nullptr; // Can't do, have signed max element[s].
|
|
C2 = InstCombiner::AddOne(C2);
|
|
[[fallthrough]];
|
|
case ICmpInst::Predicate::ICMP_SGE:
|
|
// Also non-canonical, but here we don't need to change C2,
|
|
// so we don't have any restrictions on C2, so we can just handle it.
|
|
Pred1 = ICmpInst::Predicate::ICMP_SLT;
|
|
std::swap(ReplacementLow, ReplacementHigh);
|
|
break;
|
|
default:
|
|
return nullptr; // Unknown predicate.
|
|
}
|
|
assert(Pred1 == ICmpInst::Predicate::ICMP_SLT &&
|
|
"Unexpected predicate type.");
|
|
|
|
// The thresholds of this clamp-like pattern.
|
|
auto *ThresholdLowIncl = ConstantExpr::getNeg(C1);
|
|
auto *ThresholdHighExcl = ConstantExpr::getSub(C0, C1);
|
|
|
|
assert((Pred0 == ICmpInst::Predicate::ICMP_ULT ||
|
|
Pred0 == ICmpInst::Predicate::ICMP_UGE) &&
|
|
"Unexpected predicate type.");
|
|
if (Pred0 == ICmpInst::Predicate::ICMP_UGE)
|
|
std::swap(ThresholdLowIncl, ThresholdHighExcl);
|
|
|
|
// The fold has a precondition 1: C2 s>= ThresholdLow
|
|
auto *Precond1 = ConstantFoldCompareInstOperands(
|
|
ICmpInst::Predicate::ICMP_SGE, C2, ThresholdLowIncl, IC.getDataLayout());
|
|
if (!Precond1 || !match(Precond1, m_One()))
|
|
return nullptr;
|
|
// The fold has a precondition 2: C2 s<= ThresholdHigh
|
|
auto *Precond2 = ConstantFoldCompareInstOperands(
|
|
ICmpInst::Predicate::ICMP_SLE, C2, ThresholdHighExcl, IC.getDataLayout());
|
|
if (!Precond2 || !match(Precond2, m_One()))
|
|
return nullptr;
|
|
|
|
// If we are matching from a truncated input, we need to sext the
|
|
// ReplacementLow and ReplacementHigh values. Only do the transform if they
|
|
// are free to extend due to being constants.
|
|
if (X->getType() != Sel0.getType()) {
|
|
Constant *LowC, *HighC;
|
|
if (!match(ReplacementLow, m_ImmConstant(LowC)) ||
|
|
!match(ReplacementHigh, m_ImmConstant(HighC)))
|
|
return nullptr;
|
|
const DataLayout &DL = Sel0.getDataLayout();
|
|
ReplacementLow =
|
|
ConstantFoldCastOperand(Instruction::SExt, LowC, X->getType(), DL);
|
|
ReplacementHigh =
|
|
ConstantFoldCastOperand(Instruction::SExt, HighC, X->getType(), DL);
|
|
assert(ReplacementLow && ReplacementHigh &&
|
|
"Constant folding of ImmConstant cannot fail");
|
|
}
|
|
|
|
// All good, finally emit the new pattern.
|
|
Value *ShouldReplaceLow = Builder.CreateICmpSLT(X, ThresholdLowIncl);
|
|
Value *ShouldReplaceHigh = Builder.CreateICmpSGE(X, ThresholdHighExcl);
|
|
Value *MaybeReplacedLow =
|
|
Builder.CreateSelect(ShouldReplaceLow, ReplacementLow, X);
|
|
|
|
// Create the final select. If we looked through a truncate above, we will
|
|
// need to retruncate the result.
|
|
Value *MaybeReplacedHigh = Builder.CreateSelect(
|
|
ShouldReplaceHigh, ReplacementHigh, MaybeReplacedLow);
|
|
return Builder.CreateTrunc(MaybeReplacedHigh, Sel0.getType());
|
|
}
|
|
|
|
// If we have
|
|
// %cmp = icmp [canonical predicate] i32 %x, C0
|
|
// %r = select i1 %cmp, i32 %y, i32 C1
|
|
// Where C0 != C1 and %x may be different from %y, see if the constant that we
|
|
// will have if we flip the strictness of the predicate (i.e. without changing
|
|
// the result) is identical to the C1 in select. If it matches we can change
|
|
// original comparison to one with swapped predicate, reuse the constant,
|
|
// and swap the hands of select.
|
|
static Instruction *
|
|
tryToReuseConstantFromSelectInComparison(SelectInst &Sel, ICmpInst &Cmp,
|
|
InstCombinerImpl &IC) {
|
|
CmpPredicate Pred;
|
|
Value *X;
|
|
Constant *C0;
|
|
if (!match(&Cmp, m_OneUse(m_ICmp(
|
|
Pred, m_Value(X),
|
|
m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C0))))))
|
|
return nullptr;
|
|
|
|
// If comparison predicate is non-relational, we won't be able to do anything.
|
|
if (ICmpInst::isEquality(Pred))
|
|
return nullptr;
|
|
|
|
// If comparison predicate is non-canonical, then we certainly won't be able
|
|
// to make it canonical; canonicalizeCmpWithConstant() already tried.
|
|
if (!InstCombiner::isCanonicalPredicate(Pred))
|
|
return nullptr;
|
|
|
|
// If the [input] type of comparison and select type are different, lets abort
|
|
// for now. We could try to compare constants with trunc/[zs]ext though.
|
|
if (C0->getType() != Sel.getType())
|
|
return nullptr;
|
|
|
|
// ULT with 'add' of a constant is canonical. See foldICmpAddConstant().
|
|
// FIXME: Are there more magic icmp predicate+constant pairs we must avoid?
|
|
// Or should we just abandon this transform entirely?
|
|
if (Pred == CmpInst::ICMP_ULT && match(X, m_Add(m_Value(), m_Constant())))
|
|
return nullptr;
|
|
|
|
|
|
Value *SelVal0, *SelVal1; // We do not care which one is from where.
|
|
match(&Sel, m_Select(m_Value(), m_Value(SelVal0), m_Value(SelVal1)));
|
|
// At least one of these values we are selecting between must be a constant
|
|
// else we'll never succeed.
|
|
if (!match(SelVal0, m_AnyIntegralConstant()) &&
|
|
!match(SelVal1, m_AnyIntegralConstant()))
|
|
return nullptr;
|
|
|
|
// Does this constant C match any of the `select` values?
|
|
auto MatchesSelectValue = [SelVal0, SelVal1](Constant *C) {
|
|
return C->isElementWiseEqual(SelVal0) || C->isElementWiseEqual(SelVal1);
|
|
};
|
|
|
|
// If C0 *already* matches true/false value of select, we are done.
|
|
if (MatchesSelectValue(C0))
|
|
return nullptr;
|
|
|
|
// Check the constant we'd have with flipped-strictness predicate.
|
|
auto FlippedStrictness = getFlippedStrictnessPredicateAndConstant(Pred, C0);
|
|
if (!FlippedStrictness)
|
|
return nullptr;
|
|
|
|
// If said constant doesn't match either, then there is no hope,
|
|
if (!MatchesSelectValue(FlippedStrictness->second))
|
|
return nullptr;
|
|
|
|
// It matched! Lets insert the new comparison just before select.
|
|
InstCombiner::BuilderTy::InsertPointGuard Guard(IC.Builder);
|
|
IC.Builder.SetInsertPoint(&Sel);
|
|
|
|
Pred = ICmpInst::getSwappedPredicate(Pred); // Yes, swapped.
|
|
Value *NewCmp = IC.Builder.CreateICmp(Pred, X, FlippedStrictness->second,
|
|
Cmp.getName() + ".inv");
|
|
IC.replaceOperand(Sel, 0, NewCmp);
|
|
Sel.swapValues();
|
|
Sel.swapProfMetadata();
|
|
|
|
return &Sel;
|
|
}
|
|
|
|
static Instruction *foldSelectZeroOrOnes(ICmpInst *Cmp, Value *TVal,
|
|
Value *FVal,
|
|
InstCombiner::BuilderTy &Builder) {
|
|
if (!Cmp->hasOneUse())
|
|
return nullptr;
|
|
|
|
const APInt *CmpC;
|
|
if (!match(Cmp->getOperand(1), m_APIntAllowPoison(CmpC)))
|
|
return nullptr;
|
|
|
|
// (X u< 2) ? -X : -1 --> sext (X != 0)
|
|
Value *X = Cmp->getOperand(0);
|
|
if (Cmp->getPredicate() == ICmpInst::ICMP_ULT && *CmpC == 2 &&
|
|
match(TVal, m_Neg(m_Specific(X))) && match(FVal, m_AllOnes()))
|
|
return new SExtInst(Builder.CreateIsNotNull(X), TVal->getType());
|
|
|
|
// (X u> 1) ? -1 : -X --> sext (X != 0)
|
|
if (Cmp->getPredicate() == ICmpInst::ICMP_UGT && *CmpC == 1 &&
|
|
match(FVal, m_Neg(m_Specific(X))) && match(TVal, m_AllOnes()))
|
|
return new SExtInst(Builder.CreateIsNotNull(X), TVal->getType());
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
static Value *foldSelectInstWithICmpConst(SelectInst &SI, ICmpInst *ICI,
|
|
InstCombiner::BuilderTy &Builder) {
|
|
const APInt *CmpC;
|
|
Value *V;
|
|
CmpPredicate Pred;
|
|
if (!match(ICI, m_ICmp(Pred, m_Value(V), m_APInt(CmpC))))
|
|
return nullptr;
|
|
|
|
// Match clamp away from min/max value as a max/min operation.
|
|
Value *TVal = SI.getTrueValue();
|
|
Value *FVal = SI.getFalseValue();
|
|
if (Pred == ICmpInst::ICMP_EQ && V == FVal) {
|
|
// (V == UMIN) ? UMIN+1 : V --> umax(V, UMIN+1)
|
|
if (CmpC->isMinValue() && match(TVal, m_SpecificInt(*CmpC + 1)))
|
|
return Builder.CreateBinaryIntrinsic(Intrinsic::umax, V, TVal);
|
|
// (V == UMAX) ? UMAX-1 : V --> umin(V, UMAX-1)
|
|
if (CmpC->isMaxValue() && match(TVal, m_SpecificInt(*CmpC - 1)))
|
|
return Builder.CreateBinaryIntrinsic(Intrinsic::umin, V, TVal);
|
|
// (V == SMIN) ? SMIN+1 : V --> smax(V, SMIN+1)
|
|
if (CmpC->isMinSignedValue() && match(TVal, m_SpecificInt(*CmpC + 1)))
|
|
return Builder.CreateBinaryIntrinsic(Intrinsic::smax, V, TVal);
|
|
// (V == SMAX) ? SMAX-1 : V --> smin(V, SMAX-1)
|
|
if (CmpC->isMaxSignedValue() && match(TVal, m_SpecificInt(*CmpC - 1)))
|
|
return Builder.CreateBinaryIntrinsic(Intrinsic::smin, V, TVal);
|
|
}
|
|
|
|
// Fold icmp(X) ? f(X) : C to f(X) when f(X) is guaranteed to be equal to C
|
|
// for all X in the exact range of the inverse predicate.
|
|
Instruction *Op;
|
|
const APInt *C;
|
|
CmpInst::Predicate CPred;
|
|
if (match(&SI, m_Select(m_Specific(ICI), m_APInt(C), m_Instruction(Op))))
|
|
CPred = ICI->getPredicate();
|
|
else if (match(&SI, m_Select(m_Specific(ICI), m_Instruction(Op), m_APInt(C))))
|
|
CPred = ICI->getInversePredicate();
|
|
else
|
|
return nullptr;
|
|
|
|
ConstantRange InvDomCR = ConstantRange::makeExactICmpRegion(CPred, *CmpC);
|
|
const APInt *OpC;
|
|
if (match(Op, m_BinOp(m_Specific(V), m_APInt(OpC)))) {
|
|
ConstantRange R = InvDomCR.binaryOp(
|
|
static_cast<Instruction::BinaryOps>(Op->getOpcode()), *OpC);
|
|
if (R == *C) {
|
|
Op->dropPoisonGeneratingFlags();
|
|
return Op;
|
|
}
|
|
}
|
|
if (auto *MMI = dyn_cast<MinMaxIntrinsic>(Op);
|
|
MMI && MMI->getLHS() == V && match(MMI->getRHS(), m_APInt(OpC))) {
|
|
ConstantRange R = ConstantRange::intrinsic(MMI->getIntrinsicID(),
|
|
{InvDomCR, ConstantRange(*OpC)});
|
|
if (R == *C) {
|
|
MMI->dropPoisonGeneratingAnnotations();
|
|
return MMI;
|
|
}
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
/// `A == MIN_INT ? B != MIN_INT : A < B` --> `A < B`
|
|
/// `A == MAX_INT ? B != MAX_INT : A > B` --> `A > B`
|
|
static Instruction *foldSelectWithExtremeEqCond(Value *CmpLHS, Value *CmpRHS,
|
|
Value *TrueVal,
|
|
Value *FalseVal) {
|
|
Type *Ty = CmpLHS->getType();
|
|
|
|
if (Ty->isPtrOrPtrVectorTy())
|
|
return nullptr;
|
|
|
|
CmpPredicate Pred;
|
|
Value *B;
|
|
|
|
if (!match(FalseVal, m_c_ICmp(Pred, m_Specific(CmpLHS), m_Value(B))))
|
|
return nullptr;
|
|
|
|
Value *TValRHS;
|
|
if (!match(TrueVal, m_SpecificICmp(ICmpInst::ICMP_NE, m_Specific(B),
|
|
m_Value(TValRHS))))
|
|
return nullptr;
|
|
|
|
APInt C;
|
|
unsigned BitWidth = Ty->getScalarSizeInBits();
|
|
|
|
if (ICmpInst::isLT(Pred)) {
|
|
C = CmpInst::isSigned(Pred) ? APInt::getSignedMinValue(BitWidth)
|
|
: APInt::getMinValue(BitWidth);
|
|
} else if (ICmpInst::isGT(Pred)) {
|
|
C = CmpInst::isSigned(Pred) ? APInt::getSignedMaxValue(BitWidth)
|
|
: APInt::getMaxValue(BitWidth);
|
|
} else {
|
|
return nullptr;
|
|
}
|
|
|
|
if (!match(CmpRHS, m_SpecificInt(C)) || !match(TValRHS, m_SpecificInt(C)))
|
|
return nullptr;
|
|
|
|
return new ICmpInst(Pred, CmpLHS, B);
|
|
}
|
|
|
|
static Instruction *foldSelectICmpEq(SelectInst &SI, ICmpInst *ICI,
|
|
InstCombinerImpl &IC) {
|
|
ICmpInst::Predicate Pred = ICI->getPredicate();
|
|
if (!ICmpInst::isEquality(Pred))
|
|
return nullptr;
|
|
|
|
Value *TrueVal = SI.getTrueValue();
|
|
Value *FalseVal = SI.getFalseValue();
|
|
Value *CmpLHS = ICI->getOperand(0);
|
|
Value *CmpRHS = ICI->getOperand(1);
|
|
|
|
if (Pred == ICmpInst::ICMP_NE)
|
|
std::swap(TrueVal, FalseVal);
|
|
|
|
if (Instruction *Res =
|
|
foldSelectWithExtremeEqCond(CmpLHS, CmpRHS, TrueVal, FalseVal))
|
|
return Res;
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
/// Fold `X Pred C1 ? X BOp C2 : C1 BOp C2` to `min/max(X, C1) BOp C2`.
|
|
/// This allows for better canonicalization.
|
|
Value *InstCombinerImpl::foldSelectWithConstOpToBinOp(ICmpInst *Cmp,
|
|
Value *TrueVal,
|
|
Value *FalseVal) {
|
|
Constant *C1, *C2, *C3;
|
|
Value *X;
|
|
CmpPredicate Predicate;
|
|
|
|
if (!match(Cmp, m_ICmp(Predicate, m_Value(X), m_Constant(C1))))
|
|
return nullptr;
|
|
|
|
if (!ICmpInst::isRelational(Predicate))
|
|
return nullptr;
|
|
|
|
if (match(TrueVal, m_Constant())) {
|
|
std::swap(FalseVal, TrueVal);
|
|
Predicate = ICmpInst::getInversePredicate(Predicate);
|
|
}
|
|
|
|
if (!match(FalseVal, m_Constant(C3)) || !TrueVal->hasOneUse())
|
|
return nullptr;
|
|
|
|
bool IsIntrinsic;
|
|
unsigned Opcode;
|
|
if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(TrueVal)) {
|
|
Opcode = BOp->getOpcode();
|
|
IsIntrinsic = false;
|
|
|
|
// This fold causes some regressions and is primarily intended for
|
|
// add and sub. So we early exit for div and rem to minimize the
|
|
// regressions.
|
|
if (Instruction::isIntDivRem(Opcode))
|
|
return nullptr;
|
|
|
|
if (!match(BOp, m_BinOp(m_Specific(X), m_Constant(C2))))
|
|
return nullptr;
|
|
|
|
} else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(TrueVal)) {
|
|
if (!match(II, m_MaxOrMin(m_Specific(X), m_Constant(C2))))
|
|
return nullptr;
|
|
Opcode = II->getIntrinsicID();
|
|
IsIntrinsic = true;
|
|
} else {
|
|
return nullptr;
|
|
}
|
|
|
|
Value *RHS;
|
|
SelectPatternFlavor SPF;
|
|
const DataLayout &DL = Cmp->getDataLayout();
|
|
auto Flipped = getFlippedStrictnessPredicateAndConstant(Predicate, C1);
|
|
|
|
auto FoldBinaryOpOrIntrinsic = [&](Constant *LHS, Constant *RHS) {
|
|
return IsIntrinsic ? ConstantFoldBinaryIntrinsic(Opcode, LHS, RHS,
|
|
LHS->getType(), nullptr)
|
|
: ConstantFoldBinaryOpOperands(Opcode, LHS, RHS, DL);
|
|
};
|
|
|
|
if (C3 == FoldBinaryOpOrIntrinsic(C1, C2)) {
|
|
SPF = getSelectPattern(Predicate).Flavor;
|
|
RHS = C1;
|
|
} else if (Flipped && C3 == FoldBinaryOpOrIntrinsic(Flipped->second, C2)) {
|
|
SPF = getSelectPattern(Flipped->first).Flavor;
|
|
RHS = Flipped->second;
|
|
} else {
|
|
return nullptr;
|
|
}
|
|
|
|
Intrinsic::ID MinMaxID = getMinMaxIntrinsic(SPF);
|
|
Value *MinMax = Builder.CreateBinaryIntrinsic(MinMaxID, X, RHS);
|
|
if (IsIntrinsic)
|
|
return Builder.CreateBinaryIntrinsic(Opcode, MinMax, C2);
|
|
|
|
const auto BinOpc = Instruction::BinaryOps(Opcode);
|
|
Value *BinOp = Builder.CreateBinOp(BinOpc, MinMax, C2);
|
|
|
|
// If we can attach no-wrap flags to the new instruction, do so if the
|
|
// old instruction had them and C1 BinOp C2 does not overflow.
|
|
if (Instruction *BinOpInst = dyn_cast<Instruction>(BinOp)) {
|
|
if (BinOpc == Instruction::Add || BinOpc == Instruction::Sub ||
|
|
BinOpc == Instruction::Mul) {
|
|
Instruction *OldBinOp = cast<BinaryOperator>(TrueVal);
|
|
if (OldBinOp->hasNoSignedWrap() &&
|
|
willNotOverflow(BinOpc, RHS, C2, *BinOpInst, /*IsSigned=*/true))
|
|
BinOpInst->setHasNoSignedWrap();
|
|
if (OldBinOp->hasNoUnsignedWrap() &&
|
|
willNotOverflow(BinOpc, RHS, C2, *BinOpInst, /*IsSigned=*/false))
|
|
BinOpInst->setHasNoUnsignedWrap();
|
|
}
|
|
}
|
|
return BinOp;
|
|
}
|
|
|
|
/// Visit a SelectInst that has an ICmpInst as its first operand.
|
|
Instruction *InstCombinerImpl::foldSelectInstWithICmp(SelectInst &SI,
|
|
ICmpInst *ICI) {
|
|
if (Value *V =
|
|
canonicalizeSPF(*ICI, SI.getTrueValue(), SI.getFalseValue(), *this))
|
|
return replaceInstUsesWith(SI, V);
|
|
|
|
if (Value *V = foldSelectInstWithICmpConst(SI, ICI, Builder))
|
|
return replaceInstUsesWith(SI, V);
|
|
|
|
if (Value *V = canonicalizeClampLike(SI, *ICI, Builder, *this))
|
|
return replaceInstUsesWith(SI, V);
|
|
|
|
if (Instruction *NewSel =
|
|
tryToReuseConstantFromSelectInComparison(SI, *ICI, *this))
|
|
return NewSel;
|
|
|
|
// NOTE: if we wanted to, this is where to detect integer MIN/MAX
|
|
bool Changed = false;
|
|
Value *TrueVal = SI.getTrueValue();
|
|
Value *FalseVal = SI.getFalseValue();
|
|
ICmpInst::Predicate Pred = ICI->getPredicate();
|
|
Value *CmpLHS = ICI->getOperand(0);
|
|
Value *CmpRHS = ICI->getOperand(1);
|
|
|
|
if (Instruction *NewSel = foldSelectICmpEq(SI, ICI, *this))
|
|
return NewSel;
|
|
|
|
// Canonicalize a signbit condition to use zero constant by swapping:
|
|
// (CmpLHS > -1) ? TV : FV --> (CmpLHS < 0) ? FV : TV
|
|
// To avoid conflicts (infinite loops) with other canonicalizations, this is
|
|
// not applied with any constant select arm.
|
|
if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, m_AllOnes()) &&
|
|
!match(TrueVal, m_Constant()) && !match(FalseVal, m_Constant()) &&
|
|
ICI->hasOneUse()) {
|
|
InstCombiner::BuilderTy::InsertPointGuard Guard(Builder);
|
|
Builder.SetInsertPoint(&SI);
|
|
Value *IsNeg = Builder.CreateIsNeg(CmpLHS, ICI->getName());
|
|
replaceOperand(SI, 0, IsNeg);
|
|
SI.swapValues();
|
|
SI.swapProfMetadata();
|
|
return &SI;
|
|
}
|
|
|
|
if (Value *V = foldSelectICmpMinMax(ICI, TrueVal, FalseVal, Builder, SQ))
|
|
return replaceInstUsesWith(SI, V);
|
|
|
|
if (Instruction *V =
|
|
foldSelectICmpAndAnd(SI.getType(), ICI, TrueVal, FalseVal, Builder))
|
|
return V;
|
|
|
|
if (Value *V = foldSelectICmpAndZeroShl(ICI, TrueVal, FalseVal, Builder))
|
|
return replaceInstUsesWith(SI, V);
|
|
|
|
if (Instruction *V = foldSelectCtlzToCttz(ICI, TrueVal, FalseVal, Builder))
|
|
return V;
|
|
|
|
if (Instruction *V = foldSelectZeroOrOnes(ICI, TrueVal, FalseVal, Builder))
|
|
return V;
|
|
|
|
if (Value *V = foldSelectICmpLshrAshr(ICI, TrueVal, FalseVal, Builder))
|
|
return replaceInstUsesWith(SI, V);
|
|
|
|
if (Value *V = foldSelectCttzCtlz(ICI, TrueVal, FalseVal, *this))
|
|
return replaceInstUsesWith(SI, V);
|
|
|
|
if (Value *V = canonicalizeSaturatedSubtract(ICI, TrueVal, FalseVal, Builder))
|
|
return replaceInstUsesWith(SI, V);
|
|
|
|
if (Value *V = canonicalizeSaturatedAdd(ICI, TrueVal, FalseVal, Builder))
|
|
return replaceInstUsesWith(SI, V);
|
|
|
|
if (Value *V = foldAbsDiff(ICI, TrueVal, FalseVal, Builder))
|
|
return replaceInstUsesWith(SI, V);
|
|
|
|
if (Value *V = foldSelectWithConstOpToBinOp(ICI, TrueVal, FalseVal))
|
|
return replaceInstUsesWith(SI, V);
|
|
|
|
return Changed ? &SI : nullptr;
|
|
}
|
|
|
|
/// We have an SPF (e.g. a min or max) of an SPF of the form:
|
|
/// SPF2(SPF1(A, B), C)
|
|
Instruction *InstCombinerImpl::foldSPFofSPF(Instruction *Inner,
|
|
SelectPatternFlavor SPF1, Value *A,
|
|
Value *B, Instruction &Outer,
|
|
SelectPatternFlavor SPF2,
|
|
Value *C) {
|
|
if (Outer.getType() != Inner->getType())
|
|
return nullptr;
|
|
|
|
if (C == A || C == B) {
|
|
// MAX(MAX(A, B), B) -> MAX(A, B)
|
|
// MIN(MIN(a, b), a) -> MIN(a, b)
|
|
// TODO: This could be done in instsimplify.
|
|
if (SPF1 == SPF2 && SelectPatternResult::isMinOrMax(SPF1))
|
|
return replaceInstUsesWith(Outer, Inner);
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
/// Turn select C, (X + Y), (X - Y) --> (X + (select C, Y, (-Y))).
|
|
/// This is even legal for FP.
|
|
static Instruction *foldAddSubSelect(SelectInst &SI,
|
|
InstCombiner::BuilderTy &Builder) {
|
|
Value *CondVal = SI.getCondition();
|
|
Value *TrueVal = SI.getTrueValue();
|
|
Value *FalseVal = SI.getFalseValue();
|
|
auto *TI = dyn_cast<Instruction>(TrueVal);
|
|
auto *FI = dyn_cast<Instruction>(FalseVal);
|
|
if (!TI || !FI || !TI->hasOneUse() || !FI->hasOneUse())
|
|
return nullptr;
|
|
|
|
Instruction *AddOp = nullptr, *SubOp = nullptr;
|
|
if ((TI->getOpcode() == Instruction::Sub &&
|
|
FI->getOpcode() == Instruction::Add) ||
|
|
(TI->getOpcode() == Instruction::FSub &&
|
|
FI->getOpcode() == Instruction::FAdd)) {
|
|
AddOp = FI;
|
|
SubOp = TI;
|
|
} else if ((FI->getOpcode() == Instruction::Sub &&
|
|
TI->getOpcode() == Instruction::Add) ||
|
|
(FI->getOpcode() == Instruction::FSub &&
|
|
TI->getOpcode() == Instruction::FAdd)) {
|
|
AddOp = TI;
|
|
SubOp = FI;
|
|
}
|
|
|
|
if (AddOp) {
|
|
Value *OtherAddOp = nullptr;
|
|
if (SubOp->getOperand(0) == AddOp->getOperand(0)) {
|
|
OtherAddOp = AddOp->getOperand(1);
|
|
} else if (SubOp->getOperand(0) == AddOp->getOperand(1)) {
|
|
OtherAddOp = AddOp->getOperand(0);
|
|
}
|
|
|
|
if (OtherAddOp) {
|
|
// So at this point we know we have (Y -> OtherAddOp):
|
|
// select C, (add X, Y), (sub X, Z)
|
|
Value *NegVal; // Compute -Z
|
|
if (SI.getType()->isFPOrFPVectorTy()) {
|
|
NegVal = Builder.CreateFNeg(SubOp->getOperand(1));
|
|
if (Instruction *NegInst = dyn_cast<Instruction>(NegVal)) {
|
|
FastMathFlags Flags = AddOp->getFastMathFlags();
|
|
Flags &= SubOp->getFastMathFlags();
|
|
NegInst->setFastMathFlags(Flags);
|
|
}
|
|
} else {
|
|
NegVal = Builder.CreateNeg(SubOp->getOperand(1));
|
|
}
|
|
|
|
Value *NewTrueOp = OtherAddOp;
|
|
Value *NewFalseOp = NegVal;
|
|
if (AddOp != TI)
|
|
std::swap(NewTrueOp, NewFalseOp);
|
|
Value *NewSel = Builder.CreateSelect(CondVal, NewTrueOp, NewFalseOp,
|
|
SI.getName() + ".p", &SI);
|
|
|
|
if (SI.getType()->isFPOrFPVectorTy()) {
|
|
Instruction *RI =
|
|
BinaryOperator::CreateFAdd(SubOp->getOperand(0), NewSel);
|
|
|
|
FastMathFlags Flags = AddOp->getFastMathFlags();
|
|
Flags &= SubOp->getFastMathFlags();
|
|
RI->setFastMathFlags(Flags);
|
|
return RI;
|
|
} else
|
|
return BinaryOperator::CreateAdd(SubOp->getOperand(0), NewSel);
|
|
}
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
/// Turn X + Y overflows ? -1 : X + Y -> uadd_sat X, Y
|
|
/// And X - Y overflows ? 0 : X - Y -> usub_sat X, Y
|
|
/// Along with a number of patterns similar to:
|
|
/// X + Y overflows ? (X < 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
|
|
/// X - Y overflows ? (X > 0 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
|
|
static Instruction *
|
|
foldOverflowingAddSubSelect(SelectInst &SI, InstCombiner::BuilderTy &Builder) {
|
|
Value *CondVal = SI.getCondition();
|
|
Value *TrueVal = SI.getTrueValue();
|
|
Value *FalseVal = SI.getFalseValue();
|
|
|
|
WithOverflowInst *II;
|
|
if (!match(CondVal, m_ExtractValue<1>(m_WithOverflowInst(II))) ||
|
|
!match(FalseVal, m_ExtractValue<0>(m_Specific(II))))
|
|
return nullptr;
|
|
|
|
Value *X = II->getLHS();
|
|
Value *Y = II->getRHS();
|
|
|
|
auto IsSignedSaturateLimit = [&](Value *Limit, bool IsAdd) {
|
|
Type *Ty = Limit->getType();
|
|
|
|
CmpPredicate Pred;
|
|
Value *TrueVal, *FalseVal, *Op;
|
|
const APInt *C;
|
|
if (!match(Limit, m_Select(m_ICmp(Pred, m_Value(Op), m_APInt(C)),
|
|
m_Value(TrueVal), m_Value(FalseVal))))
|
|
return false;
|
|
|
|
auto IsZeroOrOne = [](const APInt &C) { return C.isZero() || C.isOne(); };
|
|
auto IsMinMax = [&](Value *Min, Value *Max) {
|
|
APInt MinVal = APInt::getSignedMinValue(Ty->getScalarSizeInBits());
|
|
APInt MaxVal = APInt::getSignedMaxValue(Ty->getScalarSizeInBits());
|
|
return match(Min, m_SpecificInt(MinVal)) &&
|
|
match(Max, m_SpecificInt(MaxVal));
|
|
};
|
|
|
|
if (Op != X && Op != Y)
|
|
return false;
|
|
|
|
if (IsAdd) {
|
|
// X + Y overflows ? (X <s 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
|
|
// X + Y overflows ? (X <s 1 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
|
|
// X + Y overflows ? (Y <s 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
|
|
// X + Y overflows ? (Y <s 1 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
|
|
if (Pred == ICmpInst::ICMP_SLT && IsZeroOrOne(*C) &&
|
|
IsMinMax(TrueVal, FalseVal))
|
|
return true;
|
|
// X + Y overflows ? (X >s 0 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
|
|
// X + Y overflows ? (X >s -1 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
|
|
// X + Y overflows ? (Y >s 0 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
|
|
// X + Y overflows ? (Y >s -1 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
|
|
if (Pred == ICmpInst::ICMP_SGT && IsZeroOrOne(*C + 1) &&
|
|
IsMinMax(FalseVal, TrueVal))
|
|
return true;
|
|
} else {
|
|
// X - Y overflows ? (X <s 0 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
|
|
// X - Y overflows ? (X <s -1 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
|
|
if (Op == X && Pred == ICmpInst::ICMP_SLT && IsZeroOrOne(*C + 1) &&
|
|
IsMinMax(TrueVal, FalseVal))
|
|
return true;
|
|
// X - Y overflows ? (X >s -1 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
|
|
// X - Y overflows ? (X >s -2 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
|
|
if (Op == X && Pred == ICmpInst::ICMP_SGT && IsZeroOrOne(*C + 2) &&
|
|
IsMinMax(FalseVal, TrueVal))
|
|
return true;
|
|
// X - Y overflows ? (Y <s 0 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
|
|
// X - Y overflows ? (Y <s 1 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
|
|
if (Op == Y && Pred == ICmpInst::ICMP_SLT && IsZeroOrOne(*C) &&
|
|
IsMinMax(FalseVal, TrueVal))
|
|
return true;
|
|
// X - Y overflows ? (Y >s 0 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
|
|
// X - Y overflows ? (Y >s -1 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
|
|
if (Op == Y && Pred == ICmpInst::ICMP_SGT && IsZeroOrOne(*C + 1) &&
|
|
IsMinMax(TrueVal, FalseVal))
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
};
|
|
|
|
Intrinsic::ID NewIntrinsicID;
|
|
if (II->getIntrinsicID() == Intrinsic::uadd_with_overflow &&
|
|
match(TrueVal, m_AllOnes()))
|
|
// X + Y overflows ? -1 : X + Y -> uadd_sat X, Y
|
|
NewIntrinsicID = Intrinsic::uadd_sat;
|
|
else if (II->getIntrinsicID() == Intrinsic::usub_with_overflow &&
|
|
match(TrueVal, m_Zero()))
|
|
// X - Y overflows ? 0 : X - Y -> usub_sat X, Y
|
|
NewIntrinsicID = Intrinsic::usub_sat;
|
|
else if (II->getIntrinsicID() == Intrinsic::sadd_with_overflow &&
|
|
IsSignedSaturateLimit(TrueVal, /*IsAdd=*/true))
|
|
// X + Y overflows ? (X <s 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
|
|
// X + Y overflows ? (X <s 1 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
|
|
// X + Y overflows ? (X >s 0 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
|
|
// X + Y overflows ? (X >s -1 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
|
|
// X + Y overflows ? (Y <s 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
|
|
// X + Y overflows ? (Y <s 1 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
|
|
// X + Y overflows ? (Y >s 0 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
|
|
// X + Y overflows ? (Y >s -1 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
|
|
NewIntrinsicID = Intrinsic::sadd_sat;
|
|
else if (II->getIntrinsicID() == Intrinsic::ssub_with_overflow &&
|
|
IsSignedSaturateLimit(TrueVal, /*IsAdd=*/false))
|
|
// X - Y overflows ? (X <s 0 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
|
|
// X - Y overflows ? (X <s -1 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
|
|
// X - Y overflows ? (X >s -1 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
|
|
// X - Y overflows ? (X >s -2 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
|
|
// X - Y overflows ? (Y <s 0 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
|
|
// X - Y overflows ? (Y <s 1 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
|
|
// X - Y overflows ? (Y >s 0 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
|
|
// X - Y overflows ? (Y >s -1 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
|
|
NewIntrinsicID = Intrinsic::ssub_sat;
|
|
else
|
|
return nullptr;
|
|
|
|
Function *F = Intrinsic::getOrInsertDeclaration(SI.getModule(),
|
|
NewIntrinsicID, SI.getType());
|
|
return CallInst::Create(F, {X, Y});
|
|
}
|
|
|
|
Instruction *InstCombinerImpl::foldSelectExtConst(SelectInst &Sel) {
|
|
Constant *C;
|
|
if (!match(Sel.getTrueValue(), m_Constant(C)) &&
|
|
!match(Sel.getFalseValue(), m_Constant(C)))
|
|
return nullptr;
|
|
|
|
Instruction *ExtInst;
|
|
if (!match(Sel.getTrueValue(), m_Instruction(ExtInst)) &&
|
|
!match(Sel.getFalseValue(), m_Instruction(ExtInst)))
|
|
return nullptr;
|
|
|
|
auto ExtOpcode = ExtInst->getOpcode();
|
|
if (ExtOpcode != Instruction::ZExt && ExtOpcode != Instruction::SExt)
|
|
return nullptr;
|
|
|
|
// If we are extending from a boolean type or if we can create a select that
|
|
// has the same size operands as its condition, try to narrow the select.
|
|
Value *X = ExtInst->getOperand(0);
|
|
Type *SmallType = X->getType();
|
|
Value *Cond = Sel.getCondition();
|
|
auto *Cmp = dyn_cast<CmpInst>(Cond);
|
|
if (!SmallType->isIntOrIntVectorTy(1) &&
|
|
(!Cmp || Cmp->getOperand(0)->getType() != SmallType))
|
|
return nullptr;
|
|
|
|
// If the constant is the same after truncation to the smaller type and
|
|
// extension to the original type, we can narrow the select.
|
|
Type *SelType = Sel.getType();
|
|
Constant *TruncC = getLosslessTrunc(C, SmallType, ExtOpcode);
|
|
if (TruncC && ExtInst->hasOneUse()) {
|
|
Value *TruncCVal = cast<Value>(TruncC);
|
|
if (ExtInst == Sel.getFalseValue())
|
|
std::swap(X, TruncCVal);
|
|
|
|
// select Cond, (ext X), C --> ext(select Cond, X, C')
|
|
// select Cond, C, (ext X) --> ext(select Cond, C', X)
|
|
Value *NewSel = Builder.CreateSelect(Cond, X, TruncCVal, "narrow", &Sel);
|
|
return CastInst::Create(Instruction::CastOps(ExtOpcode), NewSel, SelType);
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
/// Try to transform a vector select with a constant condition vector into a
|
|
/// shuffle for easier combining with other shuffles and insert/extract.
|
|
static Instruction *canonicalizeSelectToShuffle(SelectInst &SI) {
|
|
Value *CondVal = SI.getCondition();
|
|
Constant *CondC;
|
|
auto *CondValTy = dyn_cast<FixedVectorType>(CondVal->getType());
|
|
if (!CondValTy || !match(CondVal, m_Constant(CondC)))
|
|
return nullptr;
|
|
|
|
unsigned NumElts = CondValTy->getNumElements();
|
|
SmallVector<int, 16> Mask;
|
|
Mask.reserve(NumElts);
|
|
for (unsigned i = 0; i != NumElts; ++i) {
|
|
Constant *Elt = CondC->getAggregateElement(i);
|
|
if (!Elt)
|
|
return nullptr;
|
|
|
|
if (Elt->isOneValue()) {
|
|
// If the select condition element is true, choose from the 1st vector.
|
|
Mask.push_back(i);
|
|
} else if (Elt->isNullValue()) {
|
|
// If the select condition element is false, choose from the 2nd vector.
|
|
Mask.push_back(i + NumElts);
|
|
} else if (isa<UndefValue>(Elt)) {
|
|
// Undef in a select condition (choose one of the operands) does not mean
|
|
// the same thing as undef in a shuffle mask (any value is acceptable), so
|
|
// give up.
|
|
return nullptr;
|
|
} else {
|
|
// Bail out on a constant expression.
|
|
return nullptr;
|
|
}
|
|
}
|
|
|
|
return new ShuffleVectorInst(SI.getTrueValue(), SI.getFalseValue(), Mask);
|
|
}
|
|
|
|
/// If we have a select of vectors with a scalar condition, try to convert that
|
|
/// to a vector select by splatting the condition. A splat may get folded with
|
|
/// other operations in IR and having all operands of a select be vector types
|
|
/// is likely better for vector codegen.
|
|
static Instruction *canonicalizeScalarSelectOfVecs(SelectInst &Sel,
|
|
InstCombinerImpl &IC) {
|
|
auto *Ty = dyn_cast<VectorType>(Sel.getType());
|
|
if (!Ty)
|
|
return nullptr;
|
|
|
|
// We can replace a single-use extract with constant index.
|
|
Value *Cond = Sel.getCondition();
|
|
if (!match(Cond, m_OneUse(m_ExtractElt(m_Value(), m_ConstantInt()))))
|
|
return nullptr;
|
|
|
|
// select (extelt V, Index), T, F --> select (splat V, Index), T, F
|
|
// Splatting the extracted condition reduces code (we could directly create a
|
|
// splat shuffle of the source vector to eliminate the intermediate step).
|
|
return IC.replaceOperand(
|
|
Sel, 0, IC.Builder.CreateVectorSplat(Ty->getElementCount(), Cond));
|
|
}
|
|
|
|
/// Reuse bitcasted operands between a compare and select:
|
|
/// select (cmp (bitcast C), (bitcast D)), (bitcast' C), (bitcast' D) -->
|
|
/// bitcast (select (cmp (bitcast C), (bitcast D)), (bitcast C), (bitcast D))
|
|
static Instruction *foldSelectCmpBitcasts(SelectInst &Sel,
|
|
InstCombiner::BuilderTy &Builder) {
|
|
Value *Cond = Sel.getCondition();
|
|
Value *TVal = Sel.getTrueValue();
|
|
Value *FVal = Sel.getFalseValue();
|
|
|
|
CmpPredicate Pred;
|
|
Value *A, *B;
|
|
if (!match(Cond, m_Cmp(Pred, m_Value(A), m_Value(B))))
|
|
return nullptr;
|
|
|
|
// The select condition is a compare instruction. If the select's true/false
|
|
// values are already the same as the compare operands, there's nothing to do.
|
|
if (TVal == A || TVal == B || FVal == A || FVal == B)
|
|
return nullptr;
|
|
|
|
Value *C, *D;
|
|
if (!match(A, m_BitCast(m_Value(C))) || !match(B, m_BitCast(m_Value(D))))
|
|
return nullptr;
|
|
|
|
// select (cmp (bitcast C), (bitcast D)), (bitcast TSrc), (bitcast FSrc)
|
|
Value *TSrc, *FSrc;
|
|
if (!match(TVal, m_BitCast(m_Value(TSrc))) ||
|
|
!match(FVal, m_BitCast(m_Value(FSrc))))
|
|
return nullptr;
|
|
|
|
// If the select true/false values are *different bitcasts* of the same source
|
|
// operands, make the select operands the same as the compare operands and
|
|
// cast the result. This is the canonical select form for min/max.
|
|
Value *NewSel;
|
|
if (TSrc == C && FSrc == D) {
|
|
// select (cmp (bitcast C), (bitcast D)), (bitcast' C), (bitcast' D) -->
|
|
// bitcast (select (cmp A, B), A, B)
|
|
NewSel = Builder.CreateSelect(Cond, A, B, "", &Sel);
|
|
} else if (TSrc == D && FSrc == C) {
|
|
// select (cmp (bitcast C), (bitcast D)), (bitcast' D), (bitcast' C) -->
|
|
// bitcast (select (cmp A, B), B, A)
|
|
NewSel = Builder.CreateSelect(Cond, B, A, "", &Sel);
|
|
} else {
|
|
return nullptr;
|
|
}
|
|
return new BitCastInst(NewSel, Sel.getType());
|
|
}
|
|
|
|
/// Try to eliminate select instructions that test the returned flag of cmpxchg
|
|
/// instructions.
|
|
///
|
|
/// If a select instruction tests the returned flag of a cmpxchg instruction and
|
|
/// selects between the returned value of the cmpxchg instruction its compare
|
|
/// operand, the result of the select will always be equal to its false value.
|
|
/// For example:
|
|
///
|
|
/// %cmpxchg = cmpxchg ptr %ptr, i64 %compare, i64 %new_value seq_cst seq_cst
|
|
/// %val = extractvalue { i64, i1 } %cmpxchg, 0
|
|
/// %success = extractvalue { i64, i1 } %cmpxchg, 1
|
|
/// %sel = select i1 %success, i64 %compare, i64 %val
|
|
/// ret i64 %sel
|
|
///
|
|
/// The returned value of the cmpxchg instruction (%val) is the original value
|
|
/// located at %ptr prior to any update. If the cmpxchg operation succeeds, %val
|
|
/// must have been equal to %compare. Thus, the result of the select is always
|
|
/// equal to %val, and the code can be simplified to:
|
|
///
|
|
/// %cmpxchg = cmpxchg ptr %ptr, i64 %compare, i64 %new_value seq_cst seq_cst
|
|
/// %val = extractvalue { i64, i1 } %cmpxchg, 0
|
|
/// ret i64 %val
|
|
///
|
|
static Value *foldSelectCmpXchg(SelectInst &SI) {
|
|
// A helper that determines if V is an extractvalue instruction whose
|
|
// aggregate operand is a cmpxchg instruction and whose single index is equal
|
|
// to I. If such conditions are true, the helper returns the cmpxchg
|
|
// instruction; otherwise, a nullptr is returned.
|
|
auto isExtractFromCmpXchg = [](Value *V, unsigned I) -> AtomicCmpXchgInst * {
|
|
auto *Extract = dyn_cast<ExtractValueInst>(V);
|
|
if (!Extract)
|
|
return nullptr;
|
|
if (Extract->getIndices()[0] != I)
|
|
return nullptr;
|
|
return dyn_cast<AtomicCmpXchgInst>(Extract->getAggregateOperand());
|
|
};
|
|
|
|
// If the select has a single user, and this user is a select instruction that
|
|
// we can simplify, skip the cmpxchg simplification for now.
|
|
if (SI.hasOneUse())
|
|
if (auto *Select = dyn_cast<SelectInst>(SI.user_back()))
|
|
if (Select->getCondition() == SI.getCondition())
|
|
if (Select->getFalseValue() == SI.getTrueValue() ||
|
|
Select->getTrueValue() == SI.getFalseValue())
|
|
return nullptr;
|
|
|
|
// Ensure the select condition is the returned flag of a cmpxchg instruction.
|
|
auto *CmpXchg = isExtractFromCmpXchg(SI.getCondition(), 1);
|
|
if (!CmpXchg)
|
|
return nullptr;
|
|
|
|
// Check the true value case: The true value of the select is the returned
|
|
// value of the same cmpxchg used by the condition, and the false value is the
|
|
// cmpxchg instruction's compare operand.
|
|
if (auto *X = isExtractFromCmpXchg(SI.getTrueValue(), 0))
|
|
if (X == CmpXchg && X->getCompareOperand() == SI.getFalseValue())
|
|
return SI.getFalseValue();
|
|
|
|
// Check the false value case: The false value of the select is the returned
|
|
// value of the same cmpxchg used by the condition, and the true value is the
|
|
// cmpxchg instruction's compare operand.
|
|
if (auto *X = isExtractFromCmpXchg(SI.getFalseValue(), 0))
|
|
if (X == CmpXchg && X->getCompareOperand() == SI.getTrueValue())
|
|
return SI.getFalseValue();
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
/// Try to reduce a funnel/rotate pattern that includes a compare and select
|
|
/// into a funnel shift intrinsic. Example:
|
|
/// rotl32(a, b) --> (b == 0 ? a : ((a >> (32 - b)) | (a << b)))
|
|
/// --> call llvm.fshl.i32(a, a, b)
|
|
/// fshl32(a, b, c) --> (c == 0 ? a : ((b >> (32 - c)) | (a << c)))
|
|
/// --> call llvm.fshl.i32(a, b, c)
|
|
/// fshr32(a, b, c) --> (c == 0 ? b : ((a >> (32 - c)) | (b << c)))
|
|
/// --> call llvm.fshr.i32(a, b, c)
|
|
static Instruction *foldSelectFunnelShift(SelectInst &Sel,
|
|
InstCombiner::BuilderTy &Builder) {
|
|
// This must be a power-of-2 type for a bitmasking transform to be valid.
|
|
unsigned Width = Sel.getType()->getScalarSizeInBits();
|
|
if (!isPowerOf2_32(Width))
|
|
return nullptr;
|
|
|
|
BinaryOperator *Or0, *Or1;
|
|
if (!match(Sel.getFalseValue(), m_OneUse(m_Or(m_BinOp(Or0), m_BinOp(Or1)))))
|
|
return nullptr;
|
|
|
|
Value *SV0, *SV1, *SA0, *SA1;
|
|
if (!match(Or0, m_OneUse(m_LogicalShift(m_Value(SV0),
|
|
m_ZExtOrSelf(m_Value(SA0))))) ||
|
|
!match(Or1, m_OneUse(m_LogicalShift(m_Value(SV1),
|
|
m_ZExtOrSelf(m_Value(SA1))))) ||
|
|
Or0->getOpcode() == Or1->getOpcode())
|
|
return nullptr;
|
|
|
|
// Canonicalize to or(shl(SV0, SA0), lshr(SV1, SA1)).
|
|
if (Or0->getOpcode() == BinaryOperator::LShr) {
|
|
std::swap(Or0, Or1);
|
|
std::swap(SV0, SV1);
|
|
std::swap(SA0, SA1);
|
|
}
|
|
assert(Or0->getOpcode() == BinaryOperator::Shl &&
|
|
Or1->getOpcode() == BinaryOperator::LShr &&
|
|
"Illegal or(shift,shift) pair");
|
|
|
|
// Check the shift amounts to see if they are an opposite pair.
|
|
Value *ShAmt;
|
|
if (match(SA1, m_OneUse(m_Sub(m_SpecificInt(Width), m_Specific(SA0)))))
|
|
ShAmt = SA0;
|
|
else if (match(SA0, m_OneUse(m_Sub(m_SpecificInt(Width), m_Specific(SA1)))))
|
|
ShAmt = SA1;
|
|
else
|
|
return nullptr;
|
|
|
|
// We should now have this pattern:
|
|
// select ?, TVal, (or (shl SV0, SA0), (lshr SV1, SA1))
|
|
// The false value of the select must be a funnel-shift of the true value:
|
|
// IsFShl -> TVal must be SV0 else TVal must be SV1.
|
|
bool IsFshl = (ShAmt == SA0);
|
|
Value *TVal = Sel.getTrueValue();
|
|
if ((IsFshl && TVal != SV0) || (!IsFshl && TVal != SV1))
|
|
return nullptr;
|
|
|
|
// Finally, see if the select is filtering out a shift-by-zero.
|
|
Value *Cond = Sel.getCondition();
|
|
if (!match(Cond, m_OneUse(m_SpecificICmp(ICmpInst::ICMP_EQ, m_Specific(ShAmt),
|
|
m_ZeroInt()))))
|
|
return nullptr;
|
|
|
|
// If this is not a rotate then the select was blocking poison from the
|
|
// 'shift-by-zero' non-TVal, but a funnel shift won't - so freeze it.
|
|
if (SV0 != SV1) {
|
|
if (IsFshl && !llvm::isGuaranteedNotToBePoison(SV1))
|
|
SV1 = Builder.CreateFreeze(SV1);
|
|
else if (!IsFshl && !llvm::isGuaranteedNotToBePoison(SV0))
|
|
SV0 = Builder.CreateFreeze(SV0);
|
|
}
|
|
|
|
// This is a funnel/rotate that avoids shift-by-bitwidth UB in a suboptimal way.
|
|
// Convert to funnel shift intrinsic.
|
|
Intrinsic::ID IID = IsFshl ? Intrinsic::fshl : Intrinsic::fshr;
|
|
Function *F =
|
|
Intrinsic::getOrInsertDeclaration(Sel.getModule(), IID, Sel.getType());
|
|
ShAmt = Builder.CreateZExt(ShAmt, Sel.getType());
|
|
return CallInst::Create(F, { SV0, SV1, ShAmt });
|
|
}
|
|
|
|
static Instruction *foldSelectToCopysign(SelectInst &Sel,
|
|
InstCombiner::BuilderTy &Builder) {
|
|
Value *Cond = Sel.getCondition();
|
|
Value *TVal = Sel.getTrueValue();
|
|
Value *FVal = Sel.getFalseValue();
|
|
Type *SelType = Sel.getType();
|
|
|
|
// Match select ?, TC, FC where the constants are equal but negated.
|
|
// TODO: Generalize to handle a negated variable operand?
|
|
const APFloat *TC, *FC;
|
|
if (!match(TVal, m_APFloatAllowPoison(TC)) ||
|
|
!match(FVal, m_APFloatAllowPoison(FC)) ||
|
|
!abs(*TC).bitwiseIsEqual(abs(*FC)))
|
|
return nullptr;
|
|
|
|
assert(TC != FC && "Expected equal select arms to simplify");
|
|
|
|
Value *X;
|
|
const APInt *C;
|
|
bool IsTrueIfSignSet;
|
|
CmpPredicate Pred;
|
|
if (!match(Cond, m_OneUse(m_ICmp(Pred, m_ElementWiseBitCast(m_Value(X)),
|
|
m_APInt(C)))) ||
|
|
!isSignBitCheck(Pred, *C, IsTrueIfSignSet) || X->getType() != SelType)
|
|
return nullptr;
|
|
|
|
// If needed, negate the value that will be the sign argument of the copysign:
|
|
// (bitcast X) < 0 ? -TC : TC --> copysign(TC, X)
|
|
// (bitcast X) < 0 ? TC : -TC --> copysign(TC, -X)
|
|
// (bitcast X) >= 0 ? -TC : TC --> copysign(TC, -X)
|
|
// (bitcast X) >= 0 ? TC : -TC --> copysign(TC, X)
|
|
// Note: FMF from the select can not be propagated to the new instructions.
|
|
if (IsTrueIfSignSet ^ TC->isNegative())
|
|
X = Builder.CreateFNeg(X);
|
|
|
|
// Canonicalize the magnitude argument as the positive constant since we do
|
|
// not care about its sign.
|
|
Value *MagArg = ConstantFP::get(SelType, abs(*TC));
|
|
Function *F = Intrinsic::getOrInsertDeclaration(
|
|
Sel.getModule(), Intrinsic::copysign, Sel.getType());
|
|
return CallInst::Create(F, { MagArg, X });
|
|
}
|
|
|
|
Instruction *InstCombinerImpl::foldVectorSelect(SelectInst &Sel) {
|
|
if (!isa<VectorType>(Sel.getType()))
|
|
return nullptr;
|
|
|
|
Value *Cond = Sel.getCondition();
|
|
Value *TVal = Sel.getTrueValue();
|
|
Value *FVal = Sel.getFalseValue();
|
|
Value *C, *X, *Y;
|
|
|
|
if (match(Cond, m_VecReverse(m_Value(C)))) {
|
|
auto createSelReverse = [&](Value *C, Value *X, Value *Y) {
|
|
Value *V = Builder.CreateSelect(C, X, Y, Sel.getName(), &Sel);
|
|
if (auto *I = dyn_cast<Instruction>(V))
|
|
I->copyIRFlags(&Sel);
|
|
Module *M = Sel.getModule();
|
|
Function *F = Intrinsic::getOrInsertDeclaration(
|
|
M, Intrinsic::vector_reverse, V->getType());
|
|
return CallInst::Create(F, V);
|
|
};
|
|
|
|
if (match(TVal, m_VecReverse(m_Value(X)))) {
|
|
// select rev(C), rev(X), rev(Y) --> rev(select C, X, Y)
|
|
if (match(FVal, m_VecReverse(m_Value(Y))) &&
|
|
(Cond->hasOneUse() || TVal->hasOneUse() || FVal->hasOneUse()))
|
|
return createSelReverse(C, X, Y);
|
|
|
|
// select rev(C), rev(X), FValSplat --> rev(select C, X, FValSplat)
|
|
if ((Cond->hasOneUse() || TVal->hasOneUse()) && isSplatValue(FVal))
|
|
return createSelReverse(C, X, FVal);
|
|
}
|
|
// select rev(C), TValSplat, rev(Y) --> rev(select C, TValSplat, Y)
|
|
else if (isSplatValue(TVal) && match(FVal, m_VecReverse(m_Value(Y))) &&
|
|
(Cond->hasOneUse() || FVal->hasOneUse()))
|
|
return createSelReverse(C, TVal, Y);
|
|
}
|
|
|
|
auto *VecTy = dyn_cast<FixedVectorType>(Sel.getType());
|
|
if (!VecTy)
|
|
return nullptr;
|
|
|
|
unsigned NumElts = VecTy->getNumElements();
|
|
APInt PoisonElts(NumElts, 0);
|
|
APInt AllOnesEltMask(APInt::getAllOnes(NumElts));
|
|
if (Value *V = SimplifyDemandedVectorElts(&Sel, AllOnesEltMask, PoisonElts)) {
|
|
if (V != &Sel)
|
|
return replaceInstUsesWith(Sel, V);
|
|
return &Sel;
|
|
}
|
|
|
|
// A select of a "select shuffle" with a common operand can be rearranged
|
|
// to select followed by "select shuffle". Because of poison, this only works
|
|
// in the case of a shuffle with no undefined mask elements.
|
|
ArrayRef<int> Mask;
|
|
if (match(TVal, m_OneUse(m_Shuffle(m_Value(X), m_Value(Y), m_Mask(Mask)))) &&
|
|
!is_contained(Mask, PoisonMaskElem) &&
|
|
cast<ShuffleVectorInst>(TVal)->isSelect()) {
|
|
if (X == FVal) {
|
|
// select Cond, (shuf_sel X, Y), X --> shuf_sel X, (select Cond, Y, X)
|
|
Value *NewSel = Builder.CreateSelect(Cond, Y, X, "sel", &Sel);
|
|
return new ShuffleVectorInst(X, NewSel, Mask);
|
|
}
|
|
if (Y == FVal) {
|
|
// select Cond, (shuf_sel X, Y), Y --> shuf_sel (select Cond, X, Y), Y
|
|
Value *NewSel = Builder.CreateSelect(Cond, X, Y, "sel", &Sel);
|
|
return new ShuffleVectorInst(NewSel, Y, Mask);
|
|
}
|
|
}
|
|
if (match(FVal, m_OneUse(m_Shuffle(m_Value(X), m_Value(Y), m_Mask(Mask)))) &&
|
|
!is_contained(Mask, PoisonMaskElem) &&
|
|
cast<ShuffleVectorInst>(FVal)->isSelect()) {
|
|
if (X == TVal) {
|
|
// select Cond, X, (shuf_sel X, Y) --> shuf_sel X, (select Cond, X, Y)
|
|
Value *NewSel = Builder.CreateSelect(Cond, X, Y, "sel", &Sel);
|
|
return new ShuffleVectorInst(X, NewSel, Mask);
|
|
}
|
|
if (Y == TVal) {
|
|
// select Cond, Y, (shuf_sel X, Y) --> shuf_sel (select Cond, Y, X), Y
|
|
Value *NewSel = Builder.CreateSelect(Cond, Y, X, "sel", &Sel);
|
|
return new ShuffleVectorInst(NewSel, Y, Mask);
|
|
}
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
static Instruction *foldSelectToPhiImpl(SelectInst &Sel, BasicBlock *BB,
|
|
const DominatorTree &DT,
|
|
InstCombiner::BuilderTy &Builder) {
|
|
// Find the block's immediate dominator that ends with a conditional branch
|
|
// that matches select's condition (maybe inverted).
|
|
auto *IDomNode = DT[BB]->getIDom();
|
|
if (!IDomNode)
|
|
return nullptr;
|
|
BasicBlock *IDom = IDomNode->getBlock();
|
|
|
|
Value *Cond = Sel.getCondition();
|
|
Value *IfTrue, *IfFalse;
|
|
BasicBlock *TrueSucc, *FalseSucc;
|
|
if (match(IDom->getTerminator(),
|
|
m_Br(m_Specific(Cond), m_BasicBlock(TrueSucc),
|
|
m_BasicBlock(FalseSucc)))) {
|
|
IfTrue = Sel.getTrueValue();
|
|
IfFalse = Sel.getFalseValue();
|
|
} else if (match(IDom->getTerminator(),
|
|
m_Br(m_Not(m_Specific(Cond)), m_BasicBlock(TrueSucc),
|
|
m_BasicBlock(FalseSucc)))) {
|
|
IfTrue = Sel.getFalseValue();
|
|
IfFalse = Sel.getTrueValue();
|
|
} else
|
|
return nullptr;
|
|
|
|
// Make sure the branches are actually different.
|
|
if (TrueSucc == FalseSucc)
|
|
return nullptr;
|
|
|
|
// We want to replace select %cond, %a, %b with a phi that takes value %a
|
|
// for all incoming edges that are dominated by condition `%cond == true`,
|
|
// and value %b for edges dominated by condition `%cond == false`. If %a
|
|
// or %b are also phis from the same basic block, we can go further and take
|
|
// their incoming values from the corresponding blocks.
|
|
BasicBlockEdge TrueEdge(IDom, TrueSucc);
|
|
BasicBlockEdge FalseEdge(IDom, FalseSucc);
|
|
DenseMap<BasicBlock *, Value *> Inputs;
|
|
for (auto *Pred : predecessors(BB)) {
|
|
// Check implication.
|
|
BasicBlockEdge Incoming(Pred, BB);
|
|
if (DT.dominates(TrueEdge, Incoming))
|
|
Inputs[Pred] = IfTrue->DoPHITranslation(BB, Pred);
|
|
else if (DT.dominates(FalseEdge, Incoming))
|
|
Inputs[Pred] = IfFalse->DoPHITranslation(BB, Pred);
|
|
else
|
|
return nullptr;
|
|
// Check availability.
|
|
if (auto *Insn = dyn_cast<Instruction>(Inputs[Pred]))
|
|
if (!DT.dominates(Insn, Pred->getTerminator()))
|
|
return nullptr;
|
|
}
|
|
|
|
Builder.SetInsertPoint(BB, BB->begin());
|
|
auto *PN = Builder.CreatePHI(Sel.getType(), Inputs.size());
|
|
for (auto *Pred : predecessors(BB))
|
|
PN->addIncoming(Inputs[Pred], Pred);
|
|
PN->takeName(&Sel);
|
|
return PN;
|
|
}
|
|
|
|
static Instruction *foldSelectToPhi(SelectInst &Sel, const DominatorTree &DT,
|
|
InstCombiner::BuilderTy &Builder) {
|
|
// Try to replace this select with Phi in one of these blocks.
|
|
SmallSetVector<BasicBlock *, 4> CandidateBlocks;
|
|
CandidateBlocks.insert(Sel.getParent());
|
|
for (Value *V : Sel.operands())
|
|
if (auto *I = dyn_cast<Instruction>(V))
|
|
CandidateBlocks.insert(I->getParent());
|
|
|
|
for (BasicBlock *BB : CandidateBlocks)
|
|
if (auto *PN = foldSelectToPhiImpl(Sel, BB, DT, Builder))
|
|
return PN;
|
|
return nullptr;
|
|
}
|
|
|
|
/// Tries to reduce a pattern that arises when calculating the remainder of the
|
|
/// Euclidean division. When the divisor is a power of two and is guaranteed not
|
|
/// to be negative, a signed remainder can be folded with a bitwise and.
|
|
///
|
|
/// (x % n) < 0 ? (x % n) + n : (x % n)
|
|
/// -> x & (n - 1)
|
|
static Instruction *foldSelectWithSRem(SelectInst &SI, InstCombinerImpl &IC,
|
|
IRBuilderBase &Builder) {
|
|
Value *CondVal = SI.getCondition();
|
|
Value *TrueVal = SI.getTrueValue();
|
|
Value *FalseVal = SI.getFalseValue();
|
|
|
|
CmpPredicate Pred;
|
|
Value *Op, *RemRes, *Remainder;
|
|
const APInt *C;
|
|
bool TrueIfSigned = false;
|
|
|
|
if (!(match(CondVal, m_ICmp(Pred, m_Value(RemRes), m_APInt(C))) &&
|
|
isSignBitCheck(Pred, *C, TrueIfSigned)))
|
|
return nullptr;
|
|
|
|
// If the sign bit is not set, we have a SGE/SGT comparison, and the operands
|
|
// of the select are inverted.
|
|
if (!TrueIfSigned)
|
|
std::swap(TrueVal, FalseVal);
|
|
|
|
auto FoldToBitwiseAnd = [&](Value *Remainder) -> Instruction * {
|
|
Value *Add = Builder.CreateAdd(
|
|
Remainder, Constant::getAllOnesValue(RemRes->getType()));
|
|
return BinaryOperator::CreateAnd(Op, Add);
|
|
};
|
|
|
|
// Match the general case:
|
|
// %rem = srem i32 %x, %n
|
|
// %cnd = icmp slt i32 %rem, 0
|
|
// %add = add i32 %rem, %n
|
|
// %sel = select i1 %cnd, i32 %add, i32 %rem
|
|
if (match(TrueVal, m_c_Add(m_Specific(RemRes), m_Value(Remainder))) &&
|
|
match(RemRes, m_SRem(m_Value(Op), m_Specific(Remainder))) &&
|
|
IC.isKnownToBeAPowerOfTwo(Remainder, /*OrZero=*/true) &&
|
|
FalseVal == RemRes)
|
|
return FoldToBitwiseAnd(Remainder);
|
|
|
|
// Match the case where the one arm has been replaced by constant 1:
|
|
// %rem = srem i32 %n, 2
|
|
// %cnd = icmp slt i32 %rem, 0
|
|
// %sel = select i1 %cnd, i32 1, i32 %rem
|
|
if (match(TrueVal, m_One()) &&
|
|
match(RemRes, m_SRem(m_Value(Op), m_SpecificInt(2))) &&
|
|
FalseVal == RemRes)
|
|
return FoldToBitwiseAnd(ConstantInt::get(RemRes->getType(), 2));
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
static Value *foldSelectWithFrozenICmp(SelectInst &Sel, InstCombiner::BuilderTy &Builder) {
|
|
FreezeInst *FI = dyn_cast<FreezeInst>(Sel.getCondition());
|
|
if (!FI)
|
|
return nullptr;
|
|
|
|
Value *Cond = FI->getOperand(0);
|
|
Value *TrueVal = Sel.getTrueValue(), *FalseVal = Sel.getFalseValue();
|
|
|
|
// select (freeze(x == y)), x, y --> y
|
|
// select (freeze(x != y)), x, y --> x
|
|
// The freeze should be only used by this select. Otherwise, remaining uses of
|
|
// the freeze can observe a contradictory value.
|
|
// c = freeze(x == y) ; Let's assume that y = poison & x = 42; c is 0 or 1
|
|
// a = select c, x, y ;
|
|
// f(a, c) ; f(poison, 1) cannot happen, but if a is folded
|
|
// ; to y, this can happen.
|
|
CmpPredicate Pred;
|
|
if (FI->hasOneUse() &&
|
|
match(Cond, m_c_ICmp(Pred, m_Specific(TrueVal), m_Specific(FalseVal))) &&
|
|
(Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE)) {
|
|
return Pred == ICmpInst::ICMP_EQ ? FalseVal : TrueVal;
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
/// Given that \p CondVal is known to be \p CondIsTrue, try to simplify \p SI.
|
|
static Value *simplifyNestedSelectsUsingImpliedCond(SelectInst &SI,
|
|
Value *CondVal,
|
|
bool CondIsTrue,
|
|
const DataLayout &DL) {
|
|
Value *InnerCondVal = SI.getCondition();
|
|
Value *InnerTrueVal = SI.getTrueValue();
|
|
Value *InnerFalseVal = SI.getFalseValue();
|
|
assert(CondVal->getType() == InnerCondVal->getType() &&
|
|
"The type of inner condition must match with the outer.");
|
|
if (auto Implied = isImpliedCondition(CondVal, InnerCondVal, DL, CondIsTrue))
|
|
return *Implied ? InnerTrueVal : InnerFalseVal;
|
|
return nullptr;
|
|
}
|
|
|
|
Instruction *InstCombinerImpl::foldAndOrOfSelectUsingImpliedCond(Value *Op,
|
|
SelectInst &SI,
|
|
bool IsAnd) {
|
|
assert(Op->getType()->isIntOrIntVectorTy(1) &&
|
|
"Op must be either i1 or vector of i1.");
|
|
if (SI.getCondition()->getType() != Op->getType())
|
|
return nullptr;
|
|
if (Value *V = simplifyNestedSelectsUsingImpliedCond(SI, Op, IsAnd, DL))
|
|
return SelectInst::Create(Op,
|
|
IsAnd ? V : ConstantInt::getTrue(Op->getType()),
|
|
IsAnd ? ConstantInt::getFalse(Op->getType()) : V);
|
|
return nullptr;
|
|
}
|
|
|
|
// Canonicalize select with fcmp to fabs(). -0.0 makes this tricky. We need
|
|
// fast-math-flags (nsz) or fsub with +0.0 (not fneg) for this to work.
|
|
static Instruction *foldSelectWithFCmpToFabs(SelectInst &SI,
|
|
InstCombinerImpl &IC) {
|
|
Value *CondVal = SI.getCondition();
|
|
|
|
bool ChangedFMF = false;
|
|
for (bool Swap : {false, true}) {
|
|
Value *TrueVal = SI.getTrueValue();
|
|
Value *X = SI.getFalseValue();
|
|
CmpPredicate Pred;
|
|
|
|
if (Swap)
|
|
std::swap(TrueVal, X);
|
|
|
|
if (!match(CondVal, m_FCmp(Pred, m_Specific(X), m_AnyZeroFP())))
|
|
continue;
|
|
|
|
// fold (X <= +/-0.0) ? (0.0 - X) : X to fabs(X), when 'Swap' is false
|
|
// fold (X > +/-0.0) ? X : (0.0 - X) to fabs(X), when 'Swap' is true
|
|
// Note: We require "nnan" for this fold because fcmp ignores the signbit
|
|
// of NAN, but IEEE-754 specifies the signbit of NAN values with
|
|
// fneg/fabs operations.
|
|
if (match(TrueVal, m_FSub(m_PosZeroFP(), m_Specific(X))) &&
|
|
(cast<FPMathOperator>(CondVal)->hasNoNaNs() || SI.hasNoNaNs() ||
|
|
(SI.hasOneUse() && canIgnoreSignBitOfNaN(*SI.use_begin())) ||
|
|
isKnownNeverNaN(X, IC.getSimplifyQuery().getWithInstruction(
|
|
cast<Instruction>(CondVal))))) {
|
|
if (!Swap && (Pred == FCmpInst::FCMP_OLE || Pred == FCmpInst::FCMP_ULE)) {
|
|
Value *Fabs = IC.Builder.CreateUnaryIntrinsic(Intrinsic::fabs, X, &SI);
|
|
return IC.replaceInstUsesWith(SI, Fabs);
|
|
}
|
|
if (Swap && (Pred == FCmpInst::FCMP_OGT || Pred == FCmpInst::FCMP_UGT)) {
|
|
Value *Fabs = IC.Builder.CreateUnaryIntrinsic(Intrinsic::fabs, X, &SI);
|
|
return IC.replaceInstUsesWith(SI, Fabs);
|
|
}
|
|
}
|
|
|
|
if (!match(TrueVal, m_FNeg(m_Specific(X))))
|
|
return nullptr;
|
|
|
|
// Forward-propagate nnan and ninf from the fcmp to the select.
|
|
// If all inputs are not those values, then the select is not either.
|
|
// Note: nsz is defined differently, so it may not be correct to propagate.
|
|
FastMathFlags FMF = cast<FPMathOperator>(CondVal)->getFastMathFlags();
|
|
if (FMF.noNaNs() && !SI.hasNoNaNs()) {
|
|
SI.setHasNoNaNs(true);
|
|
ChangedFMF = true;
|
|
}
|
|
if (FMF.noInfs() && !SI.hasNoInfs()) {
|
|
SI.setHasNoInfs(true);
|
|
ChangedFMF = true;
|
|
}
|
|
// Forward-propagate nnan from the fneg to the select.
|
|
// The nnan flag can be propagated iff fneg is selected when X is NaN.
|
|
if (!SI.hasNoNaNs() && cast<FPMathOperator>(TrueVal)->hasNoNaNs() &&
|
|
(Swap ? FCmpInst::isOrdered(Pred) : FCmpInst::isUnordered(Pred))) {
|
|
SI.setHasNoNaNs(true);
|
|
ChangedFMF = true;
|
|
}
|
|
|
|
// With nsz, when 'Swap' is false:
|
|
// fold (X < +/-0.0) ? -X : X or (X <= +/-0.0) ? -X : X to fabs(X)
|
|
// fold (X > +/-0.0) ? -X : X or (X >= +/-0.0) ? -X : X to -fabs(x)
|
|
// when 'Swap' is true:
|
|
// fold (X > +/-0.0) ? X : -X or (X >= +/-0.0) ? X : -X to fabs(X)
|
|
// fold (X < +/-0.0) ? X : -X or (X <= +/-0.0) ? X : -X to -fabs(X)
|
|
//
|
|
// Note: We require "nnan" for this fold because fcmp ignores the signbit
|
|
// of NAN, but IEEE-754 specifies the signbit of NAN values with
|
|
// fneg/fabs operations.
|
|
if (!SI.hasNoSignedZeros() &&
|
|
(!SI.hasOneUse() || !canIgnoreSignBitOfZero(*SI.use_begin())))
|
|
return nullptr;
|
|
if (!SI.hasNoNaNs() &&
|
|
(!SI.hasOneUse() || !canIgnoreSignBitOfNaN(*SI.use_begin())))
|
|
return nullptr;
|
|
|
|
if (Swap)
|
|
Pred = FCmpInst::getSwappedPredicate(Pred);
|
|
|
|
bool IsLTOrLE = Pred == FCmpInst::FCMP_OLT || Pred == FCmpInst::FCMP_OLE ||
|
|
Pred == FCmpInst::FCMP_ULT || Pred == FCmpInst::FCMP_ULE;
|
|
bool IsGTOrGE = Pred == FCmpInst::FCMP_OGT || Pred == FCmpInst::FCMP_OGE ||
|
|
Pred == FCmpInst::FCMP_UGT || Pred == FCmpInst::FCMP_UGE;
|
|
|
|
if (IsLTOrLE) {
|
|
Value *Fabs = IC.Builder.CreateUnaryIntrinsic(Intrinsic::fabs, X, &SI);
|
|
return IC.replaceInstUsesWith(SI, Fabs);
|
|
}
|
|
if (IsGTOrGE) {
|
|
Value *Fabs = IC.Builder.CreateUnaryIntrinsic(Intrinsic::fabs, X, &SI);
|
|
Instruction *NewFNeg = UnaryOperator::CreateFNeg(Fabs);
|
|
NewFNeg->setFastMathFlags(SI.getFastMathFlags());
|
|
return NewFNeg;
|
|
}
|
|
}
|
|
|
|
// Match select with (icmp slt (bitcast X to int), 0)
|
|
// or (icmp sgt (bitcast X to int), -1)
|
|
|
|
for (bool Swap : {false, true}) {
|
|
Value *TrueVal = SI.getTrueValue();
|
|
Value *X = SI.getFalseValue();
|
|
|
|
if (Swap)
|
|
std::swap(TrueVal, X);
|
|
|
|
CmpPredicate Pred;
|
|
const APInt *C;
|
|
bool TrueIfSigned;
|
|
if (!match(CondVal,
|
|
m_ICmp(Pred, m_ElementWiseBitCast(m_Specific(X)), m_APInt(C))) ||
|
|
!isSignBitCheck(Pred, *C, TrueIfSigned))
|
|
continue;
|
|
if (!match(TrueVal, m_FNeg(m_Specific(X))))
|
|
return nullptr;
|
|
if (Swap == TrueIfSigned && !CondVal->hasOneUse() && !TrueVal->hasOneUse())
|
|
return nullptr;
|
|
|
|
// Fold (IsNeg ? -X : X) or (!IsNeg ? X : -X) to fabs(X)
|
|
// Fold (IsNeg ? X : -X) or (!IsNeg ? -X : X) to -fabs(X)
|
|
Value *Fabs = IC.Builder.CreateUnaryIntrinsic(Intrinsic::fabs, X, &SI);
|
|
if (Swap != TrueIfSigned)
|
|
return IC.replaceInstUsesWith(SI, Fabs);
|
|
return UnaryOperator::CreateFNegFMF(Fabs, &SI);
|
|
}
|
|
|
|
return ChangedFMF ? &SI : nullptr;
|
|
}
|
|
|
|
// Match the following IR pattern:
|
|
// %x.lowbits = and i8 %x, %lowbitmask
|
|
// %x.lowbits.are.zero = icmp eq i8 %x.lowbits, 0
|
|
// %x.biased = add i8 %x, %bias
|
|
// %x.biased.highbits = and i8 %x.biased, %highbitmask
|
|
// %x.roundedup = select i1 %x.lowbits.are.zero, i8 %x, i8 %x.biased.highbits
|
|
// Define:
|
|
// %alignment = add i8 %lowbitmask, 1
|
|
// Iff 1. an %alignment is a power-of-two (aka, %lowbitmask is a low bit mask)
|
|
// and 2. %bias is equal to either %lowbitmask or %alignment,
|
|
// and 3. %highbitmask is equal to ~%lowbitmask (aka, to -%alignment)
|
|
// then this pattern can be transformed into:
|
|
// %x.offset = add i8 %x, %lowbitmask
|
|
// %x.roundedup = and i8 %x.offset, %highbitmask
|
|
static Value *
|
|
foldRoundUpIntegerWithPow2Alignment(SelectInst &SI,
|
|
InstCombiner::BuilderTy &Builder) {
|
|
Value *Cond = SI.getCondition();
|
|
Value *X = SI.getTrueValue();
|
|
Value *XBiasedHighBits = SI.getFalseValue();
|
|
|
|
CmpPredicate Pred;
|
|
Value *XLowBits;
|
|
if (!match(Cond, m_ICmp(Pred, m_Value(XLowBits), m_ZeroInt())) ||
|
|
!ICmpInst::isEquality(Pred))
|
|
return nullptr;
|
|
|
|
if (Pred == ICmpInst::Predicate::ICMP_NE)
|
|
std::swap(X, XBiasedHighBits);
|
|
|
|
// FIXME: we could support non non-splats here.
|
|
|
|
const APInt *LowBitMaskCst;
|
|
if (!match(XLowBits, m_And(m_Specific(X), m_APIntAllowPoison(LowBitMaskCst))))
|
|
return nullptr;
|
|
|
|
// Match even if the AND and ADD are swapped.
|
|
const APInt *BiasCst, *HighBitMaskCst;
|
|
if (!match(XBiasedHighBits,
|
|
m_And(m_Add(m_Specific(X), m_APIntAllowPoison(BiasCst)),
|
|
m_APIntAllowPoison(HighBitMaskCst))) &&
|
|
!match(XBiasedHighBits,
|
|
m_Add(m_And(m_Specific(X), m_APIntAllowPoison(HighBitMaskCst)),
|
|
m_APIntAllowPoison(BiasCst))))
|
|
return nullptr;
|
|
|
|
if (!LowBitMaskCst->isMask())
|
|
return nullptr;
|
|
|
|
APInt InvertedLowBitMaskCst = ~*LowBitMaskCst;
|
|
if (InvertedLowBitMaskCst != *HighBitMaskCst)
|
|
return nullptr;
|
|
|
|
APInt AlignmentCst = *LowBitMaskCst + 1;
|
|
|
|
if (*BiasCst != AlignmentCst && *BiasCst != *LowBitMaskCst)
|
|
return nullptr;
|
|
|
|
if (!XBiasedHighBits->hasOneUse()) {
|
|
// We can't directly return XBiasedHighBits if it is more poisonous.
|
|
if (*BiasCst == *LowBitMaskCst && impliesPoison(XBiasedHighBits, X))
|
|
return XBiasedHighBits;
|
|
return nullptr;
|
|
}
|
|
|
|
// FIXME: could we preserve undef's here?
|
|
Type *Ty = X->getType();
|
|
Value *XOffset = Builder.CreateAdd(X, ConstantInt::get(Ty, *LowBitMaskCst),
|
|
X->getName() + ".biased");
|
|
Value *R = Builder.CreateAnd(XOffset, ConstantInt::get(Ty, *HighBitMaskCst));
|
|
R->takeName(&SI);
|
|
return R;
|
|
}
|
|
|
|
namespace {
|
|
struct DecomposedSelect {
|
|
Value *Cond = nullptr;
|
|
Value *TrueVal = nullptr;
|
|
Value *FalseVal = nullptr;
|
|
};
|
|
} // namespace
|
|
|
|
/// Folds patterns like:
|
|
/// select c2 (select c1 a b) (select c1 b a)
|
|
/// into:
|
|
/// select (xor c1 c2) b a
|
|
static Instruction *
|
|
foldSelectOfSymmetricSelect(SelectInst &OuterSelVal,
|
|
InstCombiner::BuilderTy &Builder) {
|
|
|
|
Value *OuterCond, *InnerCond, *InnerTrueVal, *InnerFalseVal;
|
|
if (!match(
|
|
&OuterSelVal,
|
|
m_Select(m_Value(OuterCond),
|
|
m_OneUse(m_Select(m_Value(InnerCond), m_Value(InnerTrueVal),
|
|
m_Value(InnerFalseVal))),
|
|
m_OneUse(m_Select(m_Deferred(InnerCond),
|
|
m_Deferred(InnerFalseVal),
|
|
m_Deferred(InnerTrueVal))))))
|
|
return nullptr;
|
|
|
|
if (OuterCond->getType() != InnerCond->getType())
|
|
return nullptr;
|
|
|
|
Value *Xor = Builder.CreateXor(InnerCond, OuterCond);
|
|
return SelectInst::Create(Xor, InnerFalseVal, InnerTrueVal);
|
|
}
|
|
|
|
/// Look for patterns like
|
|
/// %outer.cond = select i1 %inner.cond, i1 %alt.cond, i1 false
|
|
/// %inner.sel = select i1 %inner.cond, i8 %inner.sel.t, i8 %inner.sel.f
|
|
/// %outer.sel = select i1 %outer.cond, i8 %outer.sel.t, i8 %inner.sel
|
|
/// and rewrite it as
|
|
/// %inner.sel = select i1 %cond.alternative, i8 %sel.outer.t, i8 %sel.inner.t
|
|
/// %sel.outer = select i1 %cond.inner, i8 %inner.sel, i8 %sel.inner.f
|
|
static Instruction *foldNestedSelects(SelectInst &OuterSelVal,
|
|
InstCombiner::BuilderTy &Builder) {
|
|
// We must start with a `select`.
|
|
DecomposedSelect OuterSel;
|
|
match(&OuterSelVal,
|
|
m_Select(m_Value(OuterSel.Cond), m_Value(OuterSel.TrueVal),
|
|
m_Value(OuterSel.FalseVal)));
|
|
|
|
// Canonicalize inversion of the outermost `select`'s condition.
|
|
if (match(OuterSel.Cond, m_Not(m_Value(OuterSel.Cond))))
|
|
std::swap(OuterSel.TrueVal, OuterSel.FalseVal);
|
|
|
|
// The condition of the outermost select must be an `and`/`or`.
|
|
if (!match(OuterSel.Cond, m_c_LogicalOp(m_Value(), m_Value())))
|
|
return nullptr;
|
|
|
|
// Depending on the logical op, inner select might be in different hand.
|
|
bool IsAndVariant = match(OuterSel.Cond, m_LogicalAnd());
|
|
Value *InnerSelVal = IsAndVariant ? OuterSel.FalseVal : OuterSel.TrueVal;
|
|
|
|
// Profitability check - avoid increasing instruction count.
|
|
if (none_of(ArrayRef<Value *>({OuterSelVal.getCondition(), InnerSelVal}),
|
|
[](Value *V) { return V->hasOneUse(); }))
|
|
return nullptr;
|
|
|
|
// The appropriate hand of the outermost `select` must be a select itself.
|
|
DecomposedSelect InnerSel;
|
|
if (!match(InnerSelVal,
|
|
m_Select(m_Value(InnerSel.Cond), m_Value(InnerSel.TrueVal),
|
|
m_Value(InnerSel.FalseVal))))
|
|
return nullptr;
|
|
|
|
// Canonicalize inversion of the innermost `select`'s condition.
|
|
if (match(InnerSel.Cond, m_Not(m_Value(InnerSel.Cond))))
|
|
std::swap(InnerSel.TrueVal, InnerSel.FalseVal);
|
|
|
|
Value *AltCond = nullptr;
|
|
auto matchOuterCond = [OuterSel, IsAndVariant, &AltCond](auto m_InnerCond) {
|
|
// An unsimplified select condition can match both LogicalAnd and LogicalOr
|
|
// (select true, true, false). Since below we assume that LogicalAnd implies
|
|
// InnerSel match the FVal and vice versa for LogicalOr, we can't match the
|
|
// alternative pattern here.
|
|
return IsAndVariant ? match(OuterSel.Cond,
|
|
m_c_LogicalAnd(m_InnerCond, m_Value(AltCond)))
|
|
: match(OuterSel.Cond,
|
|
m_c_LogicalOr(m_InnerCond, m_Value(AltCond)));
|
|
};
|
|
|
|
// Finally, match the condition that was driving the outermost `select`,
|
|
// it should be a logical operation between the condition that was driving
|
|
// the innermost `select` (after accounting for the possible inversions
|
|
// of the condition), and some other condition.
|
|
if (matchOuterCond(m_Specific(InnerSel.Cond))) {
|
|
// Done!
|
|
} else if (Value * NotInnerCond; matchOuterCond(m_CombineAnd(
|
|
m_Not(m_Specific(InnerSel.Cond)), m_Value(NotInnerCond)))) {
|
|
// Done!
|
|
std::swap(InnerSel.TrueVal, InnerSel.FalseVal);
|
|
InnerSel.Cond = NotInnerCond;
|
|
} else // Not the pattern we were looking for.
|
|
return nullptr;
|
|
|
|
Value *SelInner = Builder.CreateSelect(
|
|
AltCond, IsAndVariant ? OuterSel.TrueVal : InnerSel.FalseVal,
|
|
IsAndVariant ? InnerSel.TrueVal : OuterSel.FalseVal);
|
|
SelInner->takeName(InnerSelVal);
|
|
return SelectInst::Create(InnerSel.Cond,
|
|
IsAndVariant ? SelInner : InnerSel.TrueVal,
|
|
!IsAndVariant ? SelInner : InnerSel.FalseVal);
|
|
}
|
|
|
|
/// Return true if V is poison or \p Expected given that ValAssumedPoison is
|
|
/// already poison. For example, if ValAssumedPoison is `icmp samesign X, 10`
|
|
/// and V is `icmp ne X, 5`, impliesPoisonOrCond returns true.
|
|
static bool impliesPoisonOrCond(const Value *ValAssumedPoison, const Value *V,
|
|
bool Expected) {
|
|
if (impliesPoison(ValAssumedPoison, V))
|
|
return true;
|
|
|
|
// Handle the case that ValAssumedPoison is `icmp samesign pred X, C1` and V
|
|
// is `icmp pred X, C2`, where C1 is well-defined.
|
|
if (auto *ICmp = dyn_cast<ICmpInst>(ValAssumedPoison)) {
|
|
Value *LHS = ICmp->getOperand(0);
|
|
const APInt *RHSC1;
|
|
const APInt *RHSC2;
|
|
CmpPredicate Pred;
|
|
if (ICmp->hasSameSign() &&
|
|
match(ICmp->getOperand(1), m_APIntForbidPoison(RHSC1)) &&
|
|
match(V, m_ICmp(Pred, m_Specific(LHS), m_APIntAllowPoison(RHSC2)))) {
|
|
unsigned BitWidth = RHSC1->getBitWidth();
|
|
ConstantRange CRX =
|
|
RHSC1->isNonNegative()
|
|
? ConstantRange(APInt::getSignedMinValue(BitWidth),
|
|
APInt::getZero(BitWidth))
|
|
: ConstantRange(APInt::getZero(BitWidth),
|
|
APInt::getSignedMinValue(BitWidth));
|
|
return CRX.icmp(Expected ? Pred : ICmpInst::getInverseCmpPredicate(Pred),
|
|
*RHSC2);
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
Instruction *InstCombinerImpl::foldSelectOfBools(SelectInst &SI) {
|
|
Value *CondVal = SI.getCondition();
|
|
Value *TrueVal = SI.getTrueValue();
|
|
Value *FalseVal = SI.getFalseValue();
|
|
Type *SelType = SI.getType();
|
|
|
|
// Avoid potential infinite loops by checking for non-constant condition.
|
|
// TODO: Can we assert instead by improving canonicalizeSelectToShuffle()?
|
|
// Scalar select must have simplified?
|
|
if (!SelType->isIntOrIntVectorTy(1) || isa<Constant>(CondVal) ||
|
|
TrueVal->getType() != CondVal->getType())
|
|
return nullptr;
|
|
|
|
auto *One = ConstantInt::getTrue(SelType);
|
|
auto *Zero = ConstantInt::getFalse(SelType);
|
|
Value *A, *B, *C, *D;
|
|
|
|
// Folding select to and/or i1 isn't poison safe in general. impliesPoison
|
|
// checks whether folding it does not convert a well-defined value into
|
|
// poison.
|
|
if (match(TrueVal, m_One())) {
|
|
if (impliesPoisonOrCond(FalseVal, CondVal, /*Expected=*/false)) {
|
|
// Change: A = select B, true, C --> A = or B, C
|
|
return BinaryOperator::CreateOr(CondVal, FalseVal);
|
|
}
|
|
|
|
if (match(CondVal, m_OneUse(m_Select(m_Value(A), m_One(), m_Value(B)))) &&
|
|
impliesPoisonOrCond(FalseVal, B, /*Expected=*/false)) {
|
|
// (A || B) || C --> A || (B | C)
|
|
return replaceInstUsesWith(
|
|
SI, Builder.CreateLogicalOr(A, Builder.CreateOr(B, FalseVal)));
|
|
}
|
|
|
|
// (A && B) || (C && B) --> (A || C) && B
|
|
if (match(CondVal, m_LogicalAnd(m_Value(A), m_Value(B))) &&
|
|
match(FalseVal, m_LogicalAnd(m_Value(C), m_Value(D))) &&
|
|
(CondVal->hasOneUse() || FalseVal->hasOneUse())) {
|
|
bool CondLogicAnd = isa<SelectInst>(CondVal);
|
|
bool FalseLogicAnd = isa<SelectInst>(FalseVal);
|
|
auto AndFactorization = [&](Value *Common, Value *InnerCond,
|
|
Value *InnerVal,
|
|
bool SelFirst = false) -> Instruction * {
|
|
Value *InnerSel = Builder.CreateSelect(InnerCond, One, InnerVal);
|
|
if (SelFirst)
|
|
std::swap(Common, InnerSel);
|
|
if (FalseLogicAnd || (CondLogicAnd && Common == A))
|
|
return SelectInst::Create(Common, InnerSel, Zero);
|
|
else
|
|
return BinaryOperator::CreateAnd(Common, InnerSel);
|
|
};
|
|
|
|
if (A == C)
|
|
return AndFactorization(A, B, D);
|
|
if (A == D)
|
|
return AndFactorization(A, B, C);
|
|
if (B == C)
|
|
return AndFactorization(B, A, D);
|
|
if (B == D)
|
|
return AndFactorization(B, A, C, CondLogicAnd && FalseLogicAnd);
|
|
}
|
|
}
|
|
|
|
if (match(FalseVal, m_Zero())) {
|
|
if (impliesPoisonOrCond(TrueVal, CondVal, /*Expected=*/true)) {
|
|
// Change: A = select B, C, false --> A = and B, C
|
|
return BinaryOperator::CreateAnd(CondVal, TrueVal);
|
|
}
|
|
|
|
if (match(CondVal, m_OneUse(m_Select(m_Value(A), m_Value(B), m_Zero()))) &&
|
|
impliesPoisonOrCond(TrueVal, B, /*Expected=*/true)) {
|
|
// (A && B) && C --> A && (B & C)
|
|
return replaceInstUsesWith(
|
|
SI, Builder.CreateLogicalAnd(A, Builder.CreateAnd(B, TrueVal)));
|
|
}
|
|
|
|
// (A || B) && (C || B) --> (A && C) || B
|
|
if (match(CondVal, m_LogicalOr(m_Value(A), m_Value(B))) &&
|
|
match(TrueVal, m_LogicalOr(m_Value(C), m_Value(D))) &&
|
|
(CondVal->hasOneUse() || TrueVal->hasOneUse())) {
|
|
bool CondLogicOr = isa<SelectInst>(CondVal);
|
|
bool TrueLogicOr = isa<SelectInst>(TrueVal);
|
|
auto OrFactorization = [&](Value *Common, Value *InnerCond,
|
|
Value *InnerVal,
|
|
bool SelFirst = false) -> Instruction * {
|
|
Value *InnerSel = Builder.CreateSelect(InnerCond, InnerVal, Zero);
|
|
if (SelFirst)
|
|
std::swap(Common, InnerSel);
|
|
if (TrueLogicOr || (CondLogicOr && Common == A))
|
|
return SelectInst::Create(Common, One, InnerSel);
|
|
else
|
|
return BinaryOperator::CreateOr(Common, InnerSel);
|
|
};
|
|
|
|
if (A == C)
|
|
return OrFactorization(A, B, D);
|
|
if (A == D)
|
|
return OrFactorization(A, B, C);
|
|
if (B == C)
|
|
return OrFactorization(B, A, D);
|
|
if (B == D)
|
|
return OrFactorization(B, A, C, CondLogicOr && TrueLogicOr);
|
|
}
|
|
}
|
|
|
|
// We match the "full" 0 or 1 constant here to avoid a potential infinite
|
|
// loop with vectors that may have undefined/poison elements.
|
|
// select a, false, b -> select !a, b, false
|
|
if (match(TrueVal, m_Specific(Zero))) {
|
|
Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName());
|
|
return SelectInst::Create(NotCond, FalseVal, Zero);
|
|
}
|
|
// select a, b, true -> select !a, true, b
|
|
if (match(FalseVal, m_Specific(One))) {
|
|
Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName());
|
|
return SelectInst::Create(NotCond, One, TrueVal);
|
|
}
|
|
|
|
// DeMorgan in select form: !a && !b --> !(a || b)
|
|
// select !a, !b, false --> not (select a, true, b)
|
|
if (match(&SI, m_LogicalAnd(m_Not(m_Value(A)), m_Not(m_Value(B)))) &&
|
|
(CondVal->hasOneUse() || TrueVal->hasOneUse()) &&
|
|
!match(A, m_ConstantExpr()) && !match(B, m_ConstantExpr()))
|
|
return BinaryOperator::CreateNot(Builder.CreateSelect(A, One, B));
|
|
|
|
// DeMorgan in select form: !a || !b --> !(a && b)
|
|
// select !a, true, !b --> not (select a, b, false)
|
|
if (match(&SI, m_LogicalOr(m_Not(m_Value(A)), m_Not(m_Value(B)))) &&
|
|
(CondVal->hasOneUse() || FalseVal->hasOneUse()) &&
|
|
!match(A, m_ConstantExpr()) && !match(B, m_ConstantExpr()))
|
|
return BinaryOperator::CreateNot(Builder.CreateSelect(A, B, Zero));
|
|
|
|
// select (select a, true, b), true, b -> select a, true, b
|
|
if (match(CondVal, m_Select(m_Value(A), m_One(), m_Value(B))) &&
|
|
match(TrueVal, m_One()) && match(FalseVal, m_Specific(B)))
|
|
return replaceOperand(SI, 0, A);
|
|
// select (select a, b, false), b, false -> select a, b, false
|
|
if (match(CondVal, m_Select(m_Value(A), m_Value(B), m_Zero())) &&
|
|
match(TrueVal, m_Specific(B)) && match(FalseVal, m_Zero()))
|
|
return replaceOperand(SI, 0, A);
|
|
|
|
// ~(A & B) & (A | B) --> A ^ B
|
|
if (match(&SI, m_c_LogicalAnd(m_Not(m_LogicalAnd(m_Value(A), m_Value(B))),
|
|
m_c_LogicalOr(m_Deferred(A), m_Deferred(B)))))
|
|
return BinaryOperator::CreateXor(A, B);
|
|
|
|
// select (~a | c), a, b -> select a, (select c, true, b), false
|
|
if (match(CondVal,
|
|
m_OneUse(m_c_Or(m_Not(m_Specific(TrueVal)), m_Value(C))))) {
|
|
Value *OrV = Builder.CreateSelect(C, One, FalseVal);
|
|
return SelectInst::Create(TrueVal, OrV, Zero);
|
|
}
|
|
// select (c & b), a, b -> select b, (select ~c, true, a), false
|
|
if (match(CondVal, m_OneUse(m_c_And(m_Value(C), m_Specific(FalseVal))))) {
|
|
if (Value *NotC = getFreelyInverted(C, C->hasOneUse(), &Builder)) {
|
|
Value *OrV = Builder.CreateSelect(NotC, One, TrueVal);
|
|
return SelectInst::Create(FalseVal, OrV, Zero);
|
|
}
|
|
}
|
|
// select (a | c), a, b -> select a, true, (select ~c, b, false)
|
|
if (match(CondVal, m_OneUse(m_c_Or(m_Specific(TrueVal), m_Value(C))))) {
|
|
if (Value *NotC = getFreelyInverted(C, C->hasOneUse(), &Builder)) {
|
|
Value *AndV = Builder.CreateSelect(NotC, FalseVal, Zero);
|
|
return SelectInst::Create(TrueVal, One, AndV);
|
|
}
|
|
}
|
|
// select (c & ~b), a, b -> select b, true, (select c, a, false)
|
|
if (match(CondVal,
|
|
m_OneUse(m_c_And(m_Value(C), m_Not(m_Specific(FalseVal)))))) {
|
|
Value *AndV = Builder.CreateSelect(C, TrueVal, Zero);
|
|
return SelectInst::Create(FalseVal, One, AndV);
|
|
}
|
|
|
|
if (match(FalseVal, m_Zero()) || match(TrueVal, m_One())) {
|
|
Use *Y = nullptr;
|
|
bool IsAnd = match(FalseVal, m_Zero()) ? true : false;
|
|
Value *Op1 = IsAnd ? TrueVal : FalseVal;
|
|
if (isCheckForZeroAndMulWithOverflow(CondVal, Op1, IsAnd, Y)) {
|
|
auto *FI = new FreezeInst(*Y, (*Y)->getName() + ".fr");
|
|
InsertNewInstBefore(FI, cast<Instruction>(Y->getUser())->getIterator());
|
|
replaceUse(*Y, FI);
|
|
return replaceInstUsesWith(SI, Op1);
|
|
}
|
|
|
|
if (auto *V = foldBooleanAndOr(CondVal, Op1, SI, IsAnd,
|
|
/*IsLogical=*/true))
|
|
return replaceInstUsesWith(SI, V);
|
|
}
|
|
|
|
// select (a || b), c, false -> select a, c, false
|
|
// select c, (a || b), false -> select c, a, false
|
|
// if c implies that b is false.
|
|
if (match(CondVal, m_LogicalOr(m_Value(A), m_Value(B))) &&
|
|
match(FalseVal, m_Zero())) {
|
|
std::optional<bool> Res = isImpliedCondition(TrueVal, B, DL);
|
|
if (Res && *Res == false)
|
|
return replaceOperand(SI, 0, A);
|
|
}
|
|
if (match(TrueVal, m_LogicalOr(m_Value(A), m_Value(B))) &&
|
|
match(FalseVal, m_Zero())) {
|
|
std::optional<bool> Res = isImpliedCondition(CondVal, B, DL);
|
|
if (Res && *Res == false)
|
|
return replaceOperand(SI, 1, A);
|
|
}
|
|
// select c, true, (a && b) -> select c, true, a
|
|
// select (a && b), true, c -> select a, true, c
|
|
// if c = false implies that b = true
|
|
if (match(TrueVal, m_One()) &&
|
|
match(FalseVal, m_LogicalAnd(m_Value(A), m_Value(B)))) {
|
|
std::optional<bool> Res = isImpliedCondition(CondVal, B, DL, false);
|
|
if (Res && *Res == true)
|
|
return replaceOperand(SI, 2, A);
|
|
}
|
|
if (match(CondVal, m_LogicalAnd(m_Value(A), m_Value(B))) &&
|
|
match(TrueVal, m_One())) {
|
|
std::optional<bool> Res = isImpliedCondition(FalseVal, B, DL, false);
|
|
if (Res && *Res == true)
|
|
return replaceOperand(SI, 0, A);
|
|
}
|
|
|
|
if (match(TrueVal, m_One())) {
|
|
Value *C;
|
|
|
|
// (C && A) || (!C && B) --> sel C, A, B
|
|
// (A && C) || (!C && B) --> sel C, A, B
|
|
// (C && A) || (B && !C) --> sel C, A, B
|
|
// (A && C) || (B && !C) --> sel C, A, B (may require freeze)
|
|
if (match(FalseVal, m_c_LogicalAnd(m_Not(m_Value(C)), m_Value(B))) &&
|
|
match(CondVal, m_c_LogicalAnd(m_Specific(C), m_Value(A)))) {
|
|
auto *SelCond = dyn_cast<SelectInst>(CondVal);
|
|
auto *SelFVal = dyn_cast<SelectInst>(FalseVal);
|
|
bool MayNeedFreeze = SelCond && SelFVal &&
|
|
match(SelFVal->getTrueValue(),
|
|
m_Not(m_Specific(SelCond->getTrueValue())));
|
|
if (MayNeedFreeze)
|
|
C = Builder.CreateFreeze(C);
|
|
return SelectInst::Create(C, A, B);
|
|
}
|
|
|
|
// (!C && A) || (C && B) --> sel C, B, A
|
|
// (A && !C) || (C && B) --> sel C, B, A
|
|
// (!C && A) || (B && C) --> sel C, B, A
|
|
// (A && !C) || (B && C) --> sel C, B, A (may require freeze)
|
|
if (match(CondVal, m_c_LogicalAnd(m_Not(m_Value(C)), m_Value(A))) &&
|
|
match(FalseVal, m_c_LogicalAnd(m_Specific(C), m_Value(B)))) {
|
|
auto *SelCond = dyn_cast<SelectInst>(CondVal);
|
|
auto *SelFVal = dyn_cast<SelectInst>(FalseVal);
|
|
bool MayNeedFreeze = SelCond && SelFVal &&
|
|
match(SelCond->getTrueValue(),
|
|
m_Not(m_Specific(SelFVal->getTrueValue())));
|
|
if (MayNeedFreeze)
|
|
C = Builder.CreateFreeze(C);
|
|
return SelectInst::Create(C, B, A);
|
|
}
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
// Return true if we can safely remove the select instruction for std::bit_ceil
|
|
// pattern.
|
|
static bool isSafeToRemoveBitCeilSelect(ICmpInst::Predicate Pred, Value *Cond0,
|
|
const APInt *Cond1, Value *CtlzOp,
|
|
unsigned BitWidth,
|
|
bool &ShouldDropNoWrap) {
|
|
// The challenge in recognizing std::bit_ceil(X) is that the operand is used
|
|
// for the CTLZ proper and select condition, each possibly with some
|
|
// operation like add and sub.
|
|
//
|
|
// Our aim is to make sure that -ctlz & (BitWidth - 1) == 0 even when the
|
|
// select instruction would select 1, which allows us to get rid of the select
|
|
// instruction.
|
|
//
|
|
// To see if we can do so, we do some symbolic execution with ConstantRange.
|
|
// Specifically, we compute the range of values that Cond0 could take when
|
|
// Cond == false. Then we successively transform the range until we obtain
|
|
// the range of values that CtlzOp could take.
|
|
//
|
|
// Conceptually, we follow the def-use chain backward from Cond0 while
|
|
// transforming the range for Cond0 until we meet the common ancestor of Cond0
|
|
// and CtlzOp. Then we follow the def-use chain forward until we obtain the
|
|
// range for CtlzOp. That said, we only follow at most one ancestor from
|
|
// Cond0. Likewise, we only follow at most one ancestor from CtrlOp.
|
|
|
|
ConstantRange CR = ConstantRange::makeExactICmpRegion(
|
|
CmpInst::getInversePredicate(Pred), *Cond1);
|
|
|
|
ShouldDropNoWrap = false;
|
|
|
|
// Match the operation that's used to compute CtlzOp from CommonAncestor. If
|
|
// CtlzOp == CommonAncestor, return true as no operation is needed. If a
|
|
// match is found, execute the operation on CR, update CR, and return true.
|
|
// Otherwise, return false.
|
|
auto MatchForward = [&](Value *CommonAncestor) {
|
|
const APInt *C = nullptr;
|
|
if (CtlzOp == CommonAncestor)
|
|
return true;
|
|
if (match(CtlzOp, m_Add(m_Specific(CommonAncestor), m_APInt(C)))) {
|
|
ShouldDropNoWrap = true;
|
|
CR = CR.add(*C);
|
|
return true;
|
|
}
|
|
if (match(CtlzOp, m_Sub(m_APInt(C), m_Specific(CommonAncestor)))) {
|
|
ShouldDropNoWrap = true;
|
|
CR = ConstantRange(*C).sub(CR);
|
|
return true;
|
|
}
|
|
if (match(CtlzOp, m_Not(m_Specific(CommonAncestor)))) {
|
|
CR = CR.binaryNot();
|
|
return true;
|
|
}
|
|
return false;
|
|
};
|
|
|
|
const APInt *C = nullptr;
|
|
Value *CommonAncestor;
|
|
if (MatchForward(Cond0)) {
|
|
// Cond0 is either CtlzOp or CtlzOp's parent. CR has been updated.
|
|
} else if (match(Cond0, m_Add(m_Value(CommonAncestor), m_APInt(C)))) {
|
|
CR = CR.sub(*C);
|
|
if (!MatchForward(CommonAncestor))
|
|
return false;
|
|
// Cond0's parent is either CtlzOp or CtlzOp's parent. CR has been updated.
|
|
} else {
|
|
return false;
|
|
}
|
|
|
|
// Return true if all the values in the range are either 0 or negative (if
|
|
// treated as signed). We do so by evaluating:
|
|
//
|
|
// CR - 1 u>= (1 << BitWidth) - 1.
|
|
APInt IntMax = APInt::getSignMask(BitWidth) - 1;
|
|
CR = CR.sub(APInt(BitWidth, 1));
|
|
return CR.icmp(ICmpInst::ICMP_UGE, IntMax);
|
|
}
|
|
|
|
// Transform the std::bit_ceil(X) pattern like:
|
|
//
|
|
// %dec = add i32 %x, -1
|
|
// %ctlz = tail call i32 @llvm.ctlz.i32(i32 %dec, i1 false)
|
|
// %sub = sub i32 32, %ctlz
|
|
// %shl = shl i32 1, %sub
|
|
// %ugt = icmp ugt i32 %x, 1
|
|
// %sel = select i1 %ugt, i32 %shl, i32 1
|
|
//
|
|
// into:
|
|
//
|
|
// %dec = add i32 %x, -1
|
|
// %ctlz = tail call i32 @llvm.ctlz.i32(i32 %dec, i1 false)
|
|
// %neg = sub i32 0, %ctlz
|
|
// %masked = and i32 %ctlz, 31
|
|
// %shl = shl i32 1, %sub
|
|
//
|
|
// Note that the select is optimized away while the shift count is masked with
|
|
// 31. We handle some variations of the input operand like std::bit_ceil(X +
|
|
// 1).
|
|
static Instruction *foldBitCeil(SelectInst &SI, IRBuilderBase &Builder,
|
|
InstCombinerImpl &IC) {
|
|
Type *SelType = SI.getType();
|
|
unsigned BitWidth = SelType->getScalarSizeInBits();
|
|
|
|
Value *FalseVal = SI.getFalseValue();
|
|
Value *TrueVal = SI.getTrueValue();
|
|
CmpPredicate Pred;
|
|
const APInt *Cond1;
|
|
Value *Cond0, *Ctlz, *CtlzOp;
|
|
if (!match(SI.getCondition(), m_ICmp(Pred, m_Value(Cond0), m_APInt(Cond1))))
|
|
return nullptr;
|
|
|
|
if (match(TrueVal, m_One())) {
|
|
std::swap(FalseVal, TrueVal);
|
|
Pred = CmpInst::getInversePredicate(Pred);
|
|
}
|
|
|
|
bool ShouldDropNoWrap;
|
|
|
|
if (!match(FalseVal, m_One()) ||
|
|
!match(TrueVal,
|
|
m_OneUse(m_Shl(m_One(), m_OneUse(m_Sub(m_SpecificInt(BitWidth),
|
|
m_Value(Ctlz)))))) ||
|
|
!match(Ctlz, m_Intrinsic<Intrinsic::ctlz>(m_Value(CtlzOp), m_Value())) ||
|
|
!isSafeToRemoveBitCeilSelect(Pred, Cond0, Cond1, CtlzOp, BitWidth,
|
|
ShouldDropNoWrap))
|
|
return nullptr;
|
|
|
|
if (ShouldDropNoWrap) {
|
|
cast<Instruction>(CtlzOp)->setHasNoUnsignedWrap(false);
|
|
cast<Instruction>(CtlzOp)->setHasNoSignedWrap(false);
|
|
}
|
|
|
|
// Build 1 << (-CTLZ & (BitWidth-1)). The negation likely corresponds to a
|
|
// single hardware instruction as opposed to BitWidth - CTLZ, where BitWidth
|
|
// is an integer constant. Masking with BitWidth-1 comes free on some
|
|
// hardware as part of the shift instruction.
|
|
|
|
// Drop range attributes and re-infer them in the next iteration.
|
|
cast<Instruction>(Ctlz)->dropPoisonGeneratingAnnotations();
|
|
// Set is_zero_poison to false and re-infer them in the next iteration.
|
|
cast<Instruction>(Ctlz)->setOperand(1, Builder.getFalse());
|
|
IC.addToWorklist(cast<Instruction>(Ctlz));
|
|
Value *Neg = Builder.CreateNeg(Ctlz);
|
|
Value *Masked =
|
|
Builder.CreateAnd(Neg, ConstantInt::get(SelType, BitWidth - 1));
|
|
return BinaryOperator::Create(Instruction::Shl, ConstantInt::get(SelType, 1),
|
|
Masked);
|
|
}
|
|
|
|
// This function tries to fold the following operations:
|
|
// (x < y) ? -1 : zext(x != y)
|
|
// (x < y) ? -1 : zext(x > y)
|
|
// (x > y) ? 1 : sext(x != y)
|
|
// (x > y) ? 1 : sext(x < y)
|
|
// Into ucmp/scmp(x, y), where signedness is determined by the signedness
|
|
// of the comparison in the original sequence.
|
|
Instruction *InstCombinerImpl::foldSelectToCmp(SelectInst &SI) {
|
|
Value *TV = SI.getTrueValue();
|
|
Value *FV = SI.getFalseValue();
|
|
|
|
CmpPredicate Pred;
|
|
Value *LHS, *RHS;
|
|
if (!match(SI.getCondition(), m_ICmp(Pred, m_Value(LHS), m_Value(RHS))))
|
|
return nullptr;
|
|
|
|
if (!LHS->getType()->isIntOrIntVectorTy())
|
|
return nullptr;
|
|
|
|
// If there is no -1, 0 or 1 at TV, then invert the select statement and try
|
|
// to canonicalize to one of the forms above
|
|
if (!isa<Constant>(TV)) {
|
|
if (!isa<Constant>(FV))
|
|
return nullptr;
|
|
Pred = ICmpInst::getInverseCmpPredicate(Pred);
|
|
std::swap(TV, FV);
|
|
}
|
|
|
|
if (ICmpInst::isNonStrictPredicate(Pred)) {
|
|
if (Constant *C = dyn_cast<Constant>(RHS)) {
|
|
auto FlippedPredAndConst =
|
|
getFlippedStrictnessPredicateAndConstant(Pred, C);
|
|
if (!FlippedPredAndConst)
|
|
return nullptr;
|
|
Pred = FlippedPredAndConst->first;
|
|
RHS = FlippedPredAndConst->second;
|
|
} else {
|
|
return nullptr;
|
|
}
|
|
}
|
|
|
|
// Try to swap operands and the predicate. We need to be careful when doing
|
|
// so because two of the patterns have opposite predicates, so use the
|
|
// constant inside select to determine if swapping operands would be
|
|
// beneficial to us.
|
|
if ((ICmpInst::isGT(Pred) && match(TV, m_AllOnes())) ||
|
|
(ICmpInst::isLT(Pred) && match(TV, m_One()))) {
|
|
Pred = ICmpInst::getSwappedPredicate(Pred);
|
|
std::swap(LHS, RHS);
|
|
}
|
|
bool IsSigned = ICmpInst::isSigned(Pred);
|
|
|
|
bool Replace = false;
|
|
CmpPredicate ExtendedCmpPredicate;
|
|
// (x < y) ? -1 : zext(x != y)
|
|
// (x < y) ? -1 : zext(x > y)
|
|
if (ICmpInst::isLT(Pred) && match(TV, m_AllOnes()) &&
|
|
match(FV, m_ZExt(m_c_ICmp(ExtendedCmpPredicate, m_Specific(LHS),
|
|
m_Specific(RHS)))) &&
|
|
(ExtendedCmpPredicate == ICmpInst::ICMP_NE ||
|
|
ICmpInst::getSwappedPredicate(ExtendedCmpPredicate) == Pred))
|
|
Replace = true;
|
|
|
|
// (x > y) ? 1 : sext(x != y)
|
|
// (x > y) ? 1 : sext(x < y)
|
|
if (ICmpInst::isGT(Pred) && match(TV, m_One()) &&
|
|
match(FV, m_SExt(m_c_ICmp(ExtendedCmpPredicate, m_Specific(LHS),
|
|
m_Specific(RHS)))) &&
|
|
(ExtendedCmpPredicate == ICmpInst::ICMP_NE ||
|
|
ICmpInst::getSwappedPredicate(ExtendedCmpPredicate) == Pred))
|
|
Replace = true;
|
|
|
|
// (x == y) ? 0 : (x > y ? 1 : -1)
|
|
CmpPredicate FalseBranchSelectPredicate;
|
|
const APInt *InnerTV, *InnerFV;
|
|
if (Pred == ICmpInst::ICMP_EQ && match(TV, m_Zero()) &&
|
|
match(FV, m_Select(m_c_ICmp(FalseBranchSelectPredicate, m_Specific(LHS),
|
|
m_Specific(RHS)),
|
|
m_APInt(InnerTV), m_APInt(InnerFV)))) {
|
|
if (!ICmpInst::isGT(FalseBranchSelectPredicate)) {
|
|
FalseBranchSelectPredicate =
|
|
ICmpInst::getSwappedPredicate(FalseBranchSelectPredicate);
|
|
std::swap(LHS, RHS);
|
|
}
|
|
|
|
if (!InnerTV->isOne()) {
|
|
std::swap(InnerTV, InnerFV);
|
|
std::swap(LHS, RHS);
|
|
}
|
|
|
|
if (ICmpInst::isGT(FalseBranchSelectPredicate) && InnerTV->isOne() &&
|
|
InnerFV->isAllOnes()) {
|
|
IsSigned = ICmpInst::isSigned(FalseBranchSelectPredicate);
|
|
Replace = true;
|
|
}
|
|
}
|
|
|
|
Intrinsic::ID IID = IsSigned ? Intrinsic::scmp : Intrinsic::ucmp;
|
|
if (Replace)
|
|
return replaceInstUsesWith(
|
|
SI, Builder.CreateIntrinsic(SI.getType(), IID, {LHS, RHS}));
|
|
return nullptr;
|
|
}
|
|
|
|
bool InstCombinerImpl::fmulByZeroIsZero(Value *MulVal, FastMathFlags FMF,
|
|
const Instruction *CtxI) const {
|
|
KnownFPClass Known = computeKnownFPClass(MulVal, FMF, fcNegative, CtxI);
|
|
|
|
return Known.isKnownNeverNaN() && Known.isKnownNeverInfinity() &&
|
|
(FMF.noSignedZeros() || Known.signBitIsZeroOrNaN());
|
|
}
|
|
|
|
static bool matchFMulByZeroIfResultEqZero(InstCombinerImpl &IC, Value *Cmp0,
|
|
Value *Cmp1, Value *TrueVal,
|
|
Value *FalseVal, Instruction &CtxI,
|
|
bool SelectIsNSZ) {
|
|
Value *MulRHS;
|
|
if (match(Cmp1, m_PosZeroFP()) &&
|
|
match(TrueVal, m_c_FMul(m_Specific(Cmp0), m_Value(MulRHS)))) {
|
|
FastMathFlags FMF = cast<FPMathOperator>(TrueVal)->getFastMathFlags();
|
|
// nsz must be on the select, it must be ignored on the multiply. We
|
|
// need nnan and ninf on the multiply for the other value.
|
|
FMF.setNoSignedZeros(SelectIsNSZ);
|
|
return IC.fmulByZeroIsZero(MulRHS, FMF, &CtxI);
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/// Check whether the KnownBits of a select arm may be affected by the
|
|
/// select condition.
|
|
static bool hasAffectedValue(Value *V, SmallPtrSetImpl<Value *> &Affected,
|
|
unsigned Depth) {
|
|
if (Depth == MaxAnalysisRecursionDepth)
|
|
return false;
|
|
|
|
// Ignore the case where the select arm itself is affected. These cases
|
|
// are handled more efficiently by other optimizations.
|
|
if (Depth != 0 && Affected.contains(V))
|
|
return true;
|
|
|
|
if (auto *I = dyn_cast<Instruction>(V)) {
|
|
if (isa<PHINode>(I)) {
|
|
if (Depth == MaxAnalysisRecursionDepth - 1)
|
|
return false;
|
|
Depth = MaxAnalysisRecursionDepth - 2;
|
|
}
|
|
return any_of(I->operands(), [&](Value *Op) {
|
|
return Op->getType()->isIntOrIntVectorTy() &&
|
|
hasAffectedValue(Op, Affected, Depth + 1);
|
|
});
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
// This transformation enables the possibility of transforming fcmp + sel into
|
|
// a fmaxnum/fminnum intrinsic.
|
|
static Value *foldSelectIntoAddConstant(SelectInst &SI,
|
|
InstCombiner::BuilderTy &Builder) {
|
|
// Do this transformation only when select instruction gives NaN and NSZ
|
|
// guarantee.
|
|
auto *SIFOp = dyn_cast<FPMathOperator>(&SI);
|
|
if (!SIFOp || !SIFOp->hasNoSignedZeros() || !SIFOp->hasNoNaNs())
|
|
return nullptr;
|
|
|
|
auto TryFoldIntoAddConstant =
|
|
[&Builder, &SI](CmpInst::Predicate Pred, Value *X, Value *Z,
|
|
Instruction *FAdd, Constant *C, bool Swapped) -> Value * {
|
|
// Only these relational predicates can be transformed into maxnum/minnum
|
|
// intrinsic.
|
|
if (!CmpInst::isRelational(Pred) || !match(Z, m_AnyZeroFP()))
|
|
return nullptr;
|
|
|
|
if (!match(FAdd, m_FAdd(m_Specific(X), m_Specific(C))))
|
|
return nullptr;
|
|
|
|
Value *NewSelect = Builder.CreateSelect(SI.getCondition(), Swapped ? Z : X,
|
|
Swapped ? X : Z, "", &SI);
|
|
NewSelect->takeName(&SI);
|
|
|
|
Value *NewFAdd = Builder.CreateFAdd(NewSelect, C);
|
|
NewFAdd->takeName(FAdd);
|
|
|
|
// Propagate FastMath flags
|
|
FastMathFlags SelectFMF = SI.getFastMathFlags();
|
|
FastMathFlags FAddFMF = FAdd->getFastMathFlags();
|
|
FastMathFlags NewFMF = FastMathFlags::intersectRewrite(SelectFMF, FAddFMF) |
|
|
FastMathFlags::unionValue(SelectFMF, FAddFMF);
|
|
cast<Instruction>(NewFAdd)->setFastMathFlags(NewFMF);
|
|
cast<Instruction>(NewSelect)->setFastMathFlags(NewFMF);
|
|
|
|
return NewFAdd;
|
|
};
|
|
|
|
// select((fcmp Pred, X, 0), (fadd X, C), C)
|
|
// => fadd((select (fcmp Pred, X, 0), X, 0), C)
|
|
//
|
|
// Pred := OGT, OGE, OLT, OLE, UGT, UGE, ULT, and ULE
|
|
Instruction *FAdd;
|
|
Constant *C;
|
|
Value *X, *Z;
|
|
CmpPredicate Pred;
|
|
|
|
// Note: OneUse check for `Cmp` is necessary because it makes sure that other
|
|
// InstCombine folds don't undo this transformation and cause an infinite
|
|
// loop. Furthermore, it could also increase the operation count.
|
|
if (match(&SI, m_Select(m_OneUse(m_FCmp(Pred, m_Value(X), m_Value(Z))),
|
|
m_OneUse(m_Instruction(FAdd)), m_Constant(C))))
|
|
return TryFoldIntoAddConstant(Pred, X, Z, FAdd, C, /*Swapped=*/false);
|
|
|
|
if (match(&SI, m_Select(m_OneUse(m_FCmp(Pred, m_Value(X), m_Value(Z))),
|
|
m_Constant(C), m_OneUse(m_Instruction(FAdd)))))
|
|
return TryFoldIntoAddConstant(Pred, X, Z, FAdd, C, /*Swapped=*/true);
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
static Value *foldSelectBitTest(SelectInst &Sel, Value *CondVal, Value *TrueVal,
|
|
Value *FalseVal,
|
|
InstCombiner::BuilderTy &Builder,
|
|
const SimplifyQuery &SQ) {
|
|
// If this is a vector select, we need a vector compare.
|
|
Type *SelType = Sel.getType();
|
|
if (SelType->isVectorTy() != CondVal->getType()->isVectorTy())
|
|
return nullptr;
|
|
|
|
Value *V;
|
|
APInt AndMask;
|
|
bool CreateAnd = false;
|
|
CmpPredicate Pred;
|
|
Value *CmpLHS, *CmpRHS;
|
|
|
|
if (match(CondVal, m_ICmp(Pred, m_Value(CmpLHS), m_Value(CmpRHS)))) {
|
|
if (ICmpInst::isEquality(Pred)) {
|
|
if (!match(CmpRHS, m_Zero()))
|
|
return nullptr;
|
|
|
|
V = CmpLHS;
|
|
const APInt *AndRHS;
|
|
if (!match(CmpLHS, m_And(m_Value(), m_Power2(AndRHS))))
|
|
return nullptr;
|
|
|
|
AndMask = *AndRHS;
|
|
} else if (auto Res = decomposeBitTestICmp(CmpLHS, CmpRHS, Pred)) {
|
|
assert(ICmpInst::isEquality(Res->Pred) && "Not equality test?");
|
|
AndMask = Res->Mask;
|
|
V = Res->X;
|
|
KnownBits Known = computeKnownBits(V, SQ.getWithInstruction(&Sel));
|
|
AndMask &= Known.getMaxValue();
|
|
if (!AndMask.isPowerOf2())
|
|
return nullptr;
|
|
|
|
Pred = Res->Pred;
|
|
CreateAnd = true;
|
|
} else {
|
|
return nullptr;
|
|
}
|
|
} else if (auto *Trunc = dyn_cast<TruncInst>(CondVal)) {
|
|
V = Trunc->getOperand(0);
|
|
AndMask = APInt(V->getType()->getScalarSizeInBits(), 1);
|
|
Pred = ICmpInst::ICMP_NE;
|
|
CreateAnd = !Trunc->hasNoUnsignedWrap();
|
|
} else {
|
|
return nullptr;
|
|
}
|
|
|
|
if (Pred == ICmpInst::ICMP_NE)
|
|
std::swap(TrueVal, FalseVal);
|
|
|
|
if (Value *X = foldSelectICmpAnd(Sel, CondVal, TrueVal, FalseVal, V, AndMask,
|
|
CreateAnd, Builder))
|
|
return X;
|
|
|
|
if (Value *X = foldSelectICmpAndBinOp(CondVal, TrueVal, FalseVal, V, AndMask,
|
|
CreateAnd, Builder))
|
|
return X;
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
Instruction *InstCombinerImpl::visitSelectInst(SelectInst &SI) {
|
|
Value *CondVal = SI.getCondition();
|
|
Value *TrueVal = SI.getTrueValue();
|
|
Value *FalseVal = SI.getFalseValue();
|
|
Type *SelType = SI.getType();
|
|
|
|
if (Value *V = simplifySelectInst(CondVal, TrueVal, FalseVal,
|
|
SQ.getWithInstruction(&SI)))
|
|
return replaceInstUsesWith(SI, V);
|
|
|
|
if (Instruction *I = canonicalizeSelectToShuffle(SI))
|
|
return I;
|
|
|
|
if (Instruction *I = canonicalizeScalarSelectOfVecs(SI, *this))
|
|
return I;
|
|
|
|
// If the type of select is not an integer type or if the condition and
|
|
// the selection type are not both scalar nor both vector types, there is no
|
|
// point in attempting to match these patterns.
|
|
Type *CondType = CondVal->getType();
|
|
if (!isa<Constant>(CondVal) && SelType->isIntOrIntVectorTy() &&
|
|
CondType->isVectorTy() == SelType->isVectorTy()) {
|
|
if (Value *S = simplifyWithOpReplaced(TrueVal, CondVal,
|
|
ConstantInt::getTrue(CondType), SQ,
|
|
/* AllowRefinement */ true))
|
|
return replaceOperand(SI, 1, S);
|
|
|
|
if (Value *S = simplifyWithOpReplaced(FalseVal, CondVal,
|
|
ConstantInt::getFalse(CondType), SQ,
|
|
/* AllowRefinement */ true))
|
|
return replaceOperand(SI, 2, S);
|
|
|
|
if (replaceInInstruction(TrueVal, CondVal,
|
|
ConstantInt::getTrue(CondType)) ||
|
|
replaceInInstruction(FalseVal, CondVal,
|
|
ConstantInt::getFalse(CondType)))
|
|
return &SI;
|
|
}
|
|
|
|
if (Instruction *R = foldSelectOfBools(SI))
|
|
return R;
|
|
|
|
// Selecting between two integer or vector splat integer constants?
|
|
//
|
|
// Note that we don't handle a scalar select of vectors:
|
|
// select i1 %c, <2 x i8> <1, 1>, <2 x i8> <0, 0>
|
|
// because that may need 3 instructions to splat the condition value:
|
|
// extend, insertelement, shufflevector.
|
|
//
|
|
// Do not handle i1 TrueVal and FalseVal otherwise would result in
|
|
// zext/sext i1 to i1.
|
|
if (SelType->isIntOrIntVectorTy() && !SelType->isIntOrIntVectorTy(1) &&
|
|
CondVal->getType()->isVectorTy() == SelType->isVectorTy()) {
|
|
// select C, 1, 0 -> zext C to int
|
|
if (match(TrueVal, m_One()) && match(FalseVal, m_Zero()))
|
|
return new ZExtInst(CondVal, SelType);
|
|
|
|
// select C, -1, 0 -> sext C to int
|
|
if (match(TrueVal, m_AllOnes()) && match(FalseVal, m_Zero()))
|
|
return new SExtInst(CondVal, SelType);
|
|
|
|
// select C, 0, 1 -> zext !C to int
|
|
if (match(TrueVal, m_Zero()) && match(FalseVal, m_One())) {
|
|
Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName());
|
|
return new ZExtInst(NotCond, SelType);
|
|
}
|
|
|
|
// select C, 0, -1 -> sext !C to int
|
|
if (match(TrueVal, m_Zero()) && match(FalseVal, m_AllOnes())) {
|
|
Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName());
|
|
return new SExtInst(NotCond, SelType);
|
|
}
|
|
}
|
|
|
|
auto *SIFPOp = dyn_cast<FPMathOperator>(&SI);
|
|
|
|
if (auto *FCmp = dyn_cast<FCmpInst>(CondVal)) {
|
|
FCmpInst::Predicate Pred = FCmp->getPredicate();
|
|
Value *Cmp0 = FCmp->getOperand(0), *Cmp1 = FCmp->getOperand(1);
|
|
// Are we selecting a value based on a comparison of the two values?
|
|
if ((Cmp0 == TrueVal && Cmp1 == FalseVal) ||
|
|
(Cmp0 == FalseVal && Cmp1 == TrueVal)) {
|
|
// Canonicalize to use ordered comparisons by swapping the select
|
|
// operands.
|
|
//
|
|
// e.g.
|
|
// (X ugt Y) ? X : Y -> (X ole Y) ? Y : X
|
|
if (FCmp->hasOneUse() && FCmpInst::isUnordered(Pred)) {
|
|
FCmpInst::Predicate InvPred = FCmp->getInversePredicate();
|
|
Value *NewCond = Builder.CreateFCmpFMF(InvPred, Cmp0, Cmp1, FCmp,
|
|
FCmp->getName() + ".inv");
|
|
// Propagate ninf/nnan from fcmp to select.
|
|
FastMathFlags FMF = SI.getFastMathFlags();
|
|
if (FCmp->hasNoNaNs())
|
|
FMF.setNoNaNs(true);
|
|
if (FCmp->hasNoInfs())
|
|
FMF.setNoInfs(true);
|
|
Value *NewSel =
|
|
Builder.CreateSelectFMF(NewCond, FalseVal, TrueVal, FMF);
|
|
return replaceInstUsesWith(SI, NewSel);
|
|
}
|
|
}
|
|
|
|
if (SIFPOp) {
|
|
// Fold out scale-if-equals-zero pattern.
|
|
//
|
|
// This pattern appears in code with denormal range checks after it's
|
|
// assumed denormals are treated as zero. This drops a canonicalization.
|
|
|
|
// TODO: Could relax the signed zero logic. We just need to know the sign
|
|
// of the result matches (fmul x, y has the same sign as x).
|
|
//
|
|
// TODO: Handle always-canonicalizing variant that selects some value or 1
|
|
// scaling factor in the fmul visitor.
|
|
|
|
// TODO: Handle ldexp too
|
|
|
|
Value *MatchCmp0 = nullptr;
|
|
Value *MatchCmp1 = nullptr;
|
|
|
|
// (select (fcmp [ou]eq x, 0.0), (fmul x, K), x => x
|
|
// (select (fcmp [ou]ne x, 0.0), x, (fmul x, K) => x
|
|
if (Pred == CmpInst::FCMP_OEQ || Pred == CmpInst::FCMP_UEQ) {
|
|
MatchCmp0 = FalseVal;
|
|
MatchCmp1 = TrueVal;
|
|
} else if (Pred == CmpInst::FCMP_ONE || Pred == CmpInst::FCMP_UNE) {
|
|
MatchCmp0 = TrueVal;
|
|
MatchCmp1 = FalseVal;
|
|
}
|
|
|
|
if (Cmp0 == MatchCmp0 &&
|
|
matchFMulByZeroIfResultEqZero(*this, Cmp0, Cmp1, MatchCmp1, MatchCmp0,
|
|
SI, SIFPOp->hasNoSignedZeros()))
|
|
return replaceInstUsesWith(SI, Cmp0);
|
|
}
|
|
}
|
|
|
|
if (SIFPOp) {
|
|
// TODO: Try to forward-propagate FMF from select arms to the select.
|
|
|
|
auto *FCmp = dyn_cast<FCmpInst>(CondVal);
|
|
|
|
// Canonicalize select of FP values where NaN and -0.0 are not valid as
|
|
// minnum/maxnum intrinsics.
|
|
if (SIFPOp->hasNoNaNs() &&
|
|
(SIFPOp->hasNoSignedZeros() ||
|
|
(SIFPOp->hasOneUse() &&
|
|
canIgnoreSignBitOfZero(*SIFPOp->use_begin())))) {
|
|
Value *X, *Y;
|
|
if (match(&SI, m_OrdOrUnordFMax(m_Value(X), m_Value(Y)))) {
|
|
Value *BinIntr =
|
|
Builder.CreateBinaryIntrinsic(Intrinsic::maxnum, X, Y, &SI);
|
|
if (auto *BinIntrInst = dyn_cast<Instruction>(BinIntr)) {
|
|
BinIntrInst->setHasNoNaNs(FCmp->hasNoNaNs());
|
|
BinIntrInst->setHasNoInfs(FCmp->hasNoInfs());
|
|
}
|
|
return replaceInstUsesWith(SI, BinIntr);
|
|
}
|
|
|
|
if (match(&SI, m_OrdOrUnordFMin(m_Value(X), m_Value(Y)))) {
|
|
Value *BinIntr =
|
|
Builder.CreateBinaryIntrinsic(Intrinsic::minnum, X, Y, &SI);
|
|
if (auto *BinIntrInst = dyn_cast<Instruction>(BinIntr)) {
|
|
BinIntrInst->setHasNoNaNs(FCmp->hasNoNaNs());
|
|
BinIntrInst->setHasNoInfs(FCmp->hasNoInfs());
|
|
}
|
|
return replaceInstUsesWith(SI, BinIntr);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Fold selecting to fabs.
|
|
if (Instruction *Fabs = foldSelectWithFCmpToFabs(SI, *this))
|
|
return Fabs;
|
|
|
|
// See if we are selecting two values based on a comparison of the two values.
|
|
if (CmpInst *CI = dyn_cast<CmpInst>(CondVal))
|
|
if (Instruction *NewSel = foldSelectValueEquivalence(SI, *CI))
|
|
return NewSel;
|
|
|
|
if (ICmpInst *ICI = dyn_cast<ICmpInst>(CondVal))
|
|
if (Instruction *Result = foldSelectInstWithICmp(SI, ICI))
|
|
return Result;
|
|
|
|
if (Value *V = foldSelectBitTest(SI, CondVal, TrueVal, FalseVal, Builder, SQ))
|
|
return replaceInstUsesWith(SI, V);
|
|
|
|
if (Instruction *Add = foldAddSubSelect(SI, Builder))
|
|
return Add;
|
|
if (Instruction *Add = foldOverflowingAddSubSelect(SI, Builder))
|
|
return Add;
|
|
if (Instruction *Or = foldSetClearBits(SI, Builder))
|
|
return Or;
|
|
if (Instruction *Mul = foldSelectZeroOrFixedOp(SI, *this))
|
|
return Mul;
|
|
|
|
// Turn (select C, (op X, Y), (op X, Z)) -> (op X, (select C, Y, Z))
|
|
auto *TI = dyn_cast<Instruction>(TrueVal);
|
|
auto *FI = dyn_cast<Instruction>(FalseVal);
|
|
if (TI && FI && TI->getOpcode() == FI->getOpcode())
|
|
if (Instruction *IV = foldSelectOpOp(SI, TI, FI))
|
|
return IV;
|
|
|
|
if (Instruction *I = foldSelectExtConst(SI))
|
|
return I;
|
|
|
|
if (Instruction *I = foldSelectWithSRem(SI, *this, Builder))
|
|
return I;
|
|
|
|
// Fold (select C, (gep Ptr, Idx), Ptr) -> (gep Ptr, (select C, Idx, 0))
|
|
// Fold (select C, Ptr, (gep Ptr, Idx)) -> (gep Ptr, (select C, 0, Idx))
|
|
auto SelectGepWithBase = [&](GetElementPtrInst *Gep, Value *Base,
|
|
bool Swap) -> GetElementPtrInst * {
|
|
Value *Ptr = Gep->getPointerOperand();
|
|
if (Gep->getNumOperands() != 2 || Gep->getPointerOperand() != Base ||
|
|
!Gep->hasOneUse())
|
|
return nullptr;
|
|
Value *Idx = Gep->getOperand(1);
|
|
if (isa<VectorType>(CondVal->getType()) && !isa<VectorType>(Idx->getType()))
|
|
return nullptr;
|
|
Type *ElementType = Gep->getSourceElementType();
|
|
Value *NewT = Idx;
|
|
Value *NewF = Constant::getNullValue(Idx->getType());
|
|
if (Swap)
|
|
std::swap(NewT, NewF);
|
|
Value *NewSI =
|
|
Builder.CreateSelect(CondVal, NewT, NewF, SI.getName() + ".idx", &SI);
|
|
return GetElementPtrInst::Create(ElementType, Ptr, NewSI,
|
|
Gep->getNoWrapFlags());
|
|
};
|
|
if (auto *TrueGep = dyn_cast<GetElementPtrInst>(TrueVal))
|
|
if (auto *NewGep = SelectGepWithBase(TrueGep, FalseVal, false))
|
|
return NewGep;
|
|
if (auto *FalseGep = dyn_cast<GetElementPtrInst>(FalseVal))
|
|
if (auto *NewGep = SelectGepWithBase(FalseGep, TrueVal, true))
|
|
return NewGep;
|
|
|
|
// See if we can fold the select into one of our operands.
|
|
if (SelType->isIntOrIntVectorTy() || SelType->isFPOrFPVectorTy()) {
|
|
if (Instruction *FoldI = foldSelectIntoOp(SI, TrueVal, FalseVal))
|
|
return FoldI;
|
|
|
|
Value *LHS, *RHS;
|
|
Instruction::CastOps CastOp;
|
|
SelectPatternResult SPR = matchSelectPattern(&SI, LHS, RHS, &CastOp);
|
|
auto SPF = SPR.Flavor;
|
|
if (SPF) {
|
|
Value *LHS2, *RHS2;
|
|
if (SelectPatternFlavor SPF2 = matchSelectPattern(LHS, LHS2, RHS2).Flavor)
|
|
if (Instruction *R = foldSPFofSPF(cast<Instruction>(LHS), SPF2, LHS2,
|
|
RHS2, SI, SPF, RHS))
|
|
return R;
|
|
if (SelectPatternFlavor SPF2 = matchSelectPattern(RHS, LHS2, RHS2).Flavor)
|
|
if (Instruction *R = foldSPFofSPF(cast<Instruction>(RHS), SPF2, LHS2,
|
|
RHS2, SI, SPF, LHS))
|
|
return R;
|
|
}
|
|
|
|
if (SelectPatternResult::isMinOrMax(SPF)) {
|
|
// Canonicalize so that
|
|
// - type casts are outside select patterns.
|
|
// - float clamp is transformed to min/max pattern
|
|
|
|
bool IsCastNeeded = LHS->getType() != SelType;
|
|
Value *CmpLHS = cast<CmpInst>(CondVal)->getOperand(0);
|
|
Value *CmpRHS = cast<CmpInst>(CondVal)->getOperand(1);
|
|
if (IsCastNeeded ||
|
|
(LHS->getType()->isFPOrFPVectorTy() &&
|
|
((CmpLHS != LHS && CmpLHS != RHS) ||
|
|
(CmpRHS != LHS && CmpRHS != RHS)))) {
|
|
CmpInst::Predicate MinMaxPred = getMinMaxPred(SPF, SPR.Ordered);
|
|
|
|
Value *Cmp;
|
|
if (CmpInst::isIntPredicate(MinMaxPred))
|
|
Cmp = Builder.CreateICmp(MinMaxPred, LHS, RHS);
|
|
else
|
|
Cmp = Builder.CreateFCmpFMF(MinMaxPred, LHS, RHS,
|
|
cast<Instruction>(SI.getCondition()));
|
|
|
|
Value *NewSI = Builder.CreateSelect(Cmp, LHS, RHS, SI.getName(), &SI);
|
|
if (!IsCastNeeded)
|
|
return replaceInstUsesWith(SI, NewSI);
|
|
|
|
Value *NewCast = Builder.CreateCast(CastOp, NewSI, SelType);
|
|
return replaceInstUsesWith(SI, NewCast);
|
|
}
|
|
}
|
|
}
|
|
|
|
// See if we can fold the select into a phi node if the condition is a select.
|
|
if (auto *PN = dyn_cast<PHINode>(SI.getCondition()))
|
|
if (Instruction *NV = foldOpIntoPhi(SI, PN))
|
|
return NV;
|
|
|
|
if (SelectInst *TrueSI = dyn_cast<SelectInst>(TrueVal)) {
|
|
if (TrueSI->getCondition()->getType() == CondVal->getType()) {
|
|
// Fold nested selects if the inner condition can be implied by the outer
|
|
// condition.
|
|
if (Value *V = simplifyNestedSelectsUsingImpliedCond(
|
|
*TrueSI, CondVal, /*CondIsTrue=*/true, DL))
|
|
return replaceOperand(SI, 1, V);
|
|
|
|
// select(C0, select(C1, a, b), b) -> select(C0&C1, a, b)
|
|
// We choose this as normal form to enable folding on the And and
|
|
// shortening paths for the values (this helps getUnderlyingObjects() for
|
|
// example).
|
|
if (TrueSI->getFalseValue() == FalseVal && TrueSI->hasOneUse()) {
|
|
Value *And = Builder.CreateLogicalAnd(CondVal, TrueSI->getCondition());
|
|
replaceOperand(SI, 0, And);
|
|
replaceOperand(SI, 1, TrueSI->getTrueValue());
|
|
return &SI;
|
|
}
|
|
}
|
|
}
|
|
if (SelectInst *FalseSI = dyn_cast<SelectInst>(FalseVal)) {
|
|
if (FalseSI->getCondition()->getType() == CondVal->getType()) {
|
|
// Fold nested selects if the inner condition can be implied by the outer
|
|
// condition.
|
|
if (Value *V = simplifyNestedSelectsUsingImpliedCond(
|
|
*FalseSI, CondVal, /*CondIsTrue=*/false, DL))
|
|
return replaceOperand(SI, 2, V);
|
|
|
|
// select(C0, a, select(C1, a, b)) -> select(C0|C1, a, b)
|
|
if (FalseSI->getTrueValue() == TrueVal && FalseSI->hasOneUse()) {
|
|
Value *Or = Builder.CreateLogicalOr(CondVal, FalseSI->getCondition());
|
|
replaceOperand(SI, 0, Or);
|
|
replaceOperand(SI, 2, FalseSI->getFalseValue());
|
|
return &SI;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Try to simplify a binop sandwiched between 2 selects with the same
|
|
// condition. This is not valid for div/rem because the select might be
|
|
// preventing a division-by-zero.
|
|
// TODO: A div/rem restriction is conservative; use something like
|
|
// isSafeToSpeculativelyExecute().
|
|
// select(C, binop(select(C, X, Y), W), Z) -> select(C, binop(X, W), Z)
|
|
BinaryOperator *TrueBO;
|
|
if (match(TrueVal, m_OneUse(m_BinOp(TrueBO))) && !TrueBO->isIntDivRem()) {
|
|
if (auto *TrueBOSI = dyn_cast<SelectInst>(TrueBO->getOperand(0))) {
|
|
if (TrueBOSI->getCondition() == CondVal) {
|
|
replaceOperand(*TrueBO, 0, TrueBOSI->getTrueValue());
|
|
Worklist.push(TrueBO);
|
|
return &SI;
|
|
}
|
|
}
|
|
if (auto *TrueBOSI = dyn_cast<SelectInst>(TrueBO->getOperand(1))) {
|
|
if (TrueBOSI->getCondition() == CondVal) {
|
|
replaceOperand(*TrueBO, 1, TrueBOSI->getTrueValue());
|
|
Worklist.push(TrueBO);
|
|
return &SI;
|
|
}
|
|
}
|
|
}
|
|
|
|
// select(C, Z, binop(select(C, X, Y), W)) -> select(C, Z, binop(Y, W))
|
|
BinaryOperator *FalseBO;
|
|
if (match(FalseVal, m_OneUse(m_BinOp(FalseBO))) && !FalseBO->isIntDivRem()) {
|
|
if (auto *FalseBOSI = dyn_cast<SelectInst>(FalseBO->getOperand(0))) {
|
|
if (FalseBOSI->getCondition() == CondVal) {
|
|
replaceOperand(*FalseBO, 0, FalseBOSI->getFalseValue());
|
|
Worklist.push(FalseBO);
|
|
return &SI;
|
|
}
|
|
}
|
|
if (auto *FalseBOSI = dyn_cast<SelectInst>(FalseBO->getOperand(1))) {
|
|
if (FalseBOSI->getCondition() == CondVal) {
|
|
replaceOperand(*FalseBO, 1, FalseBOSI->getFalseValue());
|
|
Worklist.push(FalseBO);
|
|
return &SI;
|
|
}
|
|
}
|
|
}
|
|
|
|
Value *NotCond;
|
|
if (match(CondVal, m_Not(m_Value(NotCond))) &&
|
|
!InstCombiner::shouldAvoidAbsorbingNotIntoSelect(SI)) {
|
|
replaceOperand(SI, 0, NotCond);
|
|
SI.swapValues();
|
|
SI.swapProfMetadata();
|
|
return &SI;
|
|
}
|
|
|
|
if (Instruction *I = foldVectorSelect(SI))
|
|
return I;
|
|
|
|
// If we can compute the condition, there's no need for a select.
|
|
// Like the above fold, we are attempting to reduce compile-time cost by
|
|
// putting this fold here with limitations rather than in InstSimplify.
|
|
// The motivation for this call into value tracking is to take advantage of
|
|
// the assumption cache, so make sure that is populated.
|
|
if (!CondVal->getType()->isVectorTy() && !AC.assumptions().empty()) {
|
|
KnownBits Known(1);
|
|
computeKnownBits(CondVal, Known, &SI);
|
|
if (Known.One.isOne())
|
|
return replaceInstUsesWith(SI, TrueVal);
|
|
if (Known.Zero.isOne())
|
|
return replaceInstUsesWith(SI, FalseVal);
|
|
}
|
|
|
|
if (Instruction *BitCastSel = foldSelectCmpBitcasts(SI, Builder))
|
|
return BitCastSel;
|
|
|
|
// Simplify selects that test the returned flag of cmpxchg instructions.
|
|
if (Value *V = foldSelectCmpXchg(SI))
|
|
return replaceInstUsesWith(SI, V);
|
|
|
|
if (Instruction *Select = foldSelectBinOpIdentity(SI, TLI, *this))
|
|
return Select;
|
|
|
|
if (Instruction *Funnel = foldSelectFunnelShift(SI, Builder))
|
|
return Funnel;
|
|
|
|
if (Instruction *Copysign = foldSelectToCopysign(SI, Builder))
|
|
return Copysign;
|
|
|
|
if (Instruction *PN = foldSelectToPhi(SI, DT, Builder))
|
|
return replaceInstUsesWith(SI, PN);
|
|
|
|
if (Value *Fr = foldSelectWithFrozenICmp(SI, Builder))
|
|
return replaceInstUsesWith(SI, Fr);
|
|
|
|
if (Value *V = foldRoundUpIntegerWithPow2Alignment(SI, Builder))
|
|
return replaceInstUsesWith(SI, V);
|
|
|
|
if (Value *V = foldSelectIntoAddConstant(SI, Builder))
|
|
return replaceInstUsesWith(SI, V);
|
|
|
|
// select(mask, mload(,,mask,0), 0) -> mload(,,mask,0)
|
|
// Load inst is intentionally not checked for hasOneUse()
|
|
if (match(FalseVal, m_Zero()) &&
|
|
(match(TrueVal, m_MaskedLoad(m_Value(), m_Value(), m_Specific(CondVal),
|
|
m_CombineOr(m_Undef(), m_Zero()))) ||
|
|
match(TrueVal, m_MaskedGather(m_Value(), m_Value(), m_Specific(CondVal),
|
|
m_CombineOr(m_Undef(), m_Zero()))))) {
|
|
auto *MaskedInst = cast<IntrinsicInst>(TrueVal);
|
|
if (isa<UndefValue>(MaskedInst->getArgOperand(3)))
|
|
MaskedInst->setArgOperand(3, FalseVal /* Zero */);
|
|
return replaceInstUsesWith(SI, MaskedInst);
|
|
}
|
|
|
|
Value *Mask;
|
|
if (match(TrueVal, m_Zero()) &&
|
|
(match(FalseVal, m_MaskedLoad(m_Value(), m_Value(), m_Value(Mask),
|
|
m_CombineOr(m_Undef(), m_Zero()))) ||
|
|
match(FalseVal, m_MaskedGather(m_Value(), m_Value(), m_Value(Mask),
|
|
m_CombineOr(m_Undef(), m_Zero())))) &&
|
|
(CondVal->getType() == Mask->getType())) {
|
|
// We can remove the select by ensuring the load zeros all lanes the
|
|
// select would have. We determine this by proving there is no overlap
|
|
// between the load and select masks.
|
|
// (i.e (load_mask & select_mask) == 0 == no overlap)
|
|
bool CanMergeSelectIntoLoad = false;
|
|
if (Value *V = simplifyAndInst(CondVal, Mask, SQ.getWithInstruction(&SI)))
|
|
CanMergeSelectIntoLoad = match(V, m_Zero());
|
|
|
|
if (CanMergeSelectIntoLoad) {
|
|
auto *MaskedInst = cast<IntrinsicInst>(FalseVal);
|
|
if (isa<UndefValue>(MaskedInst->getArgOperand(3)))
|
|
MaskedInst->setArgOperand(3, TrueVal /* Zero */);
|
|
return replaceInstUsesWith(SI, MaskedInst);
|
|
}
|
|
}
|
|
|
|
if (Instruction *I = foldSelectOfSymmetricSelect(SI, Builder))
|
|
return I;
|
|
|
|
if (Instruction *I = foldNestedSelects(SI, Builder))
|
|
return I;
|
|
|
|
// Match logical variants of the pattern,
|
|
// and transform them iff that gets rid of inversions.
|
|
// (~x) | y --> ~(x & (~y))
|
|
// (~x) & y --> ~(x | (~y))
|
|
if (sinkNotIntoOtherHandOfLogicalOp(SI))
|
|
return &SI;
|
|
|
|
if (Instruction *I = foldBitCeil(SI, Builder, *this))
|
|
return I;
|
|
|
|
if (Instruction *I = foldSelectToCmp(SI))
|
|
return I;
|
|
|
|
if (Instruction *I = foldSelectEqualityTest(SI))
|
|
return I;
|
|
|
|
// Fold:
|
|
// (select A && B, T, F) -> (select A, (select B, T, F), F)
|
|
// (select A || B, T, F) -> (select A, T, (select B, T, F))
|
|
// if (select B, T, F) is foldable.
|
|
// TODO: preserve FMF flags
|
|
auto FoldSelectWithAndOrCond = [&](bool IsAnd, Value *A,
|
|
Value *B) -> Instruction * {
|
|
if (Value *V = simplifySelectInst(B, TrueVal, FalseVal,
|
|
SQ.getWithInstruction(&SI)))
|
|
return SelectInst::Create(A, IsAnd ? V : TrueVal, IsAnd ? FalseVal : V);
|
|
|
|
// Is (select B, T, F) a SPF?
|
|
if (CondVal->hasOneUse() && SelType->isIntOrIntVectorTy()) {
|
|
if (ICmpInst *Cmp = dyn_cast<ICmpInst>(B))
|
|
if (Value *V = canonicalizeSPF(*Cmp, TrueVal, FalseVal, *this))
|
|
return SelectInst::Create(A, IsAnd ? V : TrueVal,
|
|
IsAnd ? FalseVal : V);
|
|
}
|
|
|
|
return nullptr;
|
|
};
|
|
|
|
Value *LHS, *RHS;
|
|
if (match(CondVal, m_And(m_Value(LHS), m_Value(RHS)))) {
|
|
if (Instruction *I = FoldSelectWithAndOrCond(/*IsAnd*/ true, LHS, RHS))
|
|
return I;
|
|
if (Instruction *I = FoldSelectWithAndOrCond(/*IsAnd*/ true, RHS, LHS))
|
|
return I;
|
|
} else if (match(CondVal, m_Or(m_Value(LHS), m_Value(RHS)))) {
|
|
if (Instruction *I = FoldSelectWithAndOrCond(/*IsAnd*/ false, LHS, RHS))
|
|
return I;
|
|
if (Instruction *I = FoldSelectWithAndOrCond(/*IsAnd*/ false, RHS, LHS))
|
|
return I;
|
|
} else {
|
|
// We cannot swap the operands of logical and/or.
|
|
// TODO: Can we swap the operands by inserting a freeze?
|
|
if (match(CondVal, m_LogicalAnd(m_Value(LHS), m_Value(RHS)))) {
|
|
if (Instruction *I = FoldSelectWithAndOrCond(/*IsAnd*/ true, LHS, RHS))
|
|
return I;
|
|
} else if (match(CondVal, m_LogicalOr(m_Value(LHS), m_Value(RHS)))) {
|
|
if (Instruction *I = FoldSelectWithAndOrCond(/*IsAnd*/ false, LHS, RHS))
|
|
return I;
|
|
}
|
|
}
|
|
|
|
// select Cond, !X, X -> xor Cond, X
|
|
if (CondVal->getType() == SI.getType() && isKnownInversion(FalseVal, TrueVal))
|
|
return BinaryOperator::CreateXor(CondVal, FalseVal);
|
|
|
|
// For vectors, this transform is only safe if the simplification does not
|
|
// look through any lane-crossing operations. For now, limit to scalars only.
|
|
if (SelType->isIntegerTy() &&
|
|
(!isa<Constant>(TrueVal) || !isa<Constant>(FalseVal))) {
|
|
// Try to simplify select arms based on KnownBits implied by the condition.
|
|
CondContext CC(CondVal);
|
|
findValuesAffectedByCondition(CondVal, /*IsAssume=*/false, [&](Value *V) {
|
|
CC.AffectedValues.insert(V);
|
|
});
|
|
SimplifyQuery Q = SQ.getWithInstruction(&SI).getWithCondContext(CC);
|
|
if (!CC.AffectedValues.empty()) {
|
|
if (!isa<Constant>(TrueVal) &&
|
|
hasAffectedValue(TrueVal, CC.AffectedValues, /*Depth=*/0)) {
|
|
KnownBits Known = llvm::computeKnownBits(TrueVal, Q);
|
|
if (Known.isConstant())
|
|
return replaceOperand(SI, 1,
|
|
ConstantInt::get(SelType, Known.getConstant()));
|
|
}
|
|
|
|
CC.Invert = true;
|
|
if (!isa<Constant>(FalseVal) &&
|
|
hasAffectedValue(FalseVal, CC.AffectedValues, /*Depth=*/0)) {
|
|
KnownBits Known = llvm::computeKnownBits(FalseVal, Q);
|
|
if (Known.isConstant())
|
|
return replaceOperand(SI, 2,
|
|
ConstantInt::get(SelType, Known.getConstant()));
|
|
}
|
|
}
|
|
}
|
|
|
|
// select (trunc nuw X to i1), X, Y --> select (trunc nuw X to i1), 1, Y
|
|
// select (trunc nuw X to i1), Y, X --> select (trunc nuw X to i1), Y, 0
|
|
// select (trunc nsw X to i1), X, Y --> select (trunc nsw X to i1), -1, Y
|
|
// select (trunc nsw X to i1), Y, X --> select (trunc nsw X to i1), Y, 0
|
|
Value *Trunc;
|
|
if (match(CondVal, m_NUWTrunc(m_Value(Trunc)))) {
|
|
if (TrueVal == Trunc)
|
|
return replaceOperand(SI, 1, ConstantInt::get(TrueVal->getType(), 1));
|
|
if (FalseVal == Trunc)
|
|
return replaceOperand(SI, 2, ConstantInt::get(FalseVal->getType(), 0));
|
|
}
|
|
if (match(CondVal, m_NSWTrunc(m_Value(Trunc)))) {
|
|
if (TrueVal == Trunc)
|
|
return replaceOperand(SI, 1,
|
|
Constant::getAllOnesValue(TrueVal->getType()));
|
|
if (FalseVal == Trunc)
|
|
return replaceOperand(SI, 2, ConstantInt::get(FalseVal->getType(), 0));
|
|
}
|
|
|
|
return nullptr;
|
|
}
|