llvm-project/llvm/test/CodeGen/AMDGPU/sgpr-control-flow.ll
Matt Arsenault 39bf765bb6
DAG: Use phi to create vregs instead of the constant input (#129464)
For most targets, the register class comes from the type so this
makes no difference. For AMDGPU, the selected register class depends
on the divergence of the value. For a constant phi input, this will
always be false. The heuristic for whether to treat the value as
a scalar or vector constant based on the uses would then incorrectly
think this is a scalar use, when really the phi is a copy from S to V.

This avoids an intermediate s_mov_b32 plus a copy in some cases. These
would often, but not always, fold out in mi passes.

This only adjusts the constant input case. It may make sense to do
this for the non-constant case as well.
2025-03-04 14:44:54 +07:00

226 lines
7.2 KiB
LLVM

; NOTE: Assertions have been autogenerated by utils/update_llc_test_checks.py
; RUN: llc -mtriple=amdgcn -mcpu=tahiti -verify-machineinstrs < %s | FileCheck -enable-var-scope -check-prefix=SI %s
;
; Most SALU instructions ignore control flow, so we need to make sure
; they don't overwrite values from other blocks.
; If the branch decision is made based on a value in an SGPR then all
; threads will execute the same code paths, so we don't need to worry
; about instructions in different blocks overwriting each other.
define amdgpu_kernel void @sgpr_if_else_salu_br(ptr addrspace(1) %out, i32 %a, i32 %b, i32 %c, i32 %d, i32 %e) {
; SI-LABEL: sgpr_if_else_salu_br:
; SI: ; %bb.0: ; %entry
; SI-NEXT: s_load_dwordx4 s[0:3], s[4:5], 0xb
; SI-NEXT: s_load_dword s6, s[4:5], 0xf
; SI-NEXT: s_waitcnt lgkmcnt(0)
; SI-NEXT: s_cmp_lg_u32 s0, 0
; SI-NEXT: s_cbranch_scc0 .LBB0_4
; SI-NEXT: ; %bb.1: ; %else
; SI-NEXT: s_add_i32 s3, s3, s6
; SI-NEXT: s_cbranch_execnz .LBB0_3
; SI-NEXT: .LBB0_2: ; %if
; SI-NEXT: s_sub_i32 s3, s1, s2
; SI-NEXT: .LBB0_3: ; %endif
; SI-NEXT: s_load_dwordx2 s[4:5], s[4:5], 0x9
; SI-NEXT: s_add_i32 s0, s3, s0
; SI-NEXT: s_mov_b32 s7, 0xf000
; SI-NEXT: s_mov_b32 s6, -1
; SI-NEXT: v_mov_b32_e32 v0, s0
; SI-NEXT: s_waitcnt lgkmcnt(0)
; SI-NEXT: buffer_store_dword v0, off, s[4:7], 0
; SI-NEXT: s_endpgm
; SI-NEXT: .LBB0_4:
; SI-NEXT: ; implicit-def: $sgpr3
; SI-NEXT: s_branch .LBB0_2
entry:
%0 = icmp eq i32 %a, 0
br i1 %0, label %if, label %else
if:
%1 = sub i32 %b, %c
br label %endif
else:
%2 = add i32 %d, %e
br label %endif
endif:
%3 = phi i32 [%1, %if], [%2, %else]
%4 = add i32 %3, %a
store i32 %4, ptr addrspace(1) %out
ret void
}
define amdgpu_kernel void @sgpr_if_else_salu_br_opt(ptr addrspace(1) %out, [8 x i32], i32 %a, [8 x i32], i32 %b, [8 x i32], i32 %c, [8 x i32], i32 %d, [8 x i32], i32 %e) {
; SI-LABEL: sgpr_if_else_salu_br_opt:
; SI: ; %bb.0: ; %entry
; SI-NEXT: s_load_dword s2, s[4:5], 0x13
; SI-NEXT: s_waitcnt lgkmcnt(0)
; SI-NEXT: s_cmp_lg_u32 s2, 0
; SI-NEXT: s_cbranch_scc0 .LBB1_4
; SI-NEXT: ; %bb.1: ; %else
; SI-NEXT: s_load_dword s0, s[4:5], 0x2e
; SI-NEXT: s_load_dword s1, s[4:5], 0x37
; SI-NEXT: s_waitcnt lgkmcnt(0)
; SI-NEXT: s_add_i32 s3, s0, s1
; SI-NEXT: s_cbranch_execnz .LBB1_3
; SI-NEXT: .LBB1_2: ; %if
; SI-NEXT: s_load_dword s0, s[4:5], 0x1c
; SI-NEXT: s_load_dword s1, s[4:5], 0x25
; SI-NEXT: s_waitcnt lgkmcnt(0)
; SI-NEXT: s_add_i32 s3, s0, s1
; SI-NEXT: .LBB1_3: ; %endif
; SI-NEXT: s_load_dwordx2 s[4:5], s[4:5], 0x9
; SI-NEXT: s_add_i32 s0, s3, s2
; SI-NEXT: s_mov_b32 s7, 0xf000
; SI-NEXT: s_mov_b32 s6, -1
; SI-NEXT: v_mov_b32_e32 v0, s0
; SI-NEXT: s_waitcnt lgkmcnt(0)
; SI-NEXT: buffer_store_dword v0, off, s[4:7], 0
; SI-NEXT: s_endpgm
; SI-NEXT: .LBB1_4:
; SI-NEXT: ; implicit-def: $sgpr3
; SI-NEXT: s_branch .LBB1_2
entry:
%cmp0 = icmp eq i32 %a, 0
br i1 %cmp0, label %if, label %else
if:
%add0 = add i32 %b, %c
br label %endif
else:
%add1 = add i32 %d, %e
br label %endif
endif:
%phi = phi i32 [%add0, %if], [%add1, %else]
%add2 = add i32 %phi, %a
store i32 %add2, ptr addrspace(1) %out
ret void
}
; The two S_ADD instructions should write to different registers, since
; different threads will take different control flow paths.
define amdgpu_kernel void @sgpr_if_else_valu_br(ptr addrspace(1) %out, float %a, i32 %b, i32 %c, i32 %d, i32 %e) {
; SI-LABEL: sgpr_if_else_valu_br:
; SI: ; %bb.0: ; %entry
; SI-NEXT: s_load_dwordx4 s[0:3], s[4:5], 0xc
; SI-NEXT: v_cvt_f32_u32_e32 v0, v0
; SI-NEXT: ; implicit-def: $sgpr8
; SI-NEXT: v_cmp_lg_f32_e32 vcc, 0, v0
; SI-NEXT: s_and_saveexec_b64 s[6:7], vcc
; SI-NEXT: s_xor_b64 s[6:7], exec, s[6:7]
; SI-NEXT: s_cbranch_execz .LBB2_2
; SI-NEXT: ; %bb.1: ; %else
; SI-NEXT: s_waitcnt lgkmcnt(0)
; SI-NEXT: s_add_i32 s8, s2, s3
; SI-NEXT: .LBB2_2: ; %Flow
; SI-NEXT: s_waitcnt lgkmcnt(0)
; SI-NEXT: s_or_saveexec_b64 s[2:3], s[6:7]
; SI-NEXT: v_mov_b32_e32 v0, s8
; SI-NEXT: s_xor_b64 exec, exec, s[2:3]
; SI-NEXT: ; %bb.3: ; %if
; SI-NEXT: s_add_i32 s0, s0, s1
; SI-NEXT: v_mov_b32_e32 v0, s0
; SI-NEXT: ; %bb.4: ; %endif
; SI-NEXT: s_or_b64 exec, exec, s[2:3]
; SI-NEXT: s_load_dwordx2 s[0:1], s[4:5], 0x9
; SI-NEXT: s_mov_b32 s3, 0xf000
; SI-NEXT: s_mov_b32 s2, -1
; SI-NEXT: s_waitcnt lgkmcnt(0)
; SI-NEXT: buffer_store_dword v0, off, s[0:3], 0
; SI-NEXT: s_endpgm
entry:
%tid = call i32 @llvm.amdgcn.workitem.id.x() #0
%tid_f = uitofp i32 %tid to float
%tmp1 = fcmp ueq float %tid_f, 0.0
br i1 %tmp1, label %if, label %else
if:
%tmp2 = add i32 %b, %c
br label %endif
else:
%tmp3 = add i32 %d, %e
br label %endif
endif:
%tmp4 = phi i32 [%tmp2, %if], [%tmp3, %else]
store i32 %tmp4, ptr addrspace(1) %out
ret void
}
define amdgpu_kernel void @sgpr_if_else_valu_cmp_phi_br(ptr addrspace(1) %out, ptr addrspace(1) %a, ptr addrspace(1) %b) {
; SI-LABEL: sgpr_if_else_valu_cmp_phi_br:
; SI: ; %bb.0: ; %entry
; SI-NEXT: s_load_dwordx4 s[0:3], s[4:5], 0x9
; SI-NEXT: s_load_dwordx2 s[4:5], s[4:5], 0xd
; SI-NEXT: s_mov_b32 s6, 0
; SI-NEXT: v_cmp_ne_u32_e32 vcc, 0, v0
; SI-NEXT: v_lshlrev_b32_e32 v0, 2, v0
; SI-NEXT: ; implicit-def: $sgpr8_sgpr9
; SI-NEXT: s_and_saveexec_b64 s[10:11], vcc
; SI-NEXT: s_xor_b64 s[10:11], exec, s[10:11]
; SI-NEXT: s_cbranch_execz .LBB3_2
; SI-NEXT: ; %bb.1: ; %else
; SI-NEXT: s_mov_b32 s7, 0xf000
; SI-NEXT: v_mov_b32_e32 v1, 0
; SI-NEXT: s_waitcnt lgkmcnt(0)
; SI-NEXT: buffer_load_dword v0, v[0:1], s[4:7], 0 addr64
; SI-NEXT: s_waitcnt vmcnt(0)
; SI-NEXT: v_cmp_gt_i32_e64 s[8:9], 0, v0
; SI-NEXT: ; implicit-def: $vgpr0
; SI-NEXT: .LBB3_2: ; %Flow
; SI-NEXT: s_waitcnt lgkmcnt(0)
; SI-NEXT: s_andn2_saveexec_b64 s[4:5], s[10:11]
; SI-NEXT: s_cbranch_execz .LBB3_4
; SI-NEXT: ; %bb.3: ; %if
; SI-NEXT: s_mov_b32 s15, 0xf000
; SI-NEXT: s_mov_b32 s14, 0
; SI-NEXT: s_mov_b64 s[12:13], s[2:3]
; SI-NEXT: v_mov_b32_e32 v1, 0
; SI-NEXT: buffer_load_dword v0, v[0:1], s[12:15], 0 addr64
; SI-NEXT: s_andn2_b64 s[2:3], s[8:9], exec
; SI-NEXT: s_waitcnt vmcnt(0)
; SI-NEXT: v_cmp_eq_u32_e32 vcc, 0, v0
; SI-NEXT: s_and_b64 s[6:7], vcc, exec
; SI-NEXT: s_or_b64 s[8:9], s[2:3], s[6:7]
; SI-NEXT: .LBB3_4: ; %endif
; SI-NEXT: s_or_b64 exec, exec, s[4:5]
; SI-NEXT: s_mov_b32 s3, 0xf000
; SI-NEXT: s_mov_b32 s2, -1
; SI-NEXT: v_cndmask_b32_e64 v0, 0, -1, s[8:9]
; SI-NEXT: buffer_store_dword v0, off, s[0:3], 0
; SI-NEXT: s_endpgm
entry:
%tid = call i32 @llvm.amdgcn.workitem.id.x() #0
%tmp1 = icmp eq i32 %tid, 0
br i1 %tmp1, label %if, label %else
if:
%gep.if = getelementptr i32, ptr addrspace(1) %a, i32 %tid
%a.val = load i32, ptr addrspace(1) %gep.if
%cmp.if = icmp eq i32 %a.val, 0
br label %endif
else:
%gep.else = getelementptr i32, ptr addrspace(1) %b, i32 %tid
%b.val = load i32, ptr addrspace(1) %gep.else
%cmp.else = icmp slt i32 %b.val, 0
br label %endif
endif:
%tmp4 = phi i1 [%cmp.if, %if], [%cmp.else, %else]
%ext = sext i1 %tmp4 to i32
store i32 %ext, ptr addrspace(1) %out
ret void
}
declare i32 @llvm.amdgcn.workitem.id.x() #0
attributes #0 = { readnone }