llvm-project/llvm/lib/Analysis/TargetTransformInfo.cpp
Jonas Paulsson 8e2f948ef0 [TargetTransformInfo] Refactor and improve getScalarizationOverhead()
Refactoring to remove duplications of this method.

New method getOperandsScalarizationOverhead() that looks at the present unique
operands and add extract costs for them. Old behaviour was to just add extract
costs for one operand of the type always, which still happens in
getArithmeticInstrCost() if no operands are provided by the caller.

This is a good start of improving on this, but there are more places
that can be improved by using getOperandsScalarizationOverhead().

Review: Hal Finkel
https://reviews.llvm.org/D29017

llvm-svn: 293155
2017-01-26 07:03:25 +00:00

525 lines
19 KiB
C++

//===- llvm/Analysis/TargetTransformInfo.cpp ------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/Analysis/TargetTransformInfoImpl.h"
#include "llvm/IR/CallSite.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Operator.h"
#include "llvm/Support/ErrorHandling.h"
#include <utility>
using namespace llvm;
#define DEBUG_TYPE "tti"
namespace {
/// \brief No-op implementation of the TTI interface using the utility base
/// classes.
///
/// This is used when no target specific information is available.
struct NoTTIImpl : TargetTransformInfoImplCRTPBase<NoTTIImpl> {
explicit NoTTIImpl(const DataLayout &DL)
: TargetTransformInfoImplCRTPBase<NoTTIImpl>(DL) {}
};
}
TargetTransformInfo::TargetTransformInfo(const DataLayout &DL)
: TTIImpl(new Model<NoTTIImpl>(NoTTIImpl(DL))) {}
TargetTransformInfo::~TargetTransformInfo() {}
TargetTransformInfo::TargetTransformInfo(TargetTransformInfo &&Arg)
: TTIImpl(std::move(Arg.TTIImpl)) {}
TargetTransformInfo &TargetTransformInfo::operator=(TargetTransformInfo &&RHS) {
TTIImpl = std::move(RHS.TTIImpl);
return *this;
}
int TargetTransformInfo::getOperationCost(unsigned Opcode, Type *Ty,
Type *OpTy) const {
int Cost = TTIImpl->getOperationCost(Opcode, Ty, OpTy);
assert(Cost >= 0 && "TTI should not produce negative costs!");
return Cost;
}
int TargetTransformInfo::getCallCost(FunctionType *FTy, int NumArgs) const {
int Cost = TTIImpl->getCallCost(FTy, NumArgs);
assert(Cost >= 0 && "TTI should not produce negative costs!");
return Cost;
}
int TargetTransformInfo::getCallCost(const Function *F,
ArrayRef<const Value *> Arguments) const {
int Cost = TTIImpl->getCallCost(F, Arguments);
assert(Cost >= 0 && "TTI should not produce negative costs!");
return Cost;
}
unsigned TargetTransformInfo::getInliningThresholdMultiplier() const {
return TTIImpl->getInliningThresholdMultiplier();
}
int TargetTransformInfo::getGEPCost(Type *PointeeType, const Value *Ptr,
ArrayRef<const Value *> Operands) const {
return TTIImpl->getGEPCost(PointeeType, Ptr, Operands);
}
int TargetTransformInfo::getIntrinsicCost(
Intrinsic::ID IID, Type *RetTy, ArrayRef<const Value *> Arguments) const {
int Cost = TTIImpl->getIntrinsicCost(IID, RetTy, Arguments);
assert(Cost >= 0 && "TTI should not produce negative costs!");
return Cost;
}
int TargetTransformInfo::getUserCost(const User *U) const {
int Cost = TTIImpl->getUserCost(U);
assert(Cost >= 0 && "TTI should not produce negative costs!");
return Cost;
}
bool TargetTransformInfo::hasBranchDivergence() const {
return TTIImpl->hasBranchDivergence();
}
bool TargetTransformInfo::isSourceOfDivergence(const Value *V) const {
return TTIImpl->isSourceOfDivergence(V);
}
bool TargetTransformInfo::isLoweredToCall(const Function *F) const {
return TTIImpl->isLoweredToCall(F);
}
void TargetTransformInfo::getUnrollingPreferences(
Loop *L, UnrollingPreferences &UP) const {
return TTIImpl->getUnrollingPreferences(L, UP);
}
bool TargetTransformInfo::isLegalAddImmediate(int64_t Imm) const {
return TTIImpl->isLegalAddImmediate(Imm);
}
bool TargetTransformInfo::isLegalICmpImmediate(int64_t Imm) const {
return TTIImpl->isLegalICmpImmediate(Imm);
}
bool TargetTransformInfo::isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV,
int64_t BaseOffset,
bool HasBaseReg,
int64_t Scale,
unsigned AddrSpace) const {
return TTIImpl->isLegalAddressingMode(Ty, BaseGV, BaseOffset, HasBaseReg,
Scale, AddrSpace);
}
bool TargetTransformInfo::isLegalMaskedStore(Type *DataType) const {
return TTIImpl->isLegalMaskedStore(DataType);
}
bool TargetTransformInfo::isLegalMaskedLoad(Type *DataType) const {
return TTIImpl->isLegalMaskedLoad(DataType);
}
bool TargetTransformInfo::isLegalMaskedGather(Type *DataType) const {
return TTIImpl->isLegalMaskedGather(DataType);
}
bool TargetTransformInfo::isLegalMaskedScatter(Type *DataType) const {
return TTIImpl->isLegalMaskedGather(DataType);
}
int TargetTransformInfo::getScalingFactorCost(Type *Ty, GlobalValue *BaseGV,
int64_t BaseOffset,
bool HasBaseReg,
int64_t Scale,
unsigned AddrSpace) const {
int Cost = TTIImpl->getScalingFactorCost(Ty, BaseGV, BaseOffset, HasBaseReg,
Scale, AddrSpace);
assert(Cost >= 0 && "TTI should not produce negative costs!");
return Cost;
}
bool TargetTransformInfo::isFoldableMemAccessOffset(Instruction *I,
int64_t Offset) const {
return TTIImpl->isFoldableMemAccessOffset(I, Offset);
}
bool TargetTransformInfo::isTruncateFree(Type *Ty1, Type *Ty2) const {
return TTIImpl->isTruncateFree(Ty1, Ty2);
}
bool TargetTransformInfo::isProfitableToHoist(Instruction *I) const {
return TTIImpl->isProfitableToHoist(I);
}
bool TargetTransformInfo::isTypeLegal(Type *Ty) const {
return TTIImpl->isTypeLegal(Ty);
}
unsigned TargetTransformInfo::getJumpBufAlignment() const {
return TTIImpl->getJumpBufAlignment();
}
unsigned TargetTransformInfo::getJumpBufSize() const {
return TTIImpl->getJumpBufSize();
}
bool TargetTransformInfo::shouldBuildLookupTables() const {
return TTIImpl->shouldBuildLookupTables();
}
bool TargetTransformInfo::shouldBuildLookupTablesForConstant(Constant *C) const {
return TTIImpl->shouldBuildLookupTablesForConstant(C);
}
unsigned TargetTransformInfo::
getScalarizationOverhead(Type *Ty, bool Insert, bool Extract) const {
return TTIImpl->getScalarizationOverhead(Ty, Insert, Extract);
}
unsigned TargetTransformInfo::
getOperandsScalarizationOverhead(ArrayRef<const Value *> Args,
unsigned VF) const {
return TTIImpl->getOperandsScalarizationOverhead(Args, VF);
}
bool TargetTransformInfo::enableAggressiveInterleaving(bool LoopHasReductions) const {
return TTIImpl->enableAggressiveInterleaving(LoopHasReductions);
}
bool TargetTransformInfo::enableInterleavedAccessVectorization() const {
return TTIImpl->enableInterleavedAccessVectorization();
}
bool TargetTransformInfo::isFPVectorizationPotentiallyUnsafe() const {
return TTIImpl->isFPVectorizationPotentiallyUnsafe();
}
bool TargetTransformInfo::allowsMisalignedMemoryAccesses(LLVMContext &Context,
unsigned BitWidth,
unsigned AddressSpace,
unsigned Alignment,
bool *Fast) const {
return TTIImpl->allowsMisalignedMemoryAccesses(Context, BitWidth, AddressSpace,
Alignment, Fast);
}
TargetTransformInfo::PopcntSupportKind
TargetTransformInfo::getPopcntSupport(unsigned IntTyWidthInBit) const {
return TTIImpl->getPopcntSupport(IntTyWidthInBit);
}
bool TargetTransformInfo::haveFastSqrt(Type *Ty) const {
return TTIImpl->haveFastSqrt(Ty);
}
int TargetTransformInfo::getFPOpCost(Type *Ty) const {
int Cost = TTIImpl->getFPOpCost(Ty);
assert(Cost >= 0 && "TTI should not produce negative costs!");
return Cost;
}
int TargetTransformInfo::getIntImmCodeSizeCost(unsigned Opcode, unsigned Idx,
const APInt &Imm,
Type *Ty) const {
int Cost = TTIImpl->getIntImmCodeSizeCost(Opcode, Idx, Imm, Ty);
assert(Cost >= 0 && "TTI should not produce negative costs!");
return Cost;
}
int TargetTransformInfo::getIntImmCost(const APInt &Imm, Type *Ty) const {
int Cost = TTIImpl->getIntImmCost(Imm, Ty);
assert(Cost >= 0 && "TTI should not produce negative costs!");
return Cost;
}
int TargetTransformInfo::getIntImmCost(unsigned Opcode, unsigned Idx,
const APInt &Imm, Type *Ty) const {
int Cost = TTIImpl->getIntImmCost(Opcode, Idx, Imm, Ty);
assert(Cost >= 0 && "TTI should not produce negative costs!");
return Cost;
}
int TargetTransformInfo::getIntImmCost(Intrinsic::ID IID, unsigned Idx,
const APInt &Imm, Type *Ty) const {
int Cost = TTIImpl->getIntImmCost(IID, Idx, Imm, Ty);
assert(Cost >= 0 && "TTI should not produce negative costs!");
return Cost;
}
unsigned TargetTransformInfo::getNumberOfRegisters(bool Vector) const {
return TTIImpl->getNumberOfRegisters(Vector);
}
unsigned TargetTransformInfo::getRegisterBitWidth(bool Vector) const {
return TTIImpl->getRegisterBitWidth(Vector);
}
unsigned TargetTransformInfo::getCacheLineSize() const {
return TTIImpl->getCacheLineSize();
}
unsigned TargetTransformInfo::getPrefetchDistance() const {
return TTIImpl->getPrefetchDistance();
}
unsigned TargetTransformInfo::getMinPrefetchStride() const {
return TTIImpl->getMinPrefetchStride();
}
unsigned TargetTransformInfo::getMaxPrefetchIterationsAhead() const {
return TTIImpl->getMaxPrefetchIterationsAhead();
}
unsigned TargetTransformInfo::getMaxInterleaveFactor(unsigned VF) const {
return TTIImpl->getMaxInterleaveFactor(VF);
}
int TargetTransformInfo::getArithmeticInstrCost(
unsigned Opcode, Type *Ty, OperandValueKind Opd1Info,
OperandValueKind Opd2Info, OperandValueProperties Opd1PropInfo,
OperandValueProperties Opd2PropInfo,
ArrayRef<const Value *> Args) const {
int Cost = TTIImpl->getArithmeticInstrCost(Opcode, Ty, Opd1Info, Opd2Info,
Opd1PropInfo, Opd2PropInfo, Args);
assert(Cost >= 0 && "TTI should not produce negative costs!");
return Cost;
}
int TargetTransformInfo::getShuffleCost(ShuffleKind Kind, Type *Ty, int Index,
Type *SubTp) const {
int Cost = TTIImpl->getShuffleCost(Kind, Ty, Index, SubTp);
assert(Cost >= 0 && "TTI should not produce negative costs!");
return Cost;
}
int TargetTransformInfo::getCastInstrCost(unsigned Opcode, Type *Dst,
Type *Src) const {
int Cost = TTIImpl->getCastInstrCost(Opcode, Dst, Src);
assert(Cost >= 0 && "TTI should not produce negative costs!");
return Cost;
}
int TargetTransformInfo::getExtractWithExtendCost(unsigned Opcode, Type *Dst,
VectorType *VecTy,
unsigned Index) const {
int Cost = TTIImpl->getExtractWithExtendCost(Opcode, Dst, VecTy, Index);
assert(Cost >= 0 && "TTI should not produce negative costs!");
return Cost;
}
int TargetTransformInfo::getCFInstrCost(unsigned Opcode) const {
int Cost = TTIImpl->getCFInstrCost(Opcode);
assert(Cost >= 0 && "TTI should not produce negative costs!");
return Cost;
}
int TargetTransformInfo::getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
Type *CondTy) const {
int Cost = TTIImpl->getCmpSelInstrCost(Opcode, ValTy, CondTy);
assert(Cost >= 0 && "TTI should not produce negative costs!");
return Cost;
}
int TargetTransformInfo::getVectorInstrCost(unsigned Opcode, Type *Val,
unsigned Index) const {
int Cost = TTIImpl->getVectorInstrCost(Opcode, Val, Index);
assert(Cost >= 0 && "TTI should not produce negative costs!");
return Cost;
}
int TargetTransformInfo::getMemoryOpCost(unsigned Opcode, Type *Src,
unsigned Alignment,
unsigned AddressSpace) const {
int Cost = TTIImpl->getMemoryOpCost(Opcode, Src, Alignment, AddressSpace);
assert(Cost >= 0 && "TTI should not produce negative costs!");
return Cost;
}
int TargetTransformInfo::getMaskedMemoryOpCost(unsigned Opcode, Type *Src,
unsigned Alignment,
unsigned AddressSpace) const {
int Cost =
TTIImpl->getMaskedMemoryOpCost(Opcode, Src, Alignment, AddressSpace);
assert(Cost >= 0 && "TTI should not produce negative costs!");
return Cost;
}
int TargetTransformInfo::getGatherScatterOpCost(unsigned Opcode, Type *DataTy,
Value *Ptr, bool VariableMask,
unsigned Alignment) const {
int Cost = TTIImpl->getGatherScatterOpCost(Opcode, DataTy, Ptr, VariableMask,
Alignment);
assert(Cost >= 0 && "TTI should not produce negative costs!");
return Cost;
}
int TargetTransformInfo::getInterleavedMemoryOpCost(
unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices,
unsigned Alignment, unsigned AddressSpace) const {
int Cost = TTIImpl->getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
Alignment, AddressSpace);
assert(Cost >= 0 && "TTI should not produce negative costs!");
return Cost;
}
int TargetTransformInfo::getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy,
ArrayRef<Type *> Tys,
FastMathFlags FMF) const {
int Cost = TTIImpl->getIntrinsicInstrCost(ID, RetTy, Tys, FMF);
assert(Cost >= 0 && "TTI should not produce negative costs!");
return Cost;
}
int TargetTransformInfo::getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy,
ArrayRef<Value *> Args,
FastMathFlags FMF) const {
int Cost = TTIImpl->getIntrinsicInstrCost(ID, RetTy, Args, FMF);
assert(Cost >= 0 && "TTI should not produce negative costs!");
return Cost;
}
int TargetTransformInfo::getCallInstrCost(Function *F, Type *RetTy,
ArrayRef<Type *> Tys) const {
int Cost = TTIImpl->getCallInstrCost(F, RetTy, Tys);
assert(Cost >= 0 && "TTI should not produce negative costs!");
return Cost;
}
unsigned TargetTransformInfo::getNumberOfParts(Type *Tp) const {
return TTIImpl->getNumberOfParts(Tp);
}
int TargetTransformInfo::getAddressComputationCost(Type *Tp,
ScalarEvolution *SE,
const SCEV *Ptr) const {
int Cost = TTIImpl->getAddressComputationCost(Tp, SE, Ptr);
assert(Cost >= 0 && "TTI should not produce negative costs!");
return Cost;
}
int TargetTransformInfo::getReductionCost(unsigned Opcode, Type *Ty,
bool IsPairwiseForm) const {
int Cost = TTIImpl->getReductionCost(Opcode, Ty, IsPairwiseForm);
assert(Cost >= 0 && "TTI should not produce negative costs!");
return Cost;
}
unsigned
TargetTransformInfo::getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) const {
return TTIImpl->getCostOfKeepingLiveOverCall(Tys);
}
bool TargetTransformInfo::getTgtMemIntrinsic(IntrinsicInst *Inst,
MemIntrinsicInfo &Info) const {
return TTIImpl->getTgtMemIntrinsic(Inst, Info);
}
Value *TargetTransformInfo::getOrCreateResultFromMemIntrinsic(
IntrinsicInst *Inst, Type *ExpectedType) const {
return TTIImpl->getOrCreateResultFromMemIntrinsic(Inst, ExpectedType);
}
bool TargetTransformInfo::areInlineCompatible(const Function *Caller,
const Function *Callee) const {
return TTIImpl->areInlineCompatible(Caller, Callee);
}
unsigned TargetTransformInfo::getLoadStoreVecRegBitWidth(unsigned AS) const {
return TTIImpl->getLoadStoreVecRegBitWidth(AS);
}
bool TargetTransformInfo::isLegalToVectorizeLoad(LoadInst *LI) const {
return TTIImpl->isLegalToVectorizeLoad(LI);
}
bool TargetTransformInfo::isLegalToVectorizeStore(StoreInst *SI) const {
return TTIImpl->isLegalToVectorizeStore(SI);
}
bool TargetTransformInfo::isLegalToVectorizeLoadChain(
unsigned ChainSizeInBytes, unsigned Alignment, unsigned AddrSpace) const {
return TTIImpl->isLegalToVectorizeLoadChain(ChainSizeInBytes, Alignment,
AddrSpace);
}
bool TargetTransformInfo::isLegalToVectorizeStoreChain(
unsigned ChainSizeInBytes, unsigned Alignment, unsigned AddrSpace) const {
return TTIImpl->isLegalToVectorizeStoreChain(ChainSizeInBytes, Alignment,
AddrSpace);
}
unsigned TargetTransformInfo::getLoadVectorFactor(unsigned VF,
unsigned LoadSize,
unsigned ChainSizeInBytes,
VectorType *VecTy) const {
return TTIImpl->getLoadVectorFactor(VF, LoadSize, ChainSizeInBytes, VecTy);
}
unsigned TargetTransformInfo::getStoreVectorFactor(unsigned VF,
unsigned StoreSize,
unsigned ChainSizeInBytes,
VectorType *VecTy) const {
return TTIImpl->getStoreVectorFactor(VF, StoreSize, ChainSizeInBytes, VecTy);
}
TargetTransformInfo::Concept::~Concept() {}
TargetIRAnalysis::TargetIRAnalysis() : TTICallback(&getDefaultTTI) {}
TargetIRAnalysis::TargetIRAnalysis(
std::function<Result(const Function &)> TTICallback)
: TTICallback(std::move(TTICallback)) {}
TargetIRAnalysis::Result TargetIRAnalysis::run(const Function &F,
FunctionAnalysisManager &) {
return TTICallback(F);
}
AnalysisKey TargetIRAnalysis::Key;
TargetIRAnalysis::Result TargetIRAnalysis::getDefaultTTI(const Function &F) {
return Result(F.getParent()->getDataLayout());
}
// Register the basic pass.
INITIALIZE_PASS(TargetTransformInfoWrapperPass, "tti",
"Target Transform Information", false, true)
char TargetTransformInfoWrapperPass::ID = 0;
void TargetTransformInfoWrapperPass::anchor() {}
TargetTransformInfoWrapperPass::TargetTransformInfoWrapperPass()
: ImmutablePass(ID) {
initializeTargetTransformInfoWrapperPassPass(
*PassRegistry::getPassRegistry());
}
TargetTransformInfoWrapperPass::TargetTransformInfoWrapperPass(
TargetIRAnalysis TIRA)
: ImmutablePass(ID), TIRA(std::move(TIRA)) {
initializeTargetTransformInfoWrapperPassPass(
*PassRegistry::getPassRegistry());
}
TargetTransformInfo &TargetTransformInfoWrapperPass::getTTI(const Function &F) {
FunctionAnalysisManager DummyFAM;
TTI = TIRA.run(F, DummyFAM);
return *TTI;
}
ImmutablePass *
llvm::createTargetTransformInfoWrapperPass(TargetIRAnalysis TIRA) {
return new TargetTransformInfoWrapperPass(std::move(TIRA));
}