
As part of the "RemoveDIs" project, BasicBlock::iterator now carries a debug-info bit that's needed when getFirstNonPHI and similar feed into instruction insertion positions. Call-sites where that's necessary were updated a year ago; but to ensure some type safety however, we'd like to have all calls to moveBefore use iterators. This patch adds a (guaranteed dereferenceable) iterator-taking moveBefore, and changes a bunch of call-sites where it's obviously safe to change to use it by just calling getIterator() on an instruction pointer. A follow-up patch will contain less-obviously-safe changes. We'll eventually deprecate and remove the instruction-pointer insertBefore, but not before adding concise documentation of what considerations are needed (very few).
1671 lines
59 KiB
C++
1671 lines
59 KiB
C++
//===- VPlan.cpp - Vectorizer Plan ----------------------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
///
|
|
/// \file
|
|
/// This is the LLVM vectorization plan. It represents a candidate for
|
|
/// vectorization, allowing to plan and optimize how to vectorize a given loop
|
|
/// before generating LLVM-IR.
|
|
/// The vectorizer uses vectorization plans to estimate the costs of potential
|
|
/// candidates and if profitable to execute the desired plan, generating vector
|
|
/// LLVM-IR code.
|
|
///
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "VPlan.h"
|
|
#include "LoopVectorizationPlanner.h"
|
|
#include "VPlanCFG.h"
|
|
#include "VPlanPatternMatch.h"
|
|
#include "VPlanTransforms.h"
|
|
#include "VPlanUtils.h"
|
|
#include "llvm/ADT/PostOrderIterator.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/StringExtras.h"
|
|
#include "llvm/ADT/Twine.h"
|
|
#include "llvm/Analysis/DomTreeUpdater.h"
|
|
#include "llvm/Analysis/LoopInfo.h"
|
|
#include "llvm/IR/BasicBlock.h"
|
|
#include "llvm/IR/CFG.h"
|
|
#include "llvm/IR/IRBuilder.h"
|
|
#include "llvm/IR/Instruction.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/Type.h"
|
|
#include "llvm/IR/Value.h"
|
|
#include "llvm/Support/Casting.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/GraphWriter.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
|
|
#include "llvm/Transforms/Utils/LoopVersioning.h"
|
|
#include <cassert>
|
|
#include <string>
|
|
|
|
using namespace llvm;
|
|
using namespace llvm::VPlanPatternMatch;
|
|
|
|
namespace llvm {
|
|
extern cl::opt<bool> EnableVPlanNativePath;
|
|
}
|
|
extern cl::opt<unsigned> ForceTargetInstructionCost;
|
|
|
|
static cl::opt<bool> PrintVPlansInDotFormat(
|
|
"vplan-print-in-dot-format", cl::Hidden,
|
|
cl::desc("Use dot format instead of plain text when dumping VPlans"));
|
|
|
|
#define DEBUG_TYPE "loop-vectorize"
|
|
|
|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
|
|
raw_ostream &llvm::operator<<(raw_ostream &OS, const VPValue &V) {
|
|
const VPInstruction *Instr = dyn_cast<VPInstruction>(&V);
|
|
VPSlotTracker SlotTracker(
|
|
(Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr);
|
|
V.print(OS, SlotTracker);
|
|
return OS;
|
|
}
|
|
#endif
|
|
|
|
Value *VPLane::getAsRuntimeExpr(IRBuilderBase &Builder,
|
|
const ElementCount &VF) const {
|
|
switch (LaneKind) {
|
|
case VPLane::Kind::ScalableLast:
|
|
// Lane = RuntimeVF - VF.getKnownMinValue() + Lane
|
|
return Builder.CreateSub(getRuntimeVF(Builder, Builder.getInt32Ty(), VF),
|
|
Builder.getInt32(VF.getKnownMinValue() - Lane));
|
|
case VPLane::Kind::First:
|
|
return Builder.getInt32(Lane);
|
|
}
|
|
llvm_unreachable("Unknown lane kind");
|
|
}
|
|
|
|
VPValue::VPValue(const unsigned char SC, Value *UV, VPDef *Def)
|
|
: SubclassID(SC), UnderlyingVal(UV), Def(Def) {
|
|
if (Def)
|
|
Def->addDefinedValue(this);
|
|
}
|
|
|
|
VPValue::~VPValue() {
|
|
assert(Users.empty() && "trying to delete a VPValue with remaining users");
|
|
if (Def)
|
|
Def->removeDefinedValue(this);
|
|
}
|
|
|
|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
|
|
void VPValue::print(raw_ostream &OS, VPSlotTracker &SlotTracker) const {
|
|
if (const VPRecipeBase *R = dyn_cast_or_null<VPRecipeBase>(Def))
|
|
R->print(OS, "", SlotTracker);
|
|
else
|
|
printAsOperand(OS, SlotTracker);
|
|
}
|
|
|
|
void VPValue::dump() const {
|
|
const VPRecipeBase *Instr = dyn_cast_or_null<VPRecipeBase>(this->Def);
|
|
VPSlotTracker SlotTracker(
|
|
(Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr);
|
|
print(dbgs(), SlotTracker);
|
|
dbgs() << "\n";
|
|
}
|
|
|
|
void VPDef::dump() const {
|
|
const VPRecipeBase *Instr = dyn_cast_or_null<VPRecipeBase>(this);
|
|
VPSlotTracker SlotTracker(
|
|
(Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr);
|
|
print(dbgs(), "", SlotTracker);
|
|
dbgs() << "\n";
|
|
}
|
|
#endif
|
|
|
|
VPRecipeBase *VPValue::getDefiningRecipe() {
|
|
return cast_or_null<VPRecipeBase>(Def);
|
|
}
|
|
|
|
const VPRecipeBase *VPValue::getDefiningRecipe() const {
|
|
return cast_or_null<VPRecipeBase>(Def);
|
|
}
|
|
|
|
// Get the top-most entry block of \p Start. This is the entry block of the
|
|
// containing VPlan. This function is templated to support both const and non-const blocks
|
|
template <typename T> static T *getPlanEntry(T *Start) {
|
|
T *Next = Start;
|
|
T *Current = Start;
|
|
while ((Next = Next->getParent()))
|
|
Current = Next;
|
|
|
|
SmallSetVector<T *, 8> WorkList;
|
|
WorkList.insert(Current);
|
|
|
|
for (unsigned i = 0; i < WorkList.size(); i++) {
|
|
T *Current = WorkList[i];
|
|
if (Current->getNumPredecessors() == 0)
|
|
return Current;
|
|
auto &Predecessors = Current->getPredecessors();
|
|
WorkList.insert(Predecessors.begin(), Predecessors.end());
|
|
}
|
|
|
|
llvm_unreachable("VPlan without any entry node without predecessors");
|
|
}
|
|
|
|
VPlan *VPBlockBase::getPlan() { return getPlanEntry(this)->Plan; }
|
|
|
|
const VPlan *VPBlockBase::getPlan() const { return getPlanEntry(this)->Plan; }
|
|
|
|
/// \return the VPBasicBlock that is the entry of Block, possibly indirectly.
|
|
const VPBasicBlock *VPBlockBase::getEntryBasicBlock() const {
|
|
const VPBlockBase *Block = this;
|
|
while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
|
|
Block = Region->getEntry();
|
|
return cast<VPBasicBlock>(Block);
|
|
}
|
|
|
|
VPBasicBlock *VPBlockBase::getEntryBasicBlock() {
|
|
VPBlockBase *Block = this;
|
|
while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
|
|
Block = Region->getEntry();
|
|
return cast<VPBasicBlock>(Block);
|
|
}
|
|
|
|
void VPBlockBase::setPlan(VPlan *ParentPlan) {
|
|
assert(ParentPlan->getEntry() == this && "Can only set plan on its entry.");
|
|
Plan = ParentPlan;
|
|
}
|
|
|
|
/// \return the VPBasicBlock that is the exit of Block, possibly indirectly.
|
|
const VPBasicBlock *VPBlockBase::getExitingBasicBlock() const {
|
|
const VPBlockBase *Block = this;
|
|
while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
|
|
Block = Region->getExiting();
|
|
return cast<VPBasicBlock>(Block);
|
|
}
|
|
|
|
VPBasicBlock *VPBlockBase::getExitingBasicBlock() {
|
|
VPBlockBase *Block = this;
|
|
while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
|
|
Block = Region->getExiting();
|
|
return cast<VPBasicBlock>(Block);
|
|
}
|
|
|
|
VPBlockBase *VPBlockBase::getEnclosingBlockWithSuccessors() {
|
|
if (!Successors.empty() || !Parent)
|
|
return this;
|
|
assert(Parent->getExiting() == this &&
|
|
"Block w/o successors not the exiting block of its parent.");
|
|
return Parent->getEnclosingBlockWithSuccessors();
|
|
}
|
|
|
|
VPBlockBase *VPBlockBase::getEnclosingBlockWithPredecessors() {
|
|
if (!Predecessors.empty() || !Parent)
|
|
return this;
|
|
assert(Parent->getEntry() == this &&
|
|
"Block w/o predecessors not the entry of its parent.");
|
|
return Parent->getEnclosingBlockWithPredecessors();
|
|
}
|
|
|
|
VPBasicBlock::iterator VPBasicBlock::getFirstNonPhi() {
|
|
iterator It = begin();
|
|
while (It != end() && It->isPhi())
|
|
It++;
|
|
return It;
|
|
}
|
|
|
|
VPTransformState::VPTransformState(const TargetTransformInfo *TTI,
|
|
ElementCount VF, unsigned UF, LoopInfo *LI,
|
|
DominatorTree *DT, IRBuilderBase &Builder,
|
|
InnerLoopVectorizer *ILV, VPlan *Plan,
|
|
Loop *CurrentParentLoop, Type *CanonicalIVTy)
|
|
: TTI(TTI), VF(VF), CFG(DT), LI(LI), Builder(Builder), ILV(ILV), Plan(Plan),
|
|
CurrentParentLoop(CurrentParentLoop), LVer(nullptr),
|
|
TypeAnalysis(CanonicalIVTy) {}
|
|
|
|
Value *VPTransformState::get(VPValue *Def, const VPLane &Lane) {
|
|
if (Def->isLiveIn())
|
|
return Def->getLiveInIRValue();
|
|
|
|
if (hasScalarValue(Def, Lane))
|
|
return Data.VPV2Scalars[Def][Lane.mapToCacheIndex(VF)];
|
|
|
|
if (!Lane.isFirstLane() && vputils::isUniformAfterVectorization(Def) &&
|
|
hasScalarValue(Def, VPLane::getFirstLane())) {
|
|
return Data.VPV2Scalars[Def][0];
|
|
}
|
|
|
|
assert(hasVectorValue(Def));
|
|
auto *VecPart = Data.VPV2Vector[Def];
|
|
if (!VecPart->getType()->isVectorTy()) {
|
|
assert(Lane.isFirstLane() && "cannot get lane > 0 for scalar");
|
|
return VecPart;
|
|
}
|
|
// TODO: Cache created scalar values.
|
|
Value *LaneV = Lane.getAsRuntimeExpr(Builder, VF);
|
|
auto *Extract = Builder.CreateExtractElement(VecPart, LaneV);
|
|
// set(Def, Extract, Instance);
|
|
return Extract;
|
|
}
|
|
|
|
Value *VPTransformState::get(VPValue *Def, bool NeedsScalar) {
|
|
if (NeedsScalar) {
|
|
assert((VF.isScalar() || Def->isLiveIn() || hasVectorValue(Def) ||
|
|
!vputils::onlyFirstLaneUsed(Def) ||
|
|
(hasScalarValue(Def, VPLane(0)) &&
|
|
Data.VPV2Scalars[Def].size() == 1)) &&
|
|
"Trying to access a single scalar per part but has multiple scalars "
|
|
"per part.");
|
|
return get(Def, VPLane(0));
|
|
}
|
|
|
|
// If Values have been set for this Def return the one relevant for \p Part.
|
|
if (hasVectorValue(Def))
|
|
return Data.VPV2Vector[Def];
|
|
|
|
auto GetBroadcastInstrs = [this, Def](Value *V) {
|
|
bool SafeToHoist = Def->isDefinedOutsideLoopRegions();
|
|
if (VF.isScalar())
|
|
return V;
|
|
// Place the code for broadcasting invariant variables in the new preheader.
|
|
IRBuilder<>::InsertPointGuard Guard(Builder);
|
|
if (SafeToHoist) {
|
|
BasicBlock *LoopVectorPreHeader =
|
|
CFG.VPBB2IRBB[Plan->getVectorPreheader()];
|
|
if (LoopVectorPreHeader)
|
|
Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
|
|
}
|
|
|
|
// Place the code for broadcasting invariant variables in the new preheader.
|
|
// Broadcast the scalar into all locations in the vector.
|
|
Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast");
|
|
|
|
return Shuf;
|
|
};
|
|
|
|
if (!hasScalarValue(Def, {0})) {
|
|
assert(Def->isLiveIn() && "expected a live-in");
|
|
Value *IRV = Def->getLiveInIRValue();
|
|
Value *B = GetBroadcastInstrs(IRV);
|
|
set(Def, B);
|
|
return B;
|
|
}
|
|
|
|
Value *ScalarValue = get(Def, VPLane(0));
|
|
// If we aren't vectorizing, we can just copy the scalar map values over
|
|
// to the vector map.
|
|
if (VF.isScalar()) {
|
|
set(Def, ScalarValue);
|
|
return ScalarValue;
|
|
}
|
|
|
|
bool IsUniform = vputils::isUniformAfterVectorization(Def);
|
|
|
|
VPLane LastLane(IsUniform ? 0 : VF.getKnownMinValue() - 1);
|
|
// Check if there is a scalar value for the selected lane.
|
|
if (!hasScalarValue(Def, LastLane)) {
|
|
// At the moment, VPWidenIntOrFpInductionRecipes, VPScalarIVStepsRecipes and
|
|
// VPExpandSCEVRecipes can also be uniform.
|
|
assert((isa<VPWidenIntOrFpInductionRecipe, VPScalarIVStepsRecipe,
|
|
VPExpandSCEVRecipe>(Def->getDefiningRecipe())) &&
|
|
"unexpected recipe found to be invariant");
|
|
IsUniform = true;
|
|
LastLane = 0;
|
|
}
|
|
|
|
auto *LastInst = cast<Instruction>(get(Def, LastLane));
|
|
// Set the insert point after the last scalarized instruction or after the
|
|
// last PHI, if LastInst is a PHI. This ensures the insertelement sequence
|
|
// will directly follow the scalar definitions.
|
|
auto OldIP = Builder.saveIP();
|
|
auto NewIP =
|
|
isa<PHINode>(LastInst)
|
|
? BasicBlock::iterator(LastInst->getParent()->getFirstNonPHI())
|
|
: std::next(BasicBlock::iterator(LastInst));
|
|
Builder.SetInsertPoint(&*NewIP);
|
|
|
|
// However, if we are vectorizing, we need to construct the vector values.
|
|
// If the value is known to be uniform after vectorization, we can just
|
|
// broadcast the scalar value corresponding to lane zero. Otherwise, we
|
|
// construct the vector values using insertelement instructions. Since the
|
|
// resulting vectors are stored in State, we will only generate the
|
|
// insertelements once.
|
|
Value *VectorValue = nullptr;
|
|
if (IsUniform) {
|
|
VectorValue = GetBroadcastInstrs(ScalarValue);
|
|
set(Def, VectorValue);
|
|
} else {
|
|
// Initialize packing with insertelements to start from undef.
|
|
assert(!VF.isScalable() && "VF is assumed to be non scalable.");
|
|
Value *Undef = PoisonValue::get(VectorType::get(LastInst->getType(), VF));
|
|
set(Def, Undef);
|
|
for (unsigned Lane = 0; Lane < VF.getKnownMinValue(); ++Lane)
|
|
packScalarIntoVectorValue(Def, Lane);
|
|
VectorValue = get(Def);
|
|
}
|
|
Builder.restoreIP(OldIP);
|
|
return VectorValue;
|
|
}
|
|
|
|
BasicBlock *VPTransformState::CFGState::getPreheaderBBFor(VPRecipeBase *R) {
|
|
VPRegionBlock *LoopRegion = R->getParent()->getEnclosingLoopRegion();
|
|
return VPBB2IRBB[LoopRegion->getPreheaderVPBB()];
|
|
}
|
|
|
|
void VPTransformState::addNewMetadata(Instruction *To,
|
|
const Instruction *Orig) {
|
|
// If the loop was versioned with memchecks, add the corresponding no-alias
|
|
// metadata.
|
|
if (LVer && isa<LoadInst, StoreInst>(Orig))
|
|
LVer->annotateInstWithNoAlias(To, Orig);
|
|
}
|
|
|
|
void VPTransformState::addMetadata(Value *To, Instruction *From) {
|
|
// No source instruction to transfer metadata from?
|
|
if (!From)
|
|
return;
|
|
|
|
if (Instruction *ToI = dyn_cast<Instruction>(To)) {
|
|
propagateMetadata(ToI, From);
|
|
addNewMetadata(ToI, From);
|
|
}
|
|
}
|
|
|
|
void VPTransformState::setDebugLocFrom(DebugLoc DL) {
|
|
const DILocation *DIL = DL;
|
|
// When a FSDiscriminator is enabled, we don't need to add the multiply
|
|
// factors to the discriminators.
|
|
if (DIL &&
|
|
Builder.GetInsertBlock()
|
|
->getParent()
|
|
->shouldEmitDebugInfoForProfiling() &&
|
|
!EnableFSDiscriminator) {
|
|
// FIXME: For scalable vectors, assume vscale=1.
|
|
unsigned UF = Plan->getUF();
|
|
auto NewDIL =
|
|
DIL->cloneByMultiplyingDuplicationFactor(UF * VF.getKnownMinValue());
|
|
if (NewDIL)
|
|
Builder.SetCurrentDebugLocation(*NewDIL);
|
|
else
|
|
LLVM_DEBUG(dbgs() << "Failed to create new discriminator: "
|
|
<< DIL->getFilename() << " Line: " << DIL->getLine());
|
|
} else
|
|
Builder.SetCurrentDebugLocation(DIL);
|
|
}
|
|
|
|
void VPTransformState::packScalarIntoVectorValue(VPValue *Def,
|
|
const VPLane &Lane) {
|
|
Value *ScalarInst = get(Def, Lane);
|
|
Value *VectorValue = get(Def);
|
|
VectorValue = Builder.CreateInsertElement(VectorValue, ScalarInst,
|
|
Lane.getAsRuntimeExpr(Builder, VF));
|
|
set(Def, VectorValue);
|
|
}
|
|
|
|
BasicBlock *
|
|
VPBasicBlock::createEmptyBasicBlock(VPTransformState::CFGState &CFG) {
|
|
// BB stands for IR BasicBlocks. VPBB stands for VPlan VPBasicBlocks.
|
|
// Pred stands for Predessor. Prev stands for Previous - last visited/created.
|
|
BasicBlock *PrevBB = CFG.PrevBB;
|
|
BasicBlock *NewBB = BasicBlock::Create(PrevBB->getContext(), getName(),
|
|
PrevBB->getParent(), CFG.ExitBB);
|
|
LLVM_DEBUG(dbgs() << "LV: created " << NewBB->getName() << '\n');
|
|
|
|
return NewBB;
|
|
}
|
|
|
|
void VPBasicBlock::connectToPredecessors(VPTransformState::CFGState &CFG) {
|
|
BasicBlock *NewBB = CFG.VPBB2IRBB[this];
|
|
// Hook up the new basic block to its predecessors.
|
|
for (VPBlockBase *PredVPBlock : getHierarchicalPredecessors()) {
|
|
VPBasicBlock *PredVPBB = PredVPBlock->getExitingBasicBlock();
|
|
auto &PredVPSuccessors = PredVPBB->getHierarchicalSuccessors();
|
|
BasicBlock *PredBB = CFG.VPBB2IRBB[PredVPBB];
|
|
|
|
assert(PredBB && "Predecessor basic-block not found building successor.");
|
|
auto *PredBBTerminator = PredBB->getTerminator();
|
|
LLVM_DEBUG(dbgs() << "LV: draw edge from" << PredBB->getName() << '\n');
|
|
|
|
auto *TermBr = dyn_cast<BranchInst>(PredBBTerminator);
|
|
if (isa<UnreachableInst>(PredBBTerminator)) {
|
|
assert(PredVPSuccessors.size() == 1 &&
|
|
"Predecessor ending w/o branch must have single successor.");
|
|
DebugLoc DL = PredBBTerminator->getDebugLoc();
|
|
PredBBTerminator->eraseFromParent();
|
|
auto *Br = BranchInst::Create(NewBB, PredBB);
|
|
Br->setDebugLoc(DL);
|
|
} else if (TermBr && !TermBr->isConditional()) {
|
|
TermBr->setSuccessor(0, NewBB);
|
|
} else {
|
|
// Set each forward successor here when it is created, excluding
|
|
// backedges. A backward successor is set when the branch is created.
|
|
unsigned idx = PredVPSuccessors.front() == this ? 0 : 1;
|
|
assert((TermBr && (!TermBr->getSuccessor(idx) ||
|
|
(isa<VPIRBasicBlock>(this) &&
|
|
TermBr->getSuccessor(idx) == NewBB))) &&
|
|
"Trying to reset an existing successor block.");
|
|
TermBr->setSuccessor(idx, NewBB);
|
|
}
|
|
CFG.DTU.applyUpdates({{DominatorTree::Insert, PredBB, NewBB}});
|
|
}
|
|
}
|
|
|
|
void VPIRBasicBlock::execute(VPTransformState *State) {
|
|
assert(getHierarchicalSuccessors().size() <= 2 &&
|
|
"VPIRBasicBlock can have at most two successors at the moment!");
|
|
State->Builder.SetInsertPoint(IRBB->getTerminator());
|
|
State->CFG.PrevBB = IRBB;
|
|
State->CFG.VPBB2IRBB[this] = IRBB;
|
|
executeRecipes(State, IRBB);
|
|
// Create a branch instruction to terminate IRBB if one was not created yet
|
|
// and is needed.
|
|
if (getSingleSuccessor() && isa<UnreachableInst>(IRBB->getTerminator())) {
|
|
auto *Br = State->Builder.CreateBr(IRBB);
|
|
Br->setOperand(0, nullptr);
|
|
IRBB->getTerminator()->eraseFromParent();
|
|
} else {
|
|
assert(
|
|
(getNumSuccessors() == 0 || isa<BranchInst>(IRBB->getTerminator())) &&
|
|
"other blocks must be terminated by a branch");
|
|
}
|
|
|
|
connectToPredecessors(State->CFG);
|
|
}
|
|
|
|
VPIRBasicBlock *VPIRBasicBlock::clone() {
|
|
auto *NewBlock = getPlan()->createEmptyVPIRBasicBlock(IRBB);
|
|
for (VPRecipeBase &R : Recipes)
|
|
NewBlock->appendRecipe(R.clone());
|
|
return NewBlock;
|
|
}
|
|
|
|
void VPBasicBlock::execute(VPTransformState *State) {
|
|
bool Replica = bool(State->Lane);
|
|
BasicBlock *NewBB = State->CFG.PrevBB; // Reuse it if possible.
|
|
|
|
auto IsReplicateRegion = [](VPBlockBase *BB) {
|
|
auto *R = dyn_cast_or_null<VPRegionBlock>(BB);
|
|
return R && R->isReplicator();
|
|
};
|
|
|
|
// 1. Create an IR basic block.
|
|
if ((Replica && this == getParent()->getEntry()) ||
|
|
IsReplicateRegion(getSingleHierarchicalPredecessor())) {
|
|
// Reuse the previous basic block if the current VPBB is either
|
|
// * the entry to a replicate region, or
|
|
// * the exit of a replicate region.
|
|
State->CFG.VPBB2IRBB[this] = NewBB;
|
|
} else {
|
|
NewBB = createEmptyBasicBlock(State->CFG);
|
|
|
|
State->Builder.SetInsertPoint(NewBB);
|
|
// Temporarily terminate with unreachable until CFG is rewired.
|
|
UnreachableInst *Terminator = State->Builder.CreateUnreachable();
|
|
// Register NewBB in its loop. In innermost loops its the same for all
|
|
// BB's.
|
|
if (State->CurrentParentLoop)
|
|
State->CurrentParentLoop->addBasicBlockToLoop(NewBB, *State->LI);
|
|
State->Builder.SetInsertPoint(Terminator);
|
|
|
|
State->CFG.PrevBB = NewBB;
|
|
State->CFG.VPBB2IRBB[this] = NewBB;
|
|
connectToPredecessors(State->CFG);
|
|
}
|
|
|
|
// 2. Fill the IR basic block with IR instructions.
|
|
executeRecipes(State, NewBB);
|
|
}
|
|
|
|
VPBasicBlock *VPBasicBlock::clone() {
|
|
auto *NewBlock = getPlan()->createVPBasicBlock(getName());
|
|
for (VPRecipeBase &R : *this)
|
|
NewBlock->appendRecipe(R.clone());
|
|
return NewBlock;
|
|
}
|
|
|
|
void VPBasicBlock::executeRecipes(VPTransformState *State, BasicBlock *BB) {
|
|
LLVM_DEBUG(dbgs() << "LV: vectorizing VPBB:" << getName()
|
|
<< " in BB:" << BB->getName() << '\n');
|
|
|
|
State->CFG.PrevVPBB = this;
|
|
|
|
for (VPRecipeBase &Recipe : Recipes)
|
|
Recipe.execute(*State);
|
|
|
|
LLVM_DEBUG(dbgs() << "LV: filled BB:" << *BB);
|
|
}
|
|
|
|
VPBasicBlock *VPBasicBlock::splitAt(iterator SplitAt) {
|
|
assert((SplitAt == end() || SplitAt->getParent() == this) &&
|
|
"can only split at a position in the same block");
|
|
|
|
SmallVector<VPBlockBase *, 2> Succs(successors());
|
|
// Create new empty block after the block to split.
|
|
auto *SplitBlock = getPlan()->createVPBasicBlock(getName() + ".split");
|
|
VPBlockUtils::insertBlockAfter(SplitBlock, this);
|
|
|
|
// Finally, move the recipes starting at SplitAt to new block.
|
|
for (VPRecipeBase &ToMove :
|
|
make_early_inc_range(make_range(SplitAt, this->end())))
|
|
ToMove.moveBefore(*SplitBlock, SplitBlock->end());
|
|
|
|
return SplitBlock;
|
|
}
|
|
|
|
/// Return the enclosing loop region for region \p P. The templated version is
|
|
/// used to support both const and non-const block arguments.
|
|
template <typename T> static T *getEnclosingLoopRegionForRegion(T *P) {
|
|
if (P && P->isReplicator()) {
|
|
P = P->getParent();
|
|
// Multiple loop regions can be nested, but replicate regions can only be
|
|
// nested inside a loop region or must be outside any other region.
|
|
assert((!P || !cast<VPRegionBlock>(P)->isReplicator()) &&
|
|
"unexpected nested replicate regions");
|
|
}
|
|
return P;
|
|
}
|
|
|
|
VPRegionBlock *VPBasicBlock::getEnclosingLoopRegion() {
|
|
return getEnclosingLoopRegionForRegion(getParent());
|
|
}
|
|
|
|
const VPRegionBlock *VPBasicBlock::getEnclosingLoopRegion() const {
|
|
return getEnclosingLoopRegionForRegion(getParent());
|
|
}
|
|
|
|
static bool hasConditionalTerminator(const VPBasicBlock *VPBB) {
|
|
if (VPBB->empty()) {
|
|
assert(
|
|
VPBB->getNumSuccessors() < 2 &&
|
|
"block with multiple successors doesn't have a recipe as terminator");
|
|
return false;
|
|
}
|
|
|
|
const VPRecipeBase *R = &VPBB->back();
|
|
bool IsCondBranch = isa<VPBranchOnMaskRecipe>(R) ||
|
|
match(R, m_BranchOnCond(m_VPValue())) ||
|
|
match(R, m_BranchOnCount(m_VPValue(), m_VPValue()));
|
|
(void)IsCondBranch;
|
|
|
|
if (VPBB->getNumSuccessors() >= 2 ||
|
|
(VPBB->isExiting() && !VPBB->getParent()->isReplicator())) {
|
|
assert(IsCondBranch && "block with multiple successors not terminated by "
|
|
"conditional branch recipe");
|
|
|
|
return true;
|
|
}
|
|
|
|
assert(
|
|
!IsCondBranch &&
|
|
"block with 0 or 1 successors terminated by conditional branch recipe");
|
|
return false;
|
|
}
|
|
|
|
VPRecipeBase *VPBasicBlock::getTerminator() {
|
|
if (hasConditionalTerminator(this))
|
|
return &back();
|
|
return nullptr;
|
|
}
|
|
|
|
const VPRecipeBase *VPBasicBlock::getTerminator() const {
|
|
if (hasConditionalTerminator(this))
|
|
return &back();
|
|
return nullptr;
|
|
}
|
|
|
|
bool VPBasicBlock::isExiting() const {
|
|
return getParent() && getParent()->getExitingBasicBlock() == this;
|
|
}
|
|
|
|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
|
|
void VPBlockBase::printSuccessors(raw_ostream &O, const Twine &Indent) const {
|
|
if (getSuccessors().empty()) {
|
|
O << Indent << "No successors\n";
|
|
} else {
|
|
O << Indent << "Successor(s): ";
|
|
ListSeparator LS;
|
|
for (auto *Succ : getSuccessors())
|
|
O << LS << Succ->getName();
|
|
O << '\n';
|
|
}
|
|
}
|
|
|
|
void VPBasicBlock::print(raw_ostream &O, const Twine &Indent,
|
|
VPSlotTracker &SlotTracker) const {
|
|
O << Indent << getName() << ":\n";
|
|
|
|
auto RecipeIndent = Indent + " ";
|
|
for (const VPRecipeBase &Recipe : *this) {
|
|
Recipe.print(O, RecipeIndent, SlotTracker);
|
|
O << '\n';
|
|
}
|
|
|
|
printSuccessors(O, Indent);
|
|
}
|
|
#endif
|
|
|
|
static std::pair<VPBlockBase *, VPBlockBase *> cloneFrom(VPBlockBase *Entry);
|
|
|
|
// Clone the CFG for all nodes reachable from \p Entry, this includes cloning
|
|
// the blocks and their recipes. Operands of cloned recipes will NOT be updated.
|
|
// Remapping of operands must be done separately. Returns a pair with the new
|
|
// entry and exiting blocks of the cloned region. If \p Entry isn't part of a
|
|
// region, return nullptr for the exiting block.
|
|
static std::pair<VPBlockBase *, VPBlockBase *> cloneFrom(VPBlockBase *Entry) {
|
|
DenseMap<VPBlockBase *, VPBlockBase *> Old2NewVPBlocks;
|
|
VPBlockBase *Exiting = nullptr;
|
|
bool InRegion = Entry->getParent();
|
|
// First, clone blocks reachable from Entry.
|
|
for (VPBlockBase *BB : vp_depth_first_shallow(Entry)) {
|
|
VPBlockBase *NewBB = BB->clone();
|
|
Old2NewVPBlocks[BB] = NewBB;
|
|
if (InRegion && BB->getNumSuccessors() == 0) {
|
|
assert(!Exiting && "Multiple exiting blocks?");
|
|
Exiting = BB;
|
|
}
|
|
}
|
|
assert((!InRegion || Exiting) && "regions must have a single exiting block");
|
|
|
|
// Second, update the predecessors & successors of the cloned blocks.
|
|
for (VPBlockBase *BB : vp_depth_first_shallow(Entry)) {
|
|
VPBlockBase *NewBB = Old2NewVPBlocks[BB];
|
|
SmallVector<VPBlockBase *> NewPreds;
|
|
for (VPBlockBase *Pred : BB->getPredecessors()) {
|
|
NewPreds.push_back(Old2NewVPBlocks[Pred]);
|
|
}
|
|
NewBB->setPredecessors(NewPreds);
|
|
SmallVector<VPBlockBase *> NewSuccs;
|
|
for (VPBlockBase *Succ : BB->successors()) {
|
|
NewSuccs.push_back(Old2NewVPBlocks[Succ]);
|
|
}
|
|
NewBB->setSuccessors(NewSuccs);
|
|
}
|
|
|
|
#if !defined(NDEBUG)
|
|
// Verify that the order of predecessors and successors matches in the cloned
|
|
// version.
|
|
for (const auto &[OldBB, NewBB] :
|
|
zip(vp_depth_first_shallow(Entry),
|
|
vp_depth_first_shallow(Old2NewVPBlocks[Entry]))) {
|
|
for (const auto &[OldPred, NewPred] :
|
|
zip(OldBB->getPredecessors(), NewBB->getPredecessors()))
|
|
assert(NewPred == Old2NewVPBlocks[OldPred] && "Different predecessors");
|
|
|
|
for (const auto &[OldSucc, NewSucc] :
|
|
zip(OldBB->successors(), NewBB->successors()))
|
|
assert(NewSucc == Old2NewVPBlocks[OldSucc] && "Different successors");
|
|
}
|
|
#endif
|
|
|
|
return std::make_pair(Old2NewVPBlocks[Entry],
|
|
Exiting ? Old2NewVPBlocks[Exiting] : nullptr);
|
|
}
|
|
|
|
VPRegionBlock *VPRegionBlock::clone() {
|
|
const auto &[NewEntry, NewExiting] = cloneFrom(getEntry());
|
|
auto *NewRegion = getPlan()->createVPRegionBlock(NewEntry, NewExiting,
|
|
getName(), isReplicator());
|
|
for (VPBlockBase *Block : vp_depth_first_shallow(NewEntry))
|
|
Block->setParent(NewRegion);
|
|
return NewRegion;
|
|
}
|
|
|
|
void VPRegionBlock::execute(VPTransformState *State) {
|
|
ReversePostOrderTraversal<VPBlockShallowTraversalWrapper<VPBlockBase *>>
|
|
RPOT(Entry);
|
|
|
|
if (!isReplicator()) {
|
|
// Create and register the new vector loop.
|
|
Loop *PrevLoop = State->CurrentParentLoop;
|
|
State->CurrentParentLoop = State->LI->AllocateLoop();
|
|
BasicBlock *VectorPH = State->CFG.VPBB2IRBB[getPreheaderVPBB()];
|
|
Loop *ParentLoop = State->LI->getLoopFor(VectorPH);
|
|
|
|
// Insert the new loop into the loop nest and register the new basic blocks
|
|
// before calling any utilities such as SCEV that require valid LoopInfo.
|
|
if (ParentLoop)
|
|
ParentLoop->addChildLoop(State->CurrentParentLoop);
|
|
else
|
|
State->LI->addTopLevelLoop(State->CurrentParentLoop);
|
|
|
|
// Visit the VPBlocks connected to "this", starting from it.
|
|
for (VPBlockBase *Block : RPOT) {
|
|
LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n');
|
|
Block->execute(State);
|
|
}
|
|
|
|
State->CurrentParentLoop = PrevLoop;
|
|
return;
|
|
}
|
|
|
|
assert(!State->Lane && "Replicating a Region with non-null instance.");
|
|
|
|
// Enter replicating mode.
|
|
assert(!State->VF.isScalable() && "VF is assumed to be non scalable.");
|
|
State->Lane = VPLane(0);
|
|
for (unsigned Lane = 0, VF = State->VF.getKnownMinValue(); Lane < VF;
|
|
++Lane) {
|
|
State->Lane = VPLane(Lane, VPLane::Kind::First);
|
|
// Visit the VPBlocks connected to \p this, starting from it.
|
|
for (VPBlockBase *Block : RPOT) {
|
|
LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n');
|
|
Block->execute(State);
|
|
}
|
|
}
|
|
|
|
// Exit replicating mode.
|
|
State->Lane.reset();
|
|
}
|
|
|
|
InstructionCost VPBasicBlock::cost(ElementCount VF, VPCostContext &Ctx) {
|
|
InstructionCost Cost = 0;
|
|
for (VPRecipeBase &R : Recipes)
|
|
Cost += R.cost(VF, Ctx);
|
|
return Cost;
|
|
}
|
|
|
|
InstructionCost VPRegionBlock::cost(ElementCount VF, VPCostContext &Ctx) {
|
|
if (!isReplicator()) {
|
|
InstructionCost Cost = 0;
|
|
for (VPBlockBase *Block : vp_depth_first_shallow(getEntry()))
|
|
Cost += Block->cost(VF, Ctx);
|
|
InstructionCost BackedgeCost =
|
|
ForceTargetInstructionCost.getNumOccurrences()
|
|
? InstructionCost(ForceTargetInstructionCost.getNumOccurrences())
|
|
: Ctx.TTI.getCFInstrCost(Instruction::Br, Ctx.CostKind);
|
|
LLVM_DEBUG(dbgs() << "Cost of " << BackedgeCost << " for VF " << VF
|
|
<< ": vector loop backedge\n");
|
|
Cost += BackedgeCost;
|
|
return Cost;
|
|
}
|
|
|
|
// Compute the cost of a replicate region. Replicating isn't supported for
|
|
// scalable vectors, return an invalid cost for them.
|
|
// TODO: Discard scalable VPlans with replicate recipes earlier after
|
|
// construction.
|
|
if (VF.isScalable())
|
|
return InstructionCost::getInvalid();
|
|
|
|
// First compute the cost of the conditionally executed recipes, followed by
|
|
// account for the branching cost, except if the mask is a header mask or
|
|
// uniform condition.
|
|
using namespace llvm::VPlanPatternMatch;
|
|
VPBasicBlock *Then = cast<VPBasicBlock>(getEntry()->getSuccessors()[0]);
|
|
InstructionCost ThenCost = Then->cost(VF, Ctx);
|
|
|
|
// For the scalar case, we may not always execute the original predicated
|
|
// block, Thus, scale the block's cost by the probability of executing it.
|
|
if (VF.isScalar())
|
|
return ThenCost / getReciprocalPredBlockProb();
|
|
|
|
return ThenCost;
|
|
}
|
|
|
|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
|
|
void VPRegionBlock::print(raw_ostream &O, const Twine &Indent,
|
|
VPSlotTracker &SlotTracker) const {
|
|
O << Indent << (isReplicator() ? "<xVFxUF> " : "<x1> ") << getName() << ": {";
|
|
auto NewIndent = Indent + " ";
|
|
for (auto *BlockBase : vp_depth_first_shallow(Entry)) {
|
|
O << '\n';
|
|
BlockBase->print(O, NewIndent, SlotTracker);
|
|
}
|
|
O << Indent << "}\n";
|
|
|
|
printSuccessors(O, Indent);
|
|
}
|
|
#endif
|
|
|
|
VPlan::VPlan(Loop *L) {
|
|
setEntry(createVPIRBasicBlock(L->getLoopPreheader()));
|
|
ScalarHeader = createVPIRBasicBlock(L->getHeader());
|
|
}
|
|
|
|
VPlan::~VPlan() {
|
|
VPValue DummyValue;
|
|
|
|
for (auto *VPB : CreatedBlocks) {
|
|
if (auto *VPBB = dyn_cast<VPBasicBlock>(VPB)) {
|
|
// Replace all operands of recipes and all VPValues defined in VPBB with
|
|
// DummyValue so the block can be deleted.
|
|
for (VPRecipeBase &R : *VPBB) {
|
|
for (auto *Def : R.definedValues())
|
|
Def->replaceAllUsesWith(&DummyValue);
|
|
|
|
for (unsigned I = 0, E = R.getNumOperands(); I != E; I++)
|
|
R.setOperand(I, &DummyValue);
|
|
}
|
|
}
|
|
delete VPB;
|
|
}
|
|
for (VPValue *VPV : VPLiveInsToFree)
|
|
delete VPV;
|
|
if (BackedgeTakenCount)
|
|
delete BackedgeTakenCount;
|
|
}
|
|
|
|
VPlanPtr VPlan::createInitialVPlan(Type *InductionTy,
|
|
PredicatedScalarEvolution &PSE,
|
|
bool RequiresScalarEpilogueCheck,
|
|
bool TailFolded, Loop *TheLoop) {
|
|
auto Plan = std::make_unique<VPlan>(TheLoop);
|
|
VPBlockBase *ScalarHeader = Plan->getScalarHeader();
|
|
|
|
// Connect entry only to vector preheader initially. Entry will also be
|
|
// connected to the scalar preheader later, during skeleton creation when
|
|
// runtime guards are added as needed. Note that when executing the VPlan for
|
|
// an epilogue vector loop, the original entry block here will be replaced by
|
|
// a new VPIRBasicBlock wrapping the entry to the epilogue vector loop after
|
|
// generating code for the main vector loop.
|
|
VPBasicBlock *VecPreheader = Plan->createVPBasicBlock("vector.ph");
|
|
VPBlockUtils::connectBlocks(Plan->getEntry(), VecPreheader);
|
|
|
|
// Create SCEV and VPValue for the trip count.
|
|
// We use the symbolic max backedge-taken-count, which works also when
|
|
// vectorizing loops with uncountable early exits.
|
|
const SCEV *BackedgeTakenCountSCEV = PSE.getSymbolicMaxBackedgeTakenCount();
|
|
assert(!isa<SCEVCouldNotCompute>(BackedgeTakenCountSCEV) &&
|
|
"Invalid loop count");
|
|
ScalarEvolution &SE = *PSE.getSE();
|
|
const SCEV *TripCount = SE.getTripCountFromExitCount(BackedgeTakenCountSCEV,
|
|
InductionTy, TheLoop);
|
|
Plan->TripCount =
|
|
vputils::getOrCreateVPValueForSCEVExpr(*Plan, TripCount, SE);
|
|
|
|
// Create VPRegionBlock, with empty header and latch blocks, to be filled
|
|
// during processing later.
|
|
VPBasicBlock *HeaderVPBB = Plan->createVPBasicBlock("vector.body");
|
|
VPBasicBlock *LatchVPBB = Plan->createVPBasicBlock("vector.latch");
|
|
VPBlockUtils::insertBlockAfter(LatchVPBB, HeaderVPBB);
|
|
auto *TopRegion = Plan->createVPRegionBlock(
|
|
HeaderVPBB, LatchVPBB, "vector loop", false /*isReplicator*/);
|
|
|
|
VPBlockUtils::insertBlockAfter(TopRegion, VecPreheader);
|
|
VPBasicBlock *MiddleVPBB = Plan->createVPBasicBlock("middle.block");
|
|
VPBlockUtils::insertBlockAfter(MiddleVPBB, TopRegion);
|
|
|
|
VPBasicBlock *ScalarPH = Plan->createVPBasicBlock("scalar.ph");
|
|
VPBlockUtils::connectBlocks(ScalarPH, ScalarHeader);
|
|
if (!RequiresScalarEpilogueCheck) {
|
|
VPBlockUtils::connectBlocks(MiddleVPBB, ScalarPH);
|
|
return Plan;
|
|
}
|
|
|
|
// If needed, add a check in the middle block to see if we have completed
|
|
// all of the iterations in the first vector loop. Three cases:
|
|
// 1) If (N - N%VF) == N, then we *don't* need to run the remainder.
|
|
// Thus if tail is to be folded, we know we don't need to run the
|
|
// remainder and we can set the condition to true.
|
|
// 2) If we require a scalar epilogue, there is no conditional branch as
|
|
// we unconditionally branch to the scalar preheader. Do nothing.
|
|
// 3) Otherwise, construct a runtime check.
|
|
BasicBlock *IRExitBlock = TheLoop->getUniqueLatchExitBlock();
|
|
auto *VPExitBlock = Plan->createVPIRBasicBlock(IRExitBlock);
|
|
// The connection order corresponds to the operands of the conditional branch.
|
|
VPBlockUtils::insertBlockAfter(VPExitBlock, MiddleVPBB);
|
|
VPBlockUtils::connectBlocks(MiddleVPBB, ScalarPH);
|
|
|
|
auto *ScalarLatchTerm = TheLoop->getLoopLatch()->getTerminator();
|
|
// Here we use the same DebugLoc as the scalar loop latch terminator instead
|
|
// of the corresponding compare because they may have ended up with
|
|
// different line numbers and we want to avoid awkward line stepping while
|
|
// debugging. Eg. if the compare has got a line number inside the loop.
|
|
VPBuilder Builder(MiddleVPBB);
|
|
VPValue *Cmp =
|
|
TailFolded
|
|
? Plan->getOrAddLiveIn(ConstantInt::getTrue(
|
|
IntegerType::getInt1Ty(TripCount->getType()->getContext())))
|
|
: Builder.createICmp(CmpInst::ICMP_EQ, Plan->getTripCount(),
|
|
&Plan->getVectorTripCount(),
|
|
ScalarLatchTerm->getDebugLoc(), "cmp.n");
|
|
Builder.createNaryOp(VPInstruction::BranchOnCond, {Cmp},
|
|
ScalarLatchTerm->getDebugLoc());
|
|
return Plan;
|
|
}
|
|
|
|
void VPlan::prepareToExecute(Value *TripCountV, Value *VectorTripCountV,
|
|
VPTransformState &State) {
|
|
Type *TCTy = TripCountV->getType();
|
|
// Check if the backedge taken count is needed, and if so build it.
|
|
if (BackedgeTakenCount && BackedgeTakenCount->getNumUsers()) {
|
|
IRBuilder<> Builder(State.CFG.PrevBB->getTerminator());
|
|
auto *TCMO = Builder.CreateSub(TripCountV, ConstantInt::get(TCTy, 1),
|
|
"trip.count.minus.1");
|
|
BackedgeTakenCount->setUnderlyingValue(TCMO);
|
|
}
|
|
|
|
VectorTripCount.setUnderlyingValue(VectorTripCountV);
|
|
|
|
IRBuilder<> Builder(State.CFG.PrevBB->getTerminator());
|
|
// FIXME: Model VF * UF computation completely in VPlan.
|
|
assert((!getVectorLoopRegion() || VFxUF.getNumUsers()) &&
|
|
"VFxUF expected to always have users");
|
|
unsigned UF = getUF();
|
|
if (VF.getNumUsers()) {
|
|
Value *RuntimeVF = getRuntimeVF(Builder, TCTy, State.VF);
|
|
VF.setUnderlyingValue(RuntimeVF);
|
|
VFxUF.setUnderlyingValue(
|
|
UF > 1 ? Builder.CreateMul(RuntimeVF, ConstantInt::get(TCTy, UF))
|
|
: RuntimeVF);
|
|
} else {
|
|
VFxUF.setUnderlyingValue(createStepForVF(Builder, TCTy, State.VF, UF));
|
|
}
|
|
}
|
|
|
|
/// Generate the code inside the preheader and body of the vectorized loop.
|
|
/// Assumes a single pre-header basic-block was created for this. Introduce
|
|
/// additional basic-blocks as needed, and fill them all.
|
|
void VPlan::execute(VPTransformState *State) {
|
|
// Initialize CFG state.
|
|
State->CFG.PrevVPBB = nullptr;
|
|
State->CFG.ExitBB = State->CFG.PrevBB->getSingleSuccessor();
|
|
|
|
// Disconnect VectorPreHeader from ExitBB in both the CFG and DT.
|
|
BasicBlock *VectorPreHeader = State->CFG.PrevBB;
|
|
cast<BranchInst>(VectorPreHeader->getTerminator())->setSuccessor(0, nullptr);
|
|
State->CFG.DTU.applyUpdates(
|
|
{{DominatorTree::Delete, VectorPreHeader, State->CFG.ExitBB}});
|
|
|
|
LLVM_DEBUG(dbgs() << "Executing best plan with VF=" << State->VF
|
|
<< ", UF=" << getUF() << '\n');
|
|
setName("Final VPlan");
|
|
LLVM_DEBUG(dump());
|
|
|
|
// Disconnect the middle block from its single successor (the scalar loop
|
|
// header) in both the CFG and DT. The branch will be recreated during VPlan
|
|
// execution.
|
|
BasicBlock *MiddleBB = State->CFG.ExitBB;
|
|
BasicBlock *ScalarPh = MiddleBB->getSingleSuccessor();
|
|
auto *BrInst = new UnreachableInst(MiddleBB->getContext());
|
|
BrInst->insertBefore(MiddleBB->getTerminator()->getIterator());
|
|
MiddleBB->getTerminator()->eraseFromParent();
|
|
State->CFG.DTU.applyUpdates({{DominatorTree::Delete, MiddleBB, ScalarPh}});
|
|
// Disconnect scalar preheader and scalar header, as the dominator tree edge
|
|
// will be updated as part of VPlan execution. This allows keeping the DTU
|
|
// logic generic during VPlan execution.
|
|
State->CFG.DTU.applyUpdates(
|
|
{{DominatorTree::Delete, ScalarPh, ScalarPh->getSingleSuccessor()}});
|
|
|
|
ReversePostOrderTraversal<VPBlockShallowTraversalWrapper<VPBlockBase *>> RPOT(
|
|
Entry);
|
|
// Generate code for the VPlan, in parts of the vector skeleton, loop body and
|
|
// successor blocks including the middle, exit and scalar preheader blocks.
|
|
for (VPBlockBase *Block : RPOT)
|
|
Block->execute(State);
|
|
|
|
State->CFG.DTU.flush();
|
|
|
|
auto *LoopRegion = getVectorLoopRegion();
|
|
if (!LoopRegion)
|
|
return;
|
|
|
|
VPBasicBlock *LatchVPBB = LoopRegion->getExitingBasicBlock();
|
|
BasicBlock *VectorLatchBB = State->CFG.VPBB2IRBB[LatchVPBB];
|
|
|
|
// Fix the latch value of canonical, reduction and first-order recurrences
|
|
// phis in the vector loop.
|
|
VPBasicBlock *Header = LoopRegion->getEntryBasicBlock();
|
|
for (VPRecipeBase &R : Header->phis()) {
|
|
// Skip phi-like recipes that generate their backedege values themselves.
|
|
if (isa<VPWidenPHIRecipe>(&R))
|
|
continue;
|
|
|
|
if (isa<VPWidenInductionRecipe>(&R)) {
|
|
PHINode *Phi = nullptr;
|
|
if (isa<VPWidenIntOrFpInductionRecipe>(&R)) {
|
|
Phi = cast<PHINode>(State->get(R.getVPSingleValue()));
|
|
} else {
|
|
auto *WidenPhi = cast<VPWidenPointerInductionRecipe>(&R);
|
|
assert(!WidenPhi->onlyScalarsGenerated(State->VF.isScalable()) &&
|
|
"recipe generating only scalars should have been replaced");
|
|
auto *GEP = cast<GetElementPtrInst>(State->get(WidenPhi));
|
|
Phi = cast<PHINode>(GEP->getPointerOperand());
|
|
}
|
|
|
|
Phi->setIncomingBlock(1, VectorLatchBB);
|
|
|
|
// Move the last step to the end of the latch block. This ensures
|
|
// consistent placement of all induction updates.
|
|
Instruction *Inc = cast<Instruction>(Phi->getIncomingValue(1));
|
|
Inc->moveBefore(VectorLatchBB->getTerminator()->getPrevNode());
|
|
|
|
// Use the steps for the last part as backedge value for the induction.
|
|
if (auto *IV = dyn_cast<VPWidenIntOrFpInductionRecipe>(&R))
|
|
Inc->setOperand(0, State->get(IV->getLastUnrolledPartOperand()));
|
|
continue;
|
|
}
|
|
|
|
auto *PhiR = cast<VPHeaderPHIRecipe>(&R);
|
|
bool NeedsScalar = isa<VPScalarPHIRecipe>(PhiR) ||
|
|
(isa<VPReductionPHIRecipe>(PhiR) &&
|
|
cast<VPReductionPHIRecipe>(PhiR)->isInLoop());
|
|
Value *Phi = State->get(PhiR, NeedsScalar);
|
|
Value *Val = State->get(PhiR->getBackedgeValue(), NeedsScalar);
|
|
cast<PHINode>(Phi)->addIncoming(Val, VectorLatchBB);
|
|
}
|
|
}
|
|
|
|
InstructionCost VPlan::cost(ElementCount VF, VPCostContext &Ctx) {
|
|
// For now only return the cost of the vector loop region, ignoring any other
|
|
// blocks, like the preheader or middle blocks.
|
|
return getVectorLoopRegion()->cost(VF, Ctx);
|
|
}
|
|
|
|
VPRegionBlock *VPlan::getVectorLoopRegion() {
|
|
// TODO: Cache if possible.
|
|
for (VPBlockBase *B : vp_depth_first_shallow(getEntry()))
|
|
if (auto *R = dyn_cast<VPRegionBlock>(B))
|
|
return R->isReplicator() ? nullptr : R;
|
|
return nullptr;
|
|
}
|
|
|
|
const VPRegionBlock *VPlan::getVectorLoopRegion() const {
|
|
for (const VPBlockBase *B : vp_depth_first_shallow(getEntry()))
|
|
if (auto *R = dyn_cast<VPRegionBlock>(B))
|
|
return R->isReplicator() ? nullptr : R;
|
|
return nullptr;
|
|
}
|
|
|
|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
|
|
void VPlan::printLiveIns(raw_ostream &O) const {
|
|
VPSlotTracker SlotTracker(this);
|
|
|
|
if (VF.getNumUsers() > 0) {
|
|
O << "\nLive-in ";
|
|
VF.printAsOperand(O, SlotTracker);
|
|
O << " = VF";
|
|
}
|
|
|
|
if (VFxUF.getNumUsers() > 0) {
|
|
O << "\nLive-in ";
|
|
VFxUF.printAsOperand(O, SlotTracker);
|
|
O << " = VF * UF";
|
|
}
|
|
|
|
if (VectorTripCount.getNumUsers() > 0) {
|
|
O << "\nLive-in ";
|
|
VectorTripCount.printAsOperand(O, SlotTracker);
|
|
O << " = vector-trip-count";
|
|
}
|
|
|
|
if (BackedgeTakenCount && BackedgeTakenCount->getNumUsers()) {
|
|
O << "\nLive-in ";
|
|
BackedgeTakenCount->printAsOperand(O, SlotTracker);
|
|
O << " = backedge-taken count";
|
|
}
|
|
|
|
O << "\n";
|
|
if (TripCount->isLiveIn())
|
|
O << "Live-in ";
|
|
TripCount->printAsOperand(O, SlotTracker);
|
|
O << " = original trip-count";
|
|
O << "\n";
|
|
}
|
|
|
|
LLVM_DUMP_METHOD
|
|
void VPlan::print(raw_ostream &O) const {
|
|
VPSlotTracker SlotTracker(this);
|
|
|
|
O << "VPlan '" << getName() << "' {";
|
|
|
|
printLiveIns(O);
|
|
|
|
ReversePostOrderTraversal<VPBlockShallowTraversalWrapper<const VPBlockBase *>>
|
|
RPOT(getEntry());
|
|
for (const VPBlockBase *Block : RPOT) {
|
|
O << '\n';
|
|
Block->print(O, "", SlotTracker);
|
|
}
|
|
|
|
O << "}\n";
|
|
}
|
|
|
|
std::string VPlan::getName() const {
|
|
std::string Out;
|
|
raw_string_ostream RSO(Out);
|
|
RSO << Name << " for ";
|
|
if (!VFs.empty()) {
|
|
RSO << "VF={" << VFs[0];
|
|
for (ElementCount VF : drop_begin(VFs))
|
|
RSO << "," << VF;
|
|
RSO << "},";
|
|
}
|
|
|
|
if (UFs.empty()) {
|
|
RSO << "UF>=1";
|
|
} else {
|
|
RSO << "UF={" << UFs[0];
|
|
for (unsigned UF : drop_begin(UFs))
|
|
RSO << "," << UF;
|
|
RSO << "}";
|
|
}
|
|
|
|
return Out;
|
|
}
|
|
|
|
LLVM_DUMP_METHOD
|
|
void VPlan::printDOT(raw_ostream &O) const {
|
|
VPlanPrinter Printer(O, *this);
|
|
Printer.dump();
|
|
}
|
|
|
|
LLVM_DUMP_METHOD
|
|
void VPlan::dump() const { print(dbgs()); }
|
|
#endif
|
|
|
|
static void remapOperands(VPBlockBase *Entry, VPBlockBase *NewEntry,
|
|
DenseMap<VPValue *, VPValue *> &Old2NewVPValues) {
|
|
// Update the operands of all cloned recipes starting at NewEntry. This
|
|
// traverses all reachable blocks. This is done in two steps, to handle cycles
|
|
// in PHI recipes.
|
|
ReversePostOrderTraversal<VPBlockDeepTraversalWrapper<VPBlockBase *>>
|
|
OldDeepRPOT(Entry);
|
|
ReversePostOrderTraversal<VPBlockDeepTraversalWrapper<VPBlockBase *>>
|
|
NewDeepRPOT(NewEntry);
|
|
// First, collect all mappings from old to new VPValues defined by cloned
|
|
// recipes.
|
|
for (const auto &[OldBB, NewBB] :
|
|
zip(VPBlockUtils::blocksOnly<VPBasicBlock>(OldDeepRPOT),
|
|
VPBlockUtils::blocksOnly<VPBasicBlock>(NewDeepRPOT))) {
|
|
assert(OldBB->getRecipeList().size() == NewBB->getRecipeList().size() &&
|
|
"blocks must have the same number of recipes");
|
|
for (const auto &[OldR, NewR] : zip(*OldBB, *NewBB)) {
|
|
assert(OldR.getNumOperands() == NewR.getNumOperands() &&
|
|
"recipes must have the same number of operands");
|
|
assert(OldR.getNumDefinedValues() == NewR.getNumDefinedValues() &&
|
|
"recipes must define the same number of operands");
|
|
for (const auto &[OldV, NewV] :
|
|
zip(OldR.definedValues(), NewR.definedValues()))
|
|
Old2NewVPValues[OldV] = NewV;
|
|
}
|
|
}
|
|
|
|
// Update all operands to use cloned VPValues.
|
|
for (VPBasicBlock *NewBB :
|
|
VPBlockUtils::blocksOnly<VPBasicBlock>(NewDeepRPOT)) {
|
|
for (VPRecipeBase &NewR : *NewBB)
|
|
for (unsigned I = 0, E = NewR.getNumOperands(); I != E; ++I) {
|
|
VPValue *NewOp = Old2NewVPValues.lookup(NewR.getOperand(I));
|
|
NewR.setOperand(I, NewOp);
|
|
}
|
|
}
|
|
}
|
|
|
|
VPlan *VPlan::duplicate() {
|
|
unsigned NumBlocksBeforeCloning = CreatedBlocks.size();
|
|
// Clone blocks.
|
|
const auto &[NewEntry, __] = cloneFrom(Entry);
|
|
|
|
BasicBlock *ScalarHeaderIRBB = getScalarHeader()->getIRBasicBlock();
|
|
VPIRBasicBlock *NewScalarHeader = cast<VPIRBasicBlock>(*find_if(
|
|
vp_depth_first_shallow(NewEntry), [ScalarHeaderIRBB](VPBlockBase *VPB) {
|
|
auto *VPIRBB = dyn_cast<VPIRBasicBlock>(VPB);
|
|
return VPIRBB && VPIRBB->getIRBasicBlock() == ScalarHeaderIRBB;
|
|
}));
|
|
// Create VPlan, clone live-ins and remap operands in the cloned blocks.
|
|
auto *NewPlan = new VPlan(cast<VPBasicBlock>(NewEntry), NewScalarHeader);
|
|
DenseMap<VPValue *, VPValue *> Old2NewVPValues;
|
|
for (VPValue *OldLiveIn : VPLiveInsToFree) {
|
|
Old2NewVPValues[OldLiveIn] =
|
|
NewPlan->getOrAddLiveIn(OldLiveIn->getLiveInIRValue());
|
|
}
|
|
Old2NewVPValues[&VectorTripCount] = &NewPlan->VectorTripCount;
|
|
Old2NewVPValues[&VF] = &NewPlan->VF;
|
|
Old2NewVPValues[&VFxUF] = &NewPlan->VFxUF;
|
|
if (BackedgeTakenCount) {
|
|
NewPlan->BackedgeTakenCount = new VPValue();
|
|
Old2NewVPValues[BackedgeTakenCount] = NewPlan->BackedgeTakenCount;
|
|
}
|
|
assert(TripCount && "trip count must be set");
|
|
if (TripCount->isLiveIn())
|
|
Old2NewVPValues[TripCount] =
|
|
NewPlan->getOrAddLiveIn(TripCount->getLiveInIRValue());
|
|
// else NewTripCount will be created and inserted into Old2NewVPValues when
|
|
// TripCount is cloned. In any case NewPlan->TripCount is updated below.
|
|
|
|
remapOperands(Entry, NewEntry, Old2NewVPValues);
|
|
|
|
// Initialize remaining fields of cloned VPlan.
|
|
NewPlan->VFs = VFs;
|
|
NewPlan->UFs = UFs;
|
|
// TODO: Adjust names.
|
|
NewPlan->Name = Name;
|
|
assert(Old2NewVPValues.contains(TripCount) &&
|
|
"TripCount must have been added to Old2NewVPValues");
|
|
NewPlan->TripCount = Old2NewVPValues[TripCount];
|
|
|
|
// Transfer all cloned blocks (the second half of all current blocks) from
|
|
// current to new VPlan.
|
|
unsigned NumBlocksAfterCloning = CreatedBlocks.size();
|
|
for (unsigned I :
|
|
seq<unsigned>(NumBlocksBeforeCloning, NumBlocksAfterCloning))
|
|
NewPlan->CreatedBlocks.push_back(this->CreatedBlocks[I]);
|
|
CreatedBlocks.truncate(NumBlocksBeforeCloning);
|
|
|
|
return NewPlan;
|
|
}
|
|
|
|
VPIRBasicBlock *VPlan::createEmptyVPIRBasicBlock(BasicBlock *IRBB) {
|
|
auto *VPIRBB = new VPIRBasicBlock(IRBB);
|
|
CreatedBlocks.push_back(VPIRBB);
|
|
return VPIRBB;
|
|
}
|
|
|
|
VPIRBasicBlock *VPlan::createVPIRBasicBlock(BasicBlock *IRBB) {
|
|
auto *VPIRBB = createEmptyVPIRBasicBlock(IRBB);
|
|
for (Instruction &I :
|
|
make_range(IRBB->begin(), IRBB->getTerminator()->getIterator()))
|
|
VPIRBB->appendRecipe(new VPIRInstruction(I));
|
|
return VPIRBB;
|
|
}
|
|
|
|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
|
|
|
|
Twine VPlanPrinter::getUID(const VPBlockBase *Block) {
|
|
return (isa<VPRegionBlock>(Block) ? "cluster_N" : "N") +
|
|
Twine(getOrCreateBID(Block));
|
|
}
|
|
|
|
Twine VPlanPrinter::getOrCreateName(const VPBlockBase *Block) {
|
|
const std::string &Name = Block->getName();
|
|
if (!Name.empty())
|
|
return Name;
|
|
return "VPB" + Twine(getOrCreateBID(Block));
|
|
}
|
|
|
|
void VPlanPrinter::dump() {
|
|
Depth = 1;
|
|
bumpIndent(0);
|
|
OS << "digraph VPlan {\n";
|
|
OS << "graph [labelloc=t, fontsize=30; label=\"Vectorization Plan";
|
|
if (!Plan.getName().empty())
|
|
OS << "\\n" << DOT::EscapeString(Plan.getName());
|
|
|
|
{
|
|
// Print live-ins.
|
|
std::string Str;
|
|
raw_string_ostream SS(Str);
|
|
Plan.printLiveIns(SS);
|
|
SmallVector<StringRef, 0> Lines;
|
|
StringRef(Str).rtrim('\n').split(Lines, "\n");
|
|
for (auto Line : Lines)
|
|
OS << DOT::EscapeString(Line.str()) << "\\n";
|
|
}
|
|
|
|
OS << "\"]\n";
|
|
OS << "node [shape=rect, fontname=Courier, fontsize=30]\n";
|
|
OS << "edge [fontname=Courier, fontsize=30]\n";
|
|
OS << "compound=true\n";
|
|
|
|
for (const VPBlockBase *Block : vp_depth_first_shallow(Plan.getEntry()))
|
|
dumpBlock(Block);
|
|
|
|
OS << "}\n";
|
|
}
|
|
|
|
void VPlanPrinter::dumpBlock(const VPBlockBase *Block) {
|
|
if (const VPBasicBlock *BasicBlock = dyn_cast<VPBasicBlock>(Block))
|
|
dumpBasicBlock(BasicBlock);
|
|
else if (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
|
|
dumpRegion(Region);
|
|
else
|
|
llvm_unreachable("Unsupported kind of VPBlock.");
|
|
}
|
|
|
|
void VPlanPrinter::drawEdge(const VPBlockBase *From, const VPBlockBase *To,
|
|
bool Hidden, const Twine &Label) {
|
|
// Due to "dot" we print an edge between two regions as an edge between the
|
|
// exiting basic block and the entry basic of the respective regions.
|
|
const VPBlockBase *Tail = From->getExitingBasicBlock();
|
|
const VPBlockBase *Head = To->getEntryBasicBlock();
|
|
OS << Indent << getUID(Tail) << " -> " << getUID(Head);
|
|
OS << " [ label=\"" << Label << '\"';
|
|
if (Tail != From)
|
|
OS << " ltail=" << getUID(From);
|
|
if (Head != To)
|
|
OS << " lhead=" << getUID(To);
|
|
if (Hidden)
|
|
OS << "; splines=none";
|
|
OS << "]\n";
|
|
}
|
|
|
|
void VPlanPrinter::dumpEdges(const VPBlockBase *Block) {
|
|
auto &Successors = Block->getSuccessors();
|
|
if (Successors.size() == 1)
|
|
drawEdge(Block, Successors.front(), false, "");
|
|
else if (Successors.size() == 2) {
|
|
drawEdge(Block, Successors.front(), false, "T");
|
|
drawEdge(Block, Successors.back(), false, "F");
|
|
} else {
|
|
unsigned SuccessorNumber = 0;
|
|
for (auto *Successor : Successors)
|
|
drawEdge(Block, Successor, false, Twine(SuccessorNumber++));
|
|
}
|
|
}
|
|
|
|
void VPlanPrinter::dumpBasicBlock(const VPBasicBlock *BasicBlock) {
|
|
// Implement dot-formatted dump by performing plain-text dump into the
|
|
// temporary storage followed by some post-processing.
|
|
OS << Indent << getUID(BasicBlock) << " [label =\n";
|
|
bumpIndent(1);
|
|
std::string Str;
|
|
raw_string_ostream SS(Str);
|
|
// Use no indentation as we need to wrap the lines into quotes ourselves.
|
|
BasicBlock->print(SS, "", SlotTracker);
|
|
|
|
// We need to process each line of the output separately, so split
|
|
// single-string plain-text dump.
|
|
SmallVector<StringRef, 0> Lines;
|
|
StringRef(Str).rtrim('\n').split(Lines, "\n");
|
|
|
|
auto EmitLine = [&](StringRef Line, StringRef Suffix) {
|
|
OS << Indent << '"' << DOT::EscapeString(Line.str()) << "\\l\"" << Suffix;
|
|
};
|
|
|
|
// Don't need the "+" after the last line.
|
|
for (auto Line : make_range(Lines.begin(), Lines.end() - 1))
|
|
EmitLine(Line, " +\n");
|
|
EmitLine(Lines.back(), "\n");
|
|
|
|
bumpIndent(-1);
|
|
OS << Indent << "]\n";
|
|
|
|
dumpEdges(BasicBlock);
|
|
}
|
|
|
|
void VPlanPrinter::dumpRegion(const VPRegionBlock *Region) {
|
|
OS << Indent << "subgraph " << getUID(Region) << " {\n";
|
|
bumpIndent(1);
|
|
OS << Indent << "fontname=Courier\n"
|
|
<< Indent << "label=\""
|
|
<< DOT::EscapeString(Region->isReplicator() ? "<xVFxUF> " : "<x1> ")
|
|
<< DOT::EscapeString(Region->getName()) << "\"\n";
|
|
// Dump the blocks of the region.
|
|
assert(Region->getEntry() && "Region contains no inner blocks.");
|
|
for (const VPBlockBase *Block : vp_depth_first_shallow(Region->getEntry()))
|
|
dumpBlock(Block);
|
|
bumpIndent(-1);
|
|
OS << Indent << "}\n";
|
|
dumpEdges(Region);
|
|
}
|
|
|
|
void VPlanIngredient::print(raw_ostream &O) const {
|
|
if (auto *Inst = dyn_cast<Instruction>(V)) {
|
|
if (!Inst->getType()->isVoidTy()) {
|
|
Inst->printAsOperand(O, false);
|
|
O << " = ";
|
|
}
|
|
O << Inst->getOpcodeName() << " ";
|
|
unsigned E = Inst->getNumOperands();
|
|
if (E > 0) {
|
|
Inst->getOperand(0)->printAsOperand(O, false);
|
|
for (unsigned I = 1; I < E; ++I)
|
|
Inst->getOperand(I)->printAsOperand(O << ", ", false);
|
|
}
|
|
} else // !Inst
|
|
V->printAsOperand(O, false);
|
|
}
|
|
|
|
#endif
|
|
|
|
/// Returns true if there is a vector loop region and \p VPV is defined in a
|
|
/// loop region.
|
|
static bool isDefinedInsideLoopRegions(const VPValue *VPV) {
|
|
const VPRecipeBase *DefR = VPV->getDefiningRecipe();
|
|
return DefR && (!DefR->getParent()->getPlan()->getVectorLoopRegion() ||
|
|
DefR->getParent()->getEnclosingLoopRegion());
|
|
}
|
|
|
|
bool VPValue::isDefinedOutsideLoopRegions() const {
|
|
return !isDefinedInsideLoopRegions(this);
|
|
}
|
|
void VPValue::replaceAllUsesWith(VPValue *New) {
|
|
replaceUsesWithIf(New, [](VPUser &, unsigned) { return true; });
|
|
}
|
|
|
|
void VPValue::replaceUsesWithIf(
|
|
VPValue *New,
|
|
llvm::function_ref<bool(VPUser &U, unsigned Idx)> ShouldReplace) {
|
|
// Note that this early exit is required for correctness; the implementation
|
|
// below relies on the number of users for this VPValue to decrease, which
|
|
// isn't the case if this == New.
|
|
if (this == New)
|
|
return;
|
|
|
|
for (unsigned J = 0; J < getNumUsers();) {
|
|
VPUser *User = Users[J];
|
|
bool RemovedUser = false;
|
|
for (unsigned I = 0, E = User->getNumOperands(); I < E; ++I) {
|
|
if (User->getOperand(I) != this || !ShouldReplace(*User, I))
|
|
continue;
|
|
|
|
RemovedUser = true;
|
|
User->setOperand(I, New);
|
|
}
|
|
// If a user got removed after updating the current user, the next user to
|
|
// update will be moved to the current position, so we only need to
|
|
// increment the index if the number of users did not change.
|
|
if (!RemovedUser)
|
|
J++;
|
|
}
|
|
}
|
|
|
|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
|
|
void VPValue::printAsOperand(raw_ostream &OS, VPSlotTracker &Tracker) const {
|
|
OS << Tracker.getOrCreateName(this);
|
|
}
|
|
|
|
void VPUser::printOperands(raw_ostream &O, VPSlotTracker &SlotTracker) const {
|
|
interleaveComma(operands(), O, [&O, &SlotTracker](VPValue *Op) {
|
|
Op->printAsOperand(O, SlotTracker);
|
|
});
|
|
}
|
|
#endif
|
|
|
|
void VPInterleavedAccessInfo::visitRegion(VPRegionBlock *Region,
|
|
Old2NewTy &Old2New,
|
|
InterleavedAccessInfo &IAI) {
|
|
ReversePostOrderTraversal<VPBlockShallowTraversalWrapper<VPBlockBase *>>
|
|
RPOT(Region->getEntry());
|
|
for (VPBlockBase *Base : RPOT) {
|
|
visitBlock(Base, Old2New, IAI);
|
|
}
|
|
}
|
|
|
|
void VPInterleavedAccessInfo::visitBlock(VPBlockBase *Block, Old2NewTy &Old2New,
|
|
InterleavedAccessInfo &IAI) {
|
|
if (VPBasicBlock *VPBB = dyn_cast<VPBasicBlock>(Block)) {
|
|
for (VPRecipeBase &VPI : *VPBB) {
|
|
if (isa<VPWidenPHIRecipe>(&VPI))
|
|
continue;
|
|
assert(isa<VPInstruction>(&VPI) && "Can only handle VPInstructions");
|
|
auto *VPInst = cast<VPInstruction>(&VPI);
|
|
|
|
auto *Inst = dyn_cast_or_null<Instruction>(VPInst->getUnderlyingValue());
|
|
if (!Inst)
|
|
continue;
|
|
auto *IG = IAI.getInterleaveGroup(Inst);
|
|
if (!IG)
|
|
continue;
|
|
|
|
auto NewIGIter = Old2New.find(IG);
|
|
if (NewIGIter == Old2New.end())
|
|
Old2New[IG] = new InterleaveGroup<VPInstruction>(
|
|
IG->getFactor(), IG->isReverse(), IG->getAlign());
|
|
|
|
if (Inst == IG->getInsertPos())
|
|
Old2New[IG]->setInsertPos(VPInst);
|
|
|
|
InterleaveGroupMap[VPInst] = Old2New[IG];
|
|
InterleaveGroupMap[VPInst]->insertMember(
|
|
VPInst, IG->getIndex(Inst),
|
|
Align(IG->isReverse() ? (-1) * int(IG->getFactor())
|
|
: IG->getFactor()));
|
|
}
|
|
} else if (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
|
|
visitRegion(Region, Old2New, IAI);
|
|
else
|
|
llvm_unreachable("Unsupported kind of VPBlock.");
|
|
}
|
|
|
|
VPInterleavedAccessInfo::VPInterleavedAccessInfo(VPlan &Plan,
|
|
InterleavedAccessInfo &IAI) {
|
|
Old2NewTy Old2New;
|
|
visitRegion(Plan.getVectorLoopRegion(), Old2New, IAI);
|
|
}
|
|
|
|
void VPSlotTracker::assignName(const VPValue *V) {
|
|
assert(!VPValue2Name.contains(V) && "VPValue already has a name!");
|
|
auto *UV = V->getUnderlyingValue();
|
|
auto *VPI = dyn_cast_or_null<VPInstruction>(V->getDefiningRecipe());
|
|
if (!UV && !(VPI && !VPI->getName().empty())) {
|
|
VPValue2Name[V] = (Twine("vp<%") + Twine(NextSlot) + ">").str();
|
|
NextSlot++;
|
|
return;
|
|
}
|
|
|
|
// Use the name of the underlying Value, wrapped in "ir<>", and versioned by
|
|
// appending ".Number" to the name if there are multiple uses.
|
|
std::string Name;
|
|
if (UV) {
|
|
raw_string_ostream S(Name);
|
|
UV->printAsOperand(S, false);
|
|
} else
|
|
Name = VPI->getName();
|
|
|
|
assert(!Name.empty() && "Name cannot be empty.");
|
|
StringRef Prefix = UV ? "ir<" : "vp<%";
|
|
std::string BaseName = (Twine(Prefix) + Name + Twine(">")).str();
|
|
|
|
// First assign the base name for V.
|
|
const auto &[A, _] = VPValue2Name.insert({V, BaseName});
|
|
// Integer or FP constants with different types will result in he same string
|
|
// due to stripping types.
|
|
if (V->isLiveIn() && isa<ConstantInt, ConstantFP>(UV))
|
|
return;
|
|
|
|
// If it is already used by C > 0 other VPValues, increase the version counter
|
|
// C and use it for V.
|
|
const auto &[C, UseInserted] = BaseName2Version.insert({BaseName, 0});
|
|
if (!UseInserted) {
|
|
C->second++;
|
|
A->second = (BaseName + Twine(".") + Twine(C->second)).str();
|
|
}
|
|
}
|
|
|
|
void VPSlotTracker::assignNames(const VPlan &Plan) {
|
|
if (Plan.VF.getNumUsers() > 0)
|
|
assignName(&Plan.VF);
|
|
if (Plan.VFxUF.getNumUsers() > 0)
|
|
assignName(&Plan.VFxUF);
|
|
assignName(&Plan.VectorTripCount);
|
|
if (Plan.BackedgeTakenCount)
|
|
assignName(Plan.BackedgeTakenCount);
|
|
for (VPValue *LI : Plan.VPLiveInsToFree)
|
|
assignName(LI);
|
|
|
|
ReversePostOrderTraversal<VPBlockDeepTraversalWrapper<const VPBlockBase *>>
|
|
RPOT(VPBlockDeepTraversalWrapper<const VPBlockBase *>(Plan.getEntry()));
|
|
for (const VPBasicBlock *VPBB :
|
|
VPBlockUtils::blocksOnly<const VPBasicBlock>(RPOT))
|
|
assignNames(VPBB);
|
|
}
|
|
|
|
void VPSlotTracker::assignNames(const VPBasicBlock *VPBB) {
|
|
for (const VPRecipeBase &Recipe : *VPBB)
|
|
for (VPValue *Def : Recipe.definedValues())
|
|
assignName(Def);
|
|
}
|
|
|
|
std::string VPSlotTracker::getOrCreateName(const VPValue *V) const {
|
|
std::string Name = VPValue2Name.lookup(V);
|
|
if (!Name.empty())
|
|
return Name;
|
|
|
|
// If no name was assigned, no VPlan was provided when creating the slot
|
|
// tracker or it is not reachable from the provided VPlan. This can happen,
|
|
// e.g. when trying to print a recipe that has not been inserted into a VPlan
|
|
// in a debugger.
|
|
// TODO: Update VPSlotTracker constructor to assign names to recipes &
|
|
// VPValues not associated with a VPlan, instead of constructing names ad-hoc
|
|
// here.
|
|
const VPRecipeBase *DefR = V->getDefiningRecipe();
|
|
(void)DefR;
|
|
assert((!DefR || !DefR->getParent() || !DefR->getParent()->getPlan()) &&
|
|
"VPValue defined by a recipe in a VPlan?");
|
|
|
|
// Use the underlying value's name, if there is one.
|
|
if (auto *UV = V->getUnderlyingValue()) {
|
|
std::string Name;
|
|
raw_string_ostream S(Name);
|
|
UV->printAsOperand(S, false);
|
|
return (Twine("ir<") + Name + ">").str();
|
|
}
|
|
|
|
return "<badref>";
|
|
}
|
|
|
|
bool LoopVectorizationPlanner::getDecisionAndClampRange(
|
|
const std::function<bool(ElementCount)> &Predicate, VFRange &Range) {
|
|
assert(!Range.isEmpty() && "Trying to test an empty VF range.");
|
|
bool PredicateAtRangeStart = Predicate(Range.Start);
|
|
|
|
for (ElementCount TmpVF : VFRange(Range.Start * 2, Range.End))
|
|
if (Predicate(TmpVF) != PredicateAtRangeStart) {
|
|
Range.End = TmpVF;
|
|
break;
|
|
}
|
|
|
|
return PredicateAtRangeStart;
|
|
}
|
|
|
|
/// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF,
|
|
/// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range
|
|
/// of VF's starting at a given VF and extending it as much as possible. Each
|
|
/// vectorization decision can potentially shorten this sub-range during
|
|
/// buildVPlan().
|
|
void LoopVectorizationPlanner::buildVPlans(ElementCount MinVF,
|
|
ElementCount MaxVF) {
|
|
auto MaxVFTimes2 = MaxVF * 2;
|
|
for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFTimes2);) {
|
|
VFRange SubRange = {VF, MaxVFTimes2};
|
|
auto Plan = buildVPlan(SubRange);
|
|
VPlanTransforms::optimize(*Plan);
|
|
VPlans.push_back(std::move(Plan));
|
|
VF = SubRange.End;
|
|
}
|
|
}
|
|
|
|
VPlan &LoopVectorizationPlanner::getPlanFor(ElementCount VF) const {
|
|
assert(count_if(VPlans,
|
|
[VF](const VPlanPtr &Plan) { return Plan->hasVF(VF); }) ==
|
|
1 &&
|
|
"Multiple VPlans for VF.");
|
|
|
|
for (const VPlanPtr &Plan : VPlans) {
|
|
if (Plan->hasVF(VF))
|
|
return *Plan.get();
|
|
}
|
|
llvm_unreachable("No plan found!");
|
|
}
|
|
|
|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
|
|
void LoopVectorizationPlanner::printPlans(raw_ostream &O) {
|
|
if (VPlans.empty()) {
|
|
O << "LV: No VPlans built.\n";
|
|
return;
|
|
}
|
|
for (const auto &Plan : VPlans)
|
|
if (PrintVPlansInDotFormat)
|
|
Plan->printDOT(O);
|
|
else
|
|
Plan->print(O);
|
|
}
|
|
#endif
|
|
|
|
TargetTransformInfo::OperandValueInfo
|
|
VPCostContext::getOperandInfo(VPValue *V) const {
|
|
if (!V->isLiveIn())
|
|
return {};
|
|
|
|
return TTI::getOperandInfo(V->getLiveInIRValue());
|
|
}
|