llvm-project/llvm/lib/Transforms/IPO/SampleProfileMatcher.cpp
Kazu Hirata 3a5791e75c
[SampleProf] Templatize longestCommonSequence (NFC) (#114633)
This patch moves the implementation of longestCommonSequence to a new
header file.

I'm planning to implement a profile undrifting algorithm for MemProf
so that the compiler can ingest somewhat stale MemProf profile and
still deliver most of the benefits that would be delivered if the
profile were completely up to date (with no line number or column
number differences).

Since the core undrifting algorithm is the same between MemProf and
AutoFDO, this patch turns longestCommonSequence into a template.  The
original longestCommonSequence implementation is repurposed and now
serves as a wrapper around a template specialization.

Note that the usage differences between MemProf and AutoFDO are minor.
For example, I'm planning to use line-column number pair instead of
LineLocation, which uses a discriminator.  To identify a function, I'm
planning to use uint64_t GUID instead of FunctionId.

For now, I'm returning matches via a function object InsertMatching
because it's impossible to infer the map type from LineLocation alone.
Specifically:

  std::unordered_map<LineLocation, LineLocation>

does not work because we cannot infer the hash functor
LineLocationHash.  I could define std::hash<LineLocation>.
Alternatively, in the future, I might switch to DenseMap and define
DenseMapInfo<LineLocation>.  This way:

  DenseMap<LineLocation, LineLocation>

automatically picks up DenseMapInfo<LineLocation>.
2024-11-04 13:20:25 -08:00

899 lines
36 KiB
C++

//===- SampleProfileMatcher.cpp - Sampling-based Stale Profile Matcher ----===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the SampleProfileMatcher used for stale
// profile matching.
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/IPO/SampleProfileMatcher.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/MDBuilder.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Transforms/Utils/LongestCommonSequence.h"
using namespace llvm;
using namespace sampleprof;
#define DEBUG_TYPE "sample-profile-matcher"
static cl::opt<unsigned> FuncProfileSimilarityThreshold(
"func-profile-similarity-threshold", cl::Hidden, cl::init(80),
cl::desc("Consider a profile matches a function if the similarity of their "
"callee sequences is above the specified percentile."));
static cl::opt<unsigned> MinFuncCountForCGMatching(
"min-func-count-for-cg-matching", cl::Hidden, cl::init(5),
cl::desc("The minimum number of basic blocks required for a function to "
"run stale profile call graph matching."));
static cl::opt<unsigned> MinCallCountForCGMatching(
"min-call-count-for-cg-matching", cl::Hidden, cl::init(3),
cl::desc("The minimum number of call anchors required for a function to "
"run stale profile call graph matching."));
static cl::opt<bool> LoadFuncProfileforCGMatching(
"load-func-profile-for-cg-matching", cl::Hidden, cl::init(false),
cl::desc(
"Load top-level profiles that the sample reader initially skipped for "
"the call-graph matching (only meaningful for extended binary "
"format)"));
extern cl::opt<bool> SalvageStaleProfile;
extern cl::opt<bool> SalvageUnusedProfile;
extern cl::opt<bool> PersistProfileStaleness;
extern cl::opt<bool> ReportProfileStaleness;
static cl::opt<unsigned> SalvageStaleProfileMaxCallsites(
"salvage-stale-profile-max-callsites", cl::Hidden, cl::init(UINT_MAX),
cl::desc("The maximum number of callsites in a function, above which stale "
"profile matching will be skipped."));
void SampleProfileMatcher::findIRAnchors(const Function &F,
AnchorMap &IRAnchors) const {
// For inlined code, recover the original callsite and callee by finding the
// top-level inline frame. e.g. For frame stack "main:1 @ foo:2 @ bar:3", the
// top-level frame is "main:1", the callsite is "1" and the callee is "foo".
auto FindTopLevelInlinedCallsite = [](const DILocation *DIL) {
assert((DIL && DIL->getInlinedAt()) && "No inlined callsite");
const DILocation *PrevDIL = nullptr;
do {
PrevDIL = DIL;
DIL = DIL->getInlinedAt();
} while (DIL->getInlinedAt());
LineLocation Callsite = FunctionSamples::getCallSiteIdentifier(
DIL, FunctionSamples::ProfileIsFS);
StringRef CalleeName = PrevDIL->getSubprogramLinkageName();
return std::make_pair(Callsite, FunctionId(CalleeName));
};
auto GetCanonicalCalleeName = [](const CallBase *CB) {
StringRef CalleeName = UnknownIndirectCallee;
if (Function *Callee = CB->getCalledFunction())
CalleeName = FunctionSamples::getCanonicalFnName(Callee->getName());
return CalleeName;
};
// Extract profile matching anchors in the IR.
for (auto &BB : F) {
for (auto &I : BB) {
DILocation *DIL = I.getDebugLoc();
if (!DIL)
continue;
if (FunctionSamples::ProfileIsProbeBased) {
if (auto Probe = extractProbe(I)) {
// Flatten inlined IR for the matching.
if (DIL->getInlinedAt()) {
IRAnchors.emplace(FindTopLevelInlinedCallsite(DIL));
} else {
// Use empty StringRef for basic block probe.
StringRef CalleeName;
if (const auto *CB = dyn_cast<CallBase>(&I)) {
// Skip the probe inst whose callee name is "llvm.pseudoprobe".
if (!isa<IntrinsicInst>(&I))
CalleeName = GetCanonicalCalleeName(CB);
}
LineLocation Loc = LineLocation(Probe->Id, 0);
IRAnchors.emplace(Loc, FunctionId(CalleeName));
}
}
} else {
// TODO: For line-number based profile(AutoFDO), currently only support
// find callsite anchors. In future, we need to parse all the non-call
// instructions to extract the line locations for profile matching.
if (!isa<CallBase>(&I) || isa<IntrinsicInst>(&I))
continue;
if (DIL->getInlinedAt()) {
IRAnchors.emplace(FindTopLevelInlinedCallsite(DIL));
} else {
LineLocation Callsite = FunctionSamples::getCallSiteIdentifier(
DIL, FunctionSamples::ProfileIsFS);
StringRef CalleeName = GetCanonicalCalleeName(dyn_cast<CallBase>(&I));
IRAnchors.emplace(Callsite, FunctionId(CalleeName));
}
}
}
}
}
void SampleProfileMatcher::findProfileAnchors(const FunctionSamples &FS,
AnchorMap &ProfileAnchors) const {
auto isInvalidLineOffset = [](uint32_t LineOffset) {
return LineOffset & 0x8000;
};
auto InsertAnchor = [](const LineLocation &Loc, const FunctionId &CalleeName,
AnchorMap &ProfileAnchors) {
auto Ret = ProfileAnchors.try_emplace(Loc, CalleeName);
if (!Ret.second) {
// For multiple callees, which indicates it's an indirect call, we use a
// dummy name(UnknownIndirectCallee) as the indrect callee name.
Ret.first->second = FunctionId(UnknownIndirectCallee);
}
};
for (const auto &I : FS.getBodySamples()) {
const LineLocation &Loc = I.first;
if (isInvalidLineOffset(Loc.LineOffset))
continue;
for (const auto &C : I.second.getCallTargets())
InsertAnchor(Loc, C.first, ProfileAnchors);
}
for (const auto &I : FS.getCallsiteSamples()) {
const LineLocation &Loc = I.first;
if (isInvalidLineOffset(Loc.LineOffset))
continue;
for (const auto &C : I.second)
InsertAnchor(Loc, C.first, ProfileAnchors);
}
}
bool SampleProfileMatcher::functionHasProfile(const FunctionId &IRFuncName,
Function *&FuncWithoutProfile) {
FuncWithoutProfile = nullptr;
auto R = FunctionsWithoutProfile.find(IRFuncName);
if (R != FunctionsWithoutProfile.end())
FuncWithoutProfile = R->second;
return !FuncWithoutProfile;
}
bool SampleProfileMatcher::isProfileUnused(const FunctionId &ProfileFuncName) {
return SymbolMap->find(ProfileFuncName) == SymbolMap->end();
}
bool SampleProfileMatcher::functionMatchesProfile(
const FunctionId &IRFuncName, const FunctionId &ProfileFuncName,
bool FindMatchedProfileOnly) {
if (IRFuncName == ProfileFuncName)
return true;
if (!SalvageUnusedProfile)
return false;
// If IR function doesn't have profile and the profile is unused, try
// matching them.
Function *IRFunc = nullptr;
if (functionHasProfile(IRFuncName, IRFunc) ||
!isProfileUnused(ProfileFuncName))
return false;
assert(FunctionId(IRFunc->getName()) != ProfileFuncName &&
"IR function should be different from profile function to match");
return functionMatchesProfile(*IRFunc, ProfileFuncName,
FindMatchedProfileOnly);
}
LocToLocMap
SampleProfileMatcher::longestCommonSequence(const AnchorList &AnchorList1,
const AnchorList &AnchorList2,
bool MatchUnusedFunction) {
LocToLocMap MatchedAnchors;
llvm::longestCommonSequence<LineLocation, FunctionId>(
AnchorList1, AnchorList2,
[&](const FunctionId &A, const FunctionId &B) {
return functionMatchesProfile(
A, B,
!MatchUnusedFunction // Find matched function only
);
},
[&](LineLocation A, LineLocation B) {
MatchedAnchors.try_emplace(A, B);
});
return MatchedAnchors;
}
void SampleProfileMatcher::matchNonCallsiteLocs(
const LocToLocMap &MatchedAnchors, const AnchorMap &IRAnchors,
LocToLocMap &IRToProfileLocationMap) {
auto InsertMatching = [&](const LineLocation &From, const LineLocation &To) {
// Skip the unchanged location mapping to save memory.
if (From != To)
IRToProfileLocationMap.insert({From, To});
};
// Use function's beginning location as the initial anchor.
int32_t LocationDelta = 0;
SmallVector<LineLocation> LastMatchedNonAnchors;
for (const auto &IR : IRAnchors) {
const auto &Loc = IR.first;
bool IsMatchedAnchor = false;
// Match the anchor location in lexical order.
auto R = MatchedAnchors.find(Loc);
if (R != MatchedAnchors.end()) {
const auto &Candidate = R->second;
InsertMatching(Loc, Candidate);
LLVM_DEBUG(dbgs() << "Callsite with callee:" << IR.second.stringRef()
<< " is matched from " << Loc << " to " << Candidate
<< "\n");
LocationDelta = Candidate.LineOffset - Loc.LineOffset;
// Match backwards for non-anchor locations.
// The locations in LastMatchedNonAnchors have been matched forwards
// based on the previous anchor, spilt it evenly and overwrite the
// second half based on the current anchor.
for (size_t I = (LastMatchedNonAnchors.size() + 1) / 2;
I < LastMatchedNonAnchors.size(); I++) {
const auto &L = LastMatchedNonAnchors[I];
uint32_t CandidateLineOffset = L.LineOffset + LocationDelta;
LineLocation Candidate(CandidateLineOffset, L.Discriminator);
InsertMatching(L, Candidate);
LLVM_DEBUG(dbgs() << "Location is rematched backwards from " << L
<< " to " << Candidate << "\n");
}
IsMatchedAnchor = true;
LastMatchedNonAnchors.clear();
}
// Match forwards for non-anchor locations.
if (!IsMatchedAnchor) {
uint32_t CandidateLineOffset = Loc.LineOffset + LocationDelta;
LineLocation Candidate(CandidateLineOffset, Loc.Discriminator);
InsertMatching(Loc, Candidate);
LLVM_DEBUG(dbgs() << "Location is matched from " << Loc << " to "
<< Candidate << "\n");
LastMatchedNonAnchors.emplace_back(Loc);
}
}
}
// Filter the non-call locations from IRAnchors and ProfileAnchors and write
// them into a list for random access later.
void SampleProfileMatcher::getFilteredAnchorList(
const AnchorMap &IRAnchors, const AnchorMap &ProfileAnchors,
AnchorList &FilteredIRAnchorsList, AnchorList &FilteredProfileAnchorList) {
for (const auto &I : IRAnchors) {
if (I.second.stringRef().empty())
continue;
FilteredIRAnchorsList.emplace_back(I);
}
for (const auto &I : ProfileAnchors)
FilteredProfileAnchorList.emplace_back(I);
}
// Call target name anchor based profile fuzzy matching.
// Input:
// For IR locations, the anchor is the callee name of direct callsite; For
// profile locations, it's the call target name for BodySamples or inlinee's
// profile name for CallsiteSamples.
// Matching heuristic:
// First match all the anchors using the diff algorithm, then split the
// non-anchor locations between the two anchors evenly, first half are matched
// based on the start anchor, second half are matched based on the end anchor.
// For example, given:
// IR locations: [1, 2(foo), 3, 5, 6(bar), 7]
// Profile locations: [1, 2, 3(foo), 4, 7, 8(bar), 9]
// The matching gives:
// [1, 2(foo), 3, 5, 6(bar), 7]
// | | | | | |
// [1, 2, 3(foo), 4, 7, 8(bar), 9]
// The output mapping: [2->3, 3->4, 5->7, 6->8, 7->9].
void SampleProfileMatcher::runStaleProfileMatching(
const Function &F, const AnchorMap &IRAnchors,
const AnchorMap &ProfileAnchors, LocToLocMap &IRToProfileLocationMap,
bool RunCFGMatching, bool RunCGMatching) {
if (!RunCFGMatching && !RunCGMatching)
return;
LLVM_DEBUG(dbgs() << "Run stale profile matching for " << F.getName()
<< "\n");
assert(IRToProfileLocationMap.empty() &&
"Run stale profile matching only once per function");
AnchorList FilteredProfileAnchorList;
AnchorList FilteredIRAnchorsList;
getFilteredAnchorList(IRAnchors, ProfileAnchors, FilteredIRAnchorsList,
FilteredProfileAnchorList);
if (FilteredIRAnchorsList.empty() || FilteredProfileAnchorList.empty())
return;
if (FilteredIRAnchorsList.size() > SalvageStaleProfileMaxCallsites ||
FilteredProfileAnchorList.size() > SalvageStaleProfileMaxCallsites) {
LLVM_DEBUG(dbgs() << "Skip stale profile matching for " << F.getName()
<< " because the number of callsites in the IR is "
<< FilteredIRAnchorsList.size()
<< " and in the profile is "
<< FilteredProfileAnchorList.size() << "\n");
return;
}
// Match the callsite anchors by finding the longest common subsequence
// between IR and profile.
// Define a match between two anchors as follows:
// 1) The function names of anchors are the same.
// 2) The similarity between the anchor functions is above a threshold if
// RunCGMatching is set.
// For 2), we only consider the anchor functions from IR and profile don't
// appear on either side to reduce the matching scope. Note that we need to
// use IR anchor as base(A side) to align with the order of
// IRToProfileLocationMap.
LocToLocMap MatchedAnchors =
longestCommonSequence(FilteredIRAnchorsList, FilteredProfileAnchorList,
RunCGMatching /* Match unused functions */);
// CFG level matching:
// Apply the callsite matchings to infer matching for the basic
// block(non-callsite) locations and write the result to
// IRToProfileLocationMap.
if (RunCFGMatching)
matchNonCallsiteLocs(MatchedAnchors, IRAnchors, IRToProfileLocationMap);
}
void SampleProfileMatcher::runOnFunction(Function &F) {
// We need to use flattened function samples for matching.
// Unlike IR, which includes all callsites from the source code, the callsites
// in profile only show up when they are hit by samples, i,e. the profile
// callsites in one context may differ from those in another context. To get
// the maximum number of callsites, we merge the function profiles from all
// contexts, aka, the flattened profile to find profile anchors.
const auto *FSForMatching = getFlattenedSamplesFor(F);
if (SalvageUnusedProfile && !FSForMatching) {
// Apply the matching in place to find the new function's matched profile.
auto R = FuncToProfileNameMap.find(&F);
if (R != FuncToProfileNameMap.end()) {
FSForMatching = getFlattenedSamplesFor(R->second);
// Try to find the salvaged top-level profiles that are explicitly loaded
// for the matching, see "functionMatchesProfileHelper" for the details.
if (!FSForMatching && LoadFuncProfileforCGMatching)
FSForMatching = Reader.getSamplesFor(R->second.stringRef());
}
}
if (!FSForMatching)
return;
// Anchors for IR. It's a map from IR location to callee name, callee name is
// empty for non-call instruction and use a dummy name(UnknownIndirectCallee)
// for unknown indrect callee name.
AnchorMap IRAnchors;
findIRAnchors(F, IRAnchors);
// Anchors for profile. It's a map from callsite location to a set of callee
// name.
AnchorMap ProfileAnchors;
findProfileAnchors(*FSForMatching, ProfileAnchors);
// Compute the callsite match states for profile staleness report.
if (ReportProfileStaleness || PersistProfileStaleness)
recordCallsiteMatchStates(F, IRAnchors, ProfileAnchors, nullptr);
if (!SalvageStaleProfile)
return;
// For probe-based profiles, run matching only when profile checksum is
// mismatched.
bool ChecksumMismatch = FunctionSamples::ProfileIsProbeBased &&
!ProbeManager->profileIsValid(F, *FSForMatching);
bool RunCFGMatching =
!FunctionSamples::ProfileIsProbeBased || ChecksumMismatch;
bool RunCGMatching = SalvageUnusedProfile;
// For imported functions, the checksum metadata(pseudo_probe_desc) are
// dropped, so we leverage function attribute(profile-checksum-mismatch) to
// transfer the info: add the attribute during pre-link phase and check it
// during post-link phase(see "profileIsValid").
if (ChecksumMismatch && LTOPhase == ThinOrFullLTOPhase::ThinLTOPreLink)
F.addFnAttr("profile-checksum-mismatch");
// The matching result will be saved to IRToProfileLocationMap, create a
// new map for each function.
auto &IRToProfileLocationMap = getIRToProfileLocationMap(F);
runStaleProfileMatching(F, IRAnchors, ProfileAnchors, IRToProfileLocationMap,
RunCFGMatching, RunCGMatching);
// Find and update callsite match states after matching.
if (RunCFGMatching && (ReportProfileStaleness || PersistProfileStaleness))
recordCallsiteMatchStates(F, IRAnchors, ProfileAnchors,
&IRToProfileLocationMap);
}
void SampleProfileMatcher::recordCallsiteMatchStates(
const Function &F, const AnchorMap &IRAnchors,
const AnchorMap &ProfileAnchors,
const LocToLocMap *IRToProfileLocationMap) {
bool IsPostMatch = IRToProfileLocationMap != nullptr;
auto &CallsiteMatchStates =
FuncCallsiteMatchStates[FunctionSamples::getCanonicalFnName(F.getName())];
auto MapIRLocToProfileLoc = [&](const LineLocation &IRLoc) {
// IRToProfileLocationMap is null in pre-match phrase.
if (!IRToProfileLocationMap)
return IRLoc;
const auto &ProfileLoc = IRToProfileLocationMap->find(IRLoc);
if (ProfileLoc != IRToProfileLocationMap->end())
return ProfileLoc->second;
else
return IRLoc;
};
for (const auto &I : IRAnchors) {
// After fuzzy profile matching, use the matching result to remap the
// current IR callsite.
const auto &ProfileLoc = MapIRLocToProfileLoc(I.first);
const auto &IRCalleeId = I.second;
const auto &It = ProfileAnchors.find(ProfileLoc);
if (It == ProfileAnchors.end())
continue;
const auto &ProfCalleeId = It->second;
if (IRCalleeId == ProfCalleeId) {
auto It = CallsiteMatchStates.find(ProfileLoc);
if (It == CallsiteMatchStates.end())
CallsiteMatchStates.emplace(ProfileLoc, MatchState::InitialMatch);
else if (IsPostMatch) {
if (It->second == MatchState::InitialMatch)
It->second = MatchState::UnchangedMatch;
else if (It->second == MatchState::InitialMismatch)
It->second = MatchState::RecoveredMismatch;
}
}
}
// Check if there are any callsites in the profile that does not match to any
// IR callsites.
for (const auto &I : ProfileAnchors) {
const auto &Loc = I.first;
assert(!I.second.stringRef().empty() && "Callees should not be empty");
auto It = CallsiteMatchStates.find(Loc);
if (It == CallsiteMatchStates.end())
CallsiteMatchStates.emplace(Loc, MatchState::InitialMismatch);
else if (IsPostMatch) {
// Update the state if it's not matched(UnchangedMatch or
// RecoveredMismatch).
if (It->second == MatchState::InitialMismatch)
It->second = MatchState::UnchangedMismatch;
else if (It->second == MatchState::InitialMatch)
It->second = MatchState::RemovedMatch;
}
}
}
void SampleProfileMatcher::countMismatchedFuncSamples(const FunctionSamples &FS,
bool IsTopLevel) {
const auto *FuncDesc = ProbeManager->getDesc(FS.getGUID());
// Skip the function that is external or renamed.
if (!FuncDesc)
return;
if (ProbeManager->profileIsHashMismatched(*FuncDesc, FS)) {
if (IsTopLevel)
NumStaleProfileFunc++;
// Given currently all probe ids are after block probe ids, once the
// checksum is mismatched, it's likely all the callites are mismatched and
// dropped. We conservatively count all the samples as mismatched and stop
// counting the inlinees' profiles.
MismatchedFunctionSamples += FS.getTotalSamples();
return;
}
// Even the current-level function checksum is matched, it's possible that the
// nested inlinees' checksums are mismatched that affect the inlinee's sample
// loading, we need to go deeper to check the inlinees' function samples.
// Similarly, count all the samples as mismatched if the inlinee's checksum is
// mismatched using this recursive function.
for (const auto &I : FS.getCallsiteSamples())
for (const auto &CS : I.second)
countMismatchedFuncSamples(CS.second, false);
}
void SampleProfileMatcher::countMismatchedCallsiteSamples(
const FunctionSamples &FS) {
auto It = FuncCallsiteMatchStates.find(FS.getFuncName());
// Skip it if no mismatched callsite or this is an external function.
if (It == FuncCallsiteMatchStates.end() || It->second.empty())
return;
const auto &CallsiteMatchStates = It->second;
auto findMatchState = [&](const LineLocation &Loc) {
auto It = CallsiteMatchStates.find(Loc);
if (It == CallsiteMatchStates.end())
return MatchState::Unknown;
return It->second;
};
auto AttributeMismatchedSamples = [&](const enum MatchState &State,
uint64_t Samples) {
if (isMismatchState(State))
MismatchedCallsiteSamples += Samples;
else if (State == MatchState::RecoveredMismatch)
RecoveredCallsiteSamples += Samples;
};
// The non-inlined callsites are saved in the body samples of function
// profile, go through it to count the non-inlined callsite samples.
for (const auto &I : FS.getBodySamples())
AttributeMismatchedSamples(findMatchState(I.first), I.second.getSamples());
// Count the inlined callsite samples.
for (const auto &I : FS.getCallsiteSamples()) {
auto State = findMatchState(I.first);
uint64_t CallsiteSamples = 0;
for (const auto &CS : I.second)
CallsiteSamples += CS.second.getTotalSamples();
AttributeMismatchedSamples(State, CallsiteSamples);
if (isMismatchState(State))
continue;
// When the current level of inlined call site matches the profiled call
// site, we need to go deeper along the inline tree to count mismatches from
// lower level inlinees.
for (const auto &CS : I.second)
countMismatchedCallsiteSamples(CS.second);
}
}
void SampleProfileMatcher::countMismatchCallsites(const FunctionSamples &FS) {
auto It = FuncCallsiteMatchStates.find(FS.getFuncName());
// Skip it if no mismatched callsite or this is an external function.
if (It == FuncCallsiteMatchStates.end() || It->second.empty())
return;
const auto &MatchStates = It->second;
[[maybe_unused]] bool OnInitialState =
isInitialState(MatchStates.begin()->second);
for (const auto &I : MatchStates) {
TotalProfiledCallsites++;
assert(
(OnInitialState ? isInitialState(I.second) : isFinalState(I.second)) &&
"Profile matching state is inconsistent");
if (isMismatchState(I.second))
NumMismatchedCallsites++;
else if (I.second == MatchState::RecoveredMismatch)
NumRecoveredCallsites++;
}
}
void SampleProfileMatcher::countCallGraphRecoveredSamples(
const FunctionSamples &FS,
std::unordered_set<FunctionId> &CallGraphRecoveredProfiles) {
if (CallGraphRecoveredProfiles.count(FS.getFunction())) {
NumCallGraphRecoveredFuncSamples += FS.getTotalSamples();
return;
}
for (const auto &CM : FS.getCallsiteSamples()) {
for (const auto &CS : CM.second) {
countCallGraphRecoveredSamples(CS.second, CallGraphRecoveredProfiles);
}
}
}
void SampleProfileMatcher::computeAndReportProfileStaleness() {
if (!ReportProfileStaleness && !PersistProfileStaleness)
return;
std::unordered_set<FunctionId> CallGraphRecoveredProfiles;
if (SalvageUnusedProfile) {
for (const auto &I : FuncToProfileNameMap) {
CallGraphRecoveredProfiles.insert(I.second);
if (GlobalValue::isAvailableExternallyLinkage(I.first->getLinkage()))
continue;
NumCallGraphRecoveredProfiledFunc++;
}
}
// Count profile mismatches for profile staleness report.
for (const auto &F : M) {
if (skipProfileForFunction(F))
continue;
// As the stats will be merged by linker, skip reporting the metrics for
// imported functions to avoid repeated counting.
if (GlobalValue::isAvailableExternallyLinkage(F.getLinkage()))
continue;
const auto *FS = Reader.getSamplesFor(F);
if (!FS)
continue;
TotalProfiledFunc++;
TotalFunctionSamples += FS->getTotalSamples();
if (SalvageUnusedProfile && !CallGraphRecoveredProfiles.empty())
countCallGraphRecoveredSamples(*FS, CallGraphRecoveredProfiles);
// Checksum mismatch is only used in pseudo-probe mode.
if (FunctionSamples::ProfileIsProbeBased)
countMismatchedFuncSamples(*FS, true);
// Count mismatches and samples for calliste.
countMismatchCallsites(*FS);
countMismatchedCallsiteSamples(*FS);
}
if (ReportProfileStaleness) {
if (FunctionSamples::ProfileIsProbeBased) {
errs() << "(" << NumStaleProfileFunc << "/" << TotalProfiledFunc
<< ") of functions' profile are invalid and ("
<< MismatchedFunctionSamples << "/" << TotalFunctionSamples
<< ") of samples are discarded due to function hash mismatch.\n";
}
if (SalvageUnusedProfile) {
errs() << "(" << NumCallGraphRecoveredProfiledFunc << "/"
<< TotalProfiledFunc << ") of functions' profile are matched and ("
<< NumCallGraphRecoveredFuncSamples << "/" << TotalFunctionSamples
<< ") of samples are reused by call graph matching.\n";
}
errs() << "(" << (NumMismatchedCallsites + NumRecoveredCallsites) << "/"
<< TotalProfiledCallsites
<< ") of callsites' profile are invalid and ("
<< (MismatchedCallsiteSamples + RecoveredCallsiteSamples) << "/"
<< TotalFunctionSamples
<< ") of samples are discarded due to callsite location mismatch.\n";
errs() << "(" << NumRecoveredCallsites << "/"
<< (NumRecoveredCallsites + NumMismatchedCallsites)
<< ") of callsites and (" << RecoveredCallsiteSamples << "/"
<< (RecoveredCallsiteSamples + MismatchedCallsiteSamples)
<< ") of samples are recovered by stale profile matching.\n";
}
if (PersistProfileStaleness) {
LLVMContext &Ctx = M.getContext();
MDBuilder MDB(Ctx);
SmallVector<std::pair<StringRef, uint64_t>> ProfStatsVec;
if (FunctionSamples::ProfileIsProbeBased) {
ProfStatsVec.emplace_back("NumStaleProfileFunc", NumStaleProfileFunc);
ProfStatsVec.emplace_back("TotalProfiledFunc", TotalProfiledFunc);
ProfStatsVec.emplace_back("MismatchedFunctionSamples",
MismatchedFunctionSamples);
ProfStatsVec.emplace_back("TotalFunctionSamples", TotalFunctionSamples);
}
if (SalvageUnusedProfile) {
ProfStatsVec.emplace_back("NumCallGraphRecoveredProfiledFunc",
NumCallGraphRecoveredProfiledFunc);
ProfStatsVec.emplace_back("NumCallGraphRecoveredFuncSamples",
NumCallGraphRecoveredFuncSamples);
}
ProfStatsVec.emplace_back("NumMismatchedCallsites", NumMismatchedCallsites);
ProfStatsVec.emplace_back("NumRecoveredCallsites", NumRecoveredCallsites);
ProfStatsVec.emplace_back("TotalProfiledCallsites", TotalProfiledCallsites);
ProfStatsVec.emplace_back("MismatchedCallsiteSamples",
MismatchedCallsiteSamples);
ProfStatsVec.emplace_back("RecoveredCallsiteSamples",
RecoveredCallsiteSamples);
auto *MD = MDB.createLLVMStats(ProfStatsVec);
auto *NMD = M.getOrInsertNamedMetadata("llvm.stats");
NMD->addOperand(MD);
}
}
void SampleProfileMatcher::findFunctionsWithoutProfile() {
// TODO: Support MD5 profile.
if (FunctionSamples::UseMD5)
return;
StringSet<> NamesInProfile;
if (auto NameTable = Reader.getNameTable()) {
for (auto Name : *NameTable)
NamesInProfile.insert(Name.stringRef());
}
for (auto &F : M) {
// Skip declarations, as even if the function can be matched, we have
// nothing to do with it.
if (F.isDeclaration())
continue;
StringRef CanonFName = FunctionSamples::getCanonicalFnName(F.getName());
const auto *FS = getFlattenedSamplesFor(F);
if (FS)
continue;
// For extended binary, functions fully inlined may not be loaded in the
// top-level profile, so check the NameTable which has the all symbol names
// in profile.
if (NamesInProfile.count(CanonFName))
continue;
// For extended binary, non-profiled function symbols are in the profile
// symbol list table.
if (PSL && PSL->contains(CanonFName))
continue;
LLVM_DEBUG(dbgs() << "Function " << CanonFName
<< " is not in profile or profile symbol list.\n");
FunctionsWithoutProfile[FunctionId(CanonFName)] = &F;
}
}
bool SampleProfileMatcher::functionMatchesProfileHelper(
const Function &IRFunc, const FunctionId &ProfFunc) {
// The value is in the range [0, 1]. The bigger the value is, the more similar
// two sequences are.
float Similarity = 0.0;
const auto *FSForMatching = getFlattenedSamplesFor(ProfFunc);
// With extbinary profile format, initial profile loading only reads profile
// based on current function names in the module.
// However, if a function is renamed, sample loader skips to load its original
// profile(which has a different name), we will miss this case. To address
// this, we load the top-level profile candidate explicitly for the matching.
if (!FSForMatching && LoadFuncProfileforCGMatching) {
DenseSet<StringRef> TopLevelFunc({ProfFunc.stringRef()});
if (std::error_code EC = Reader.read(TopLevelFunc))
return false;
FSForMatching = Reader.getSamplesFor(ProfFunc.stringRef());
LLVM_DEBUG({
if (FSForMatching)
dbgs() << "Read top-level function " << ProfFunc
<< " for call-graph matching\n";
});
}
if (!FSForMatching)
return false;
// The check for similarity or checksum may not be reliable if the function is
// tiny, we use the number of basic block as a proxy for the function
// complexity and skip the matching if it's too small.
if (IRFunc.size() < MinFuncCountForCGMatching ||
FSForMatching->getBodySamples().size() < MinFuncCountForCGMatching)
return false;
// For probe-based function, we first trust the checksum info. If the checksum
// doesn't match, we continue checking for similarity.
if (FunctionSamples::ProfileIsProbeBased) {
const auto *FuncDesc = ProbeManager->getDesc(IRFunc);
if (FuncDesc &&
!ProbeManager->profileIsHashMismatched(*FuncDesc, *FSForMatching)) {
LLVM_DEBUG(dbgs() << "The checksums for " << IRFunc.getName()
<< "(IR) and " << ProfFunc << "(Profile) match.\n");
return true;
}
}
AnchorMap IRAnchors;
findIRAnchors(IRFunc, IRAnchors);
AnchorMap ProfileAnchors;
findProfileAnchors(*FSForMatching, ProfileAnchors);
AnchorList FilteredIRAnchorsList;
AnchorList FilteredProfileAnchorList;
getFilteredAnchorList(IRAnchors, ProfileAnchors, FilteredIRAnchorsList,
FilteredProfileAnchorList);
// Similarly skip the matching if the num of anchors is not enough.
if (FilteredIRAnchorsList.size() < MinCallCountForCGMatching ||
FilteredProfileAnchorList.size() < MinCallCountForCGMatching)
return false;
// Use the diff algorithm to find the LCS between IR and profile.
// Don't recursively match the callee function to avoid infinite matching,
// callee functions will be handled later since it's processed in top-down
// order .
LocToLocMap MatchedAnchors =
longestCommonSequence(FilteredIRAnchorsList, FilteredProfileAnchorList,
false /* Match unused functions */);
Similarity =
static_cast<float>(MatchedAnchors.size()) * 2 /
(FilteredIRAnchorsList.size() + FilteredProfileAnchorList.size());
LLVM_DEBUG(dbgs() << "The similarity between " << IRFunc.getName()
<< "(IR) and " << ProfFunc << "(profile) is "
<< format("%.2f", Similarity) << "\n");
assert((Similarity >= 0 && Similarity <= 1.0) &&
"Similarity value should be in [0, 1]");
return Similarity * 100 > FuncProfileSimilarityThreshold;
}
// If FindMatchedProfileOnly is set to true, only use the processed function
// results. This is used for skipping the repeated recursive matching.
bool SampleProfileMatcher::functionMatchesProfile(Function &IRFunc,
const FunctionId &ProfFunc,
bool FindMatchedProfileOnly) {
auto R = FuncProfileMatchCache.find({&IRFunc, ProfFunc});
if (R != FuncProfileMatchCache.end())
return R->second;
if (FindMatchedProfileOnly)
return false;
bool Matched = functionMatchesProfileHelper(IRFunc, ProfFunc);
FuncProfileMatchCache[{&IRFunc, ProfFunc}] = Matched;
if (Matched) {
FuncToProfileNameMap[&IRFunc] = ProfFunc;
LLVM_DEBUG(dbgs() << "Function:" << IRFunc.getName()
<< " matches profile:" << ProfFunc << "\n");
}
return Matched;
}
void SampleProfileMatcher::UpdateWithSalvagedProfiles() {
DenseSet<StringRef> ProfileSalvagedFuncs;
// Update FuncNameToProfNameMap and SymbolMap.
for (auto &I : FuncToProfileNameMap) {
assert(I.first && "New function is null");
FunctionId FuncName(I.first->getName());
ProfileSalvagedFuncs.insert(I.second.stringRef());
FuncNameToProfNameMap->emplace(FuncName, I.second);
// We need to remove the old entry to avoid duplicating the function
// processing.
SymbolMap->erase(FuncName);
SymbolMap->emplace(I.second, I.first);
}
// With extbinary profile format, initial profile loading only reads profile
// based on current function names in the module, so we need to load top-level
// profiles for functions with different profile name explicitly after
// function-profile name map is established with stale profile matching.
Reader.read(ProfileSalvagedFuncs);
Reader.setFuncNameToProfNameMap(*FuncNameToProfNameMap);
}
void SampleProfileMatcher::runOnModule() {
ProfileConverter::flattenProfile(Reader.getProfiles(), FlattenedProfiles,
FunctionSamples::ProfileIsCS);
if (SalvageUnusedProfile)
findFunctionsWithoutProfile();
// Process the matching in top-down order so that the caller matching result
// can be used to the callee matching.
std::vector<Function *> TopDownFunctionList;
TopDownFunctionList.reserve(M.size());
buildTopDownFuncOrder(CG, TopDownFunctionList);
for (auto *F : TopDownFunctionList) {
if (skipProfileForFunction(*F))
continue;
runOnFunction(*F);
}
if (SalvageUnusedProfile)
UpdateWithSalvagedProfiles();
if (SalvageStaleProfile)
distributeIRToProfileLocationMap();
computeAndReportProfileStaleness();
}
void SampleProfileMatcher::distributeIRToProfileLocationMap(
FunctionSamples &FS) {
const auto ProfileMappings = FuncMappings.find(FS.getFuncName());
if (ProfileMappings != FuncMappings.end()) {
FS.setIRToProfileLocationMap(&(ProfileMappings->second));
}
for (auto &Callees :
const_cast<CallsiteSampleMap &>(FS.getCallsiteSamples())) {
for (auto &FS : Callees.second) {
distributeIRToProfileLocationMap(FS.second);
}
}
}
// Use a central place to distribute the matching results. Outlined and inlined
// profile with the function name will be set to the same pointer.
void SampleProfileMatcher::distributeIRToProfileLocationMap() {
for (auto &I : Reader.getProfiles()) {
distributeIRToProfileLocationMap(I.second);
}
}