Leandro Lacerda 8d7b50e572
[Offload][Conformance] Add RandomGenerator for large input spaces (#154252)
This patch implements the `RandomGenerator`, a new input generator that
enables conformance testing for functions with large input spaces (e.g.,
double-precision math functions).

**Architectural Refactoring**

To support different generation strategies in a clean and extensible
way, the existing `ExhaustiveGenerator` was refactored into a new class
hierarchy:
* A new abstract base class, `RangeBasedGenerator`, was introduced using
the Curiously Recurring Template Pattern (CRTP). It contains the common
logic for generators that operate on a sequence of ranges.
* `ExhaustiveGenerator` now inherits from this base class, simplifying
its implementation.

**New Components**
* The new `RandomGenerator` class also inherits from
`RangeBasedGenerator`. It implements a strategy that randomly samples a
specified number of points from the total input space.
* Random number generation is handled by a new, self-contained
`RandomState` class (a `xorshift64*` PRNG seeded with `splitmix64`) to
ensure deterministic and reproducible random streams for testing.

**Example Usage**

As a first use case and demonstration of this new capability, this patch
also adds the first double-precision conformance test for the `log`
function. This test uses the new `RandomGenerator` to validate the
implementations from the `llvm-libm`, `cuda-math`, and `hip-math`
providers.
2025-08-20 13:37:01 -05:00

The LLVM Compiler Infrastructure

OpenSSF Scorecard OpenSSF Best Practices libc++

Welcome to the LLVM project!

This repository contains the source code for LLVM, a toolkit for the construction of highly optimized compilers, optimizers, and run-time environments.

The LLVM project has multiple components. The core of the project is itself called "LLVM". This contains all of the tools, libraries, and header files needed to process intermediate representations and convert them into object files. Tools include an assembler, disassembler, bitcode analyzer, and bitcode optimizer.

C-like languages use the Clang frontend. This component compiles C, C++, Objective-C, and Objective-C++ code into LLVM bitcode -- and from there into object files, using LLVM.

Other components include: the libc++ C++ standard library, the LLD linker, and more.

Getting the Source Code and Building LLVM

Consult the Getting Started with LLVM page for information on building and running LLVM.

For information on how to contribute to the LLVM project, please take a look at the Contributing to LLVM guide.

Getting in touch

Join the LLVM Discourse forums, Discord chat, LLVM Office Hours or Regular sync-ups.

The LLVM project has adopted a code of conduct for participants to all modes of communication within the project.

Description
The LLVM Project is a collection of modular and reusable compiler and toolchain technologies.
Readme 5.3 GiB
Languages
LLVM 42%
C++ 30.8%
C 13%
Assembly 9.5%
MLIR 1.4%
Other 2.9%