
This code got lost in #97213 and there was no test for it. Add it back with an MLIR test. When a pattern is run without a type converter, we can assume that the new block argument types of a signature conversion are legal. That's because they were specified by the user. This won't work for 1->N conversions due to limitations in the dialect conversion infrastructure, so the original `FIXME` has to stay in place.
3504 lines
134 KiB
C++
3504 lines
134 KiB
C++
//===- DialectConversion.cpp - MLIR dialect conversion generic pass -------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "mlir/Transforms/DialectConversion.h"
|
|
#include "mlir/Config/mlir-config.h"
|
|
#include "mlir/IR/Block.h"
|
|
#include "mlir/IR/Builders.h"
|
|
#include "mlir/IR/BuiltinOps.h"
|
|
#include "mlir/IR/IRMapping.h"
|
|
#include "mlir/IR/Iterators.h"
|
|
#include "mlir/Interfaces/FunctionInterfaces.h"
|
|
#include "mlir/Rewrite/PatternApplicator.h"
|
|
#include "llvm/ADT/ScopeExit.h"
|
|
#include "llvm/ADT/SetVector.h"
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/FormatVariadic.h"
|
|
#include "llvm/Support/SaveAndRestore.h"
|
|
#include "llvm/Support/ScopedPrinter.h"
|
|
#include <optional>
|
|
|
|
using namespace mlir;
|
|
using namespace mlir::detail;
|
|
|
|
#define DEBUG_TYPE "dialect-conversion"
|
|
|
|
/// A utility function to log a successful result for the given reason.
|
|
template <typename... Args>
|
|
static void logSuccess(llvm::ScopedPrinter &os, StringRef fmt, Args &&...args) {
|
|
LLVM_DEBUG({
|
|
os.unindent();
|
|
os.startLine() << "} -> SUCCESS";
|
|
if (!fmt.empty())
|
|
os.getOStream() << " : "
|
|
<< llvm::formatv(fmt.data(), std::forward<Args>(args)...);
|
|
os.getOStream() << "\n";
|
|
});
|
|
}
|
|
|
|
/// A utility function to log a failure result for the given reason.
|
|
template <typename... Args>
|
|
static void logFailure(llvm::ScopedPrinter &os, StringRef fmt, Args &&...args) {
|
|
LLVM_DEBUG({
|
|
os.unindent();
|
|
os.startLine() << "} -> FAILURE : "
|
|
<< llvm::formatv(fmt.data(), std::forward<Args>(args)...)
|
|
<< "\n";
|
|
});
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// ConversionValueMapping
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
/// This class wraps a IRMapping to provide recursive lookup
|
|
/// functionality, i.e. we will traverse if the mapped value also has a mapping.
|
|
struct ConversionValueMapping {
|
|
/// Lookup a mapped value within the map. If a mapping for the provided value
|
|
/// does not exist then return the provided value. If `desiredType` is
|
|
/// non-null, returns the most recently mapped value with that type. If an
|
|
/// operand of that type does not exist, defaults to normal behavior.
|
|
Value lookupOrDefault(Value from, Type desiredType = nullptr) const;
|
|
|
|
/// Lookup a mapped value within the map, or return null if a mapping does not
|
|
/// exist. If a mapping exists, this follows the same behavior of
|
|
/// `lookupOrDefault`.
|
|
Value lookupOrNull(Value from, Type desiredType = nullptr) const;
|
|
|
|
/// Map a value to the one provided.
|
|
void map(Value oldVal, Value newVal) {
|
|
LLVM_DEBUG({
|
|
for (Value it = newVal; it; it = mapping.lookupOrNull(it))
|
|
assert(it != oldVal && "inserting cyclic mapping");
|
|
});
|
|
mapping.map(oldVal, newVal);
|
|
}
|
|
|
|
/// Try to map a value to the one provided. Returns false if a transitive
|
|
/// mapping from the new value to the old value already exists, true if the
|
|
/// map was updated.
|
|
bool tryMap(Value oldVal, Value newVal);
|
|
|
|
/// Drop the last mapping for the given value.
|
|
void erase(Value value) { mapping.erase(value); }
|
|
|
|
/// Returns the inverse raw value mapping (without recursive query support).
|
|
DenseMap<Value, SmallVector<Value>> getInverse() const {
|
|
DenseMap<Value, SmallVector<Value>> inverse;
|
|
for (auto &it : mapping.getValueMap())
|
|
inverse[it.second].push_back(it.first);
|
|
return inverse;
|
|
}
|
|
|
|
private:
|
|
/// Current value mappings.
|
|
IRMapping mapping;
|
|
};
|
|
} // namespace
|
|
|
|
Value ConversionValueMapping::lookupOrDefault(Value from,
|
|
Type desiredType) const {
|
|
// If there was no desired type, simply find the leaf value.
|
|
if (!desiredType) {
|
|
// If this value had a valid mapping, unmap that value as well in the case
|
|
// that it was also replaced.
|
|
while (auto mappedValue = mapping.lookupOrNull(from))
|
|
from = mappedValue;
|
|
return from;
|
|
}
|
|
|
|
// Otherwise, try to find the deepest value that has the desired type.
|
|
Value desiredValue;
|
|
do {
|
|
if (from.getType() == desiredType)
|
|
desiredValue = from;
|
|
|
|
Value mappedValue = mapping.lookupOrNull(from);
|
|
if (!mappedValue)
|
|
break;
|
|
from = mappedValue;
|
|
} while (true);
|
|
|
|
// If the desired value was found use it, otherwise default to the leaf value.
|
|
return desiredValue ? desiredValue : from;
|
|
}
|
|
|
|
Value ConversionValueMapping::lookupOrNull(Value from, Type desiredType) const {
|
|
Value result = lookupOrDefault(from, desiredType);
|
|
if (result == from || (desiredType && result.getType() != desiredType))
|
|
return nullptr;
|
|
return result;
|
|
}
|
|
|
|
bool ConversionValueMapping::tryMap(Value oldVal, Value newVal) {
|
|
for (Value it = newVal; it; it = mapping.lookupOrNull(it))
|
|
if (it == oldVal)
|
|
return false;
|
|
map(oldVal, newVal);
|
|
return true;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Rewriter and Translation State
|
|
//===----------------------------------------------------------------------===//
|
|
namespace {
|
|
/// This class contains a snapshot of the current conversion rewriter state.
|
|
/// This is useful when saving and undoing a set of rewrites.
|
|
struct RewriterState {
|
|
RewriterState(unsigned numRewrites, unsigned numIgnoredOperations,
|
|
unsigned numReplacedOps)
|
|
: numRewrites(numRewrites), numIgnoredOperations(numIgnoredOperations),
|
|
numReplacedOps(numReplacedOps) {}
|
|
|
|
/// The current number of rewrites performed.
|
|
unsigned numRewrites;
|
|
|
|
/// The current number of ignored operations.
|
|
unsigned numIgnoredOperations;
|
|
|
|
/// The current number of replaced ops that are scheduled for erasure.
|
|
unsigned numReplacedOps;
|
|
};
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// IR rewrites
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// An IR rewrite that can be committed (upon success) or rolled back (upon
|
|
/// failure).
|
|
///
|
|
/// The dialect conversion keeps track of IR modifications (requested by the
|
|
/// user through the rewriter API) in `IRRewrite` objects. Some kind of rewrites
|
|
/// are directly applied to the IR as the rewriter API is used, some are applied
|
|
/// partially, and some are delayed until the `IRRewrite` objects are committed.
|
|
class IRRewrite {
|
|
public:
|
|
/// The kind of the rewrite. Rewrites can be undone if the conversion fails.
|
|
/// Enum values are ordered, so that they can be used in `classof`: first all
|
|
/// block rewrites, then all operation rewrites.
|
|
enum class Kind {
|
|
// Block rewrites
|
|
CreateBlock,
|
|
EraseBlock,
|
|
InlineBlock,
|
|
MoveBlock,
|
|
BlockTypeConversion,
|
|
ReplaceBlockArg,
|
|
// Operation rewrites
|
|
MoveOperation,
|
|
ModifyOperation,
|
|
ReplaceOperation,
|
|
CreateOperation,
|
|
UnresolvedMaterialization
|
|
};
|
|
|
|
virtual ~IRRewrite() = default;
|
|
|
|
/// Roll back the rewrite. Operations may be erased during rollback.
|
|
virtual void rollback() = 0;
|
|
|
|
/// Commit the rewrite. At this point, it is certain that the dialect
|
|
/// conversion will succeed. All IR modifications, except for operation/block
|
|
/// erasure, must be performed through the given rewriter.
|
|
///
|
|
/// Instead of erasing operations/blocks, they should merely be unlinked
|
|
/// commit phase and finally be erased during the cleanup phase. This is
|
|
/// because internal dialect conversion state (such as `mapping`) may still
|
|
/// be using them.
|
|
///
|
|
/// Any IR modification that was already performed before the commit phase
|
|
/// (e.g., insertion of an op) must be communicated to the listener that may
|
|
/// be attached to the given rewriter.
|
|
virtual void commit(RewriterBase &rewriter) {}
|
|
|
|
/// Cleanup operations/blocks. Cleanup is called after commit.
|
|
virtual void cleanup(RewriterBase &rewriter) {}
|
|
|
|
Kind getKind() const { return kind; }
|
|
|
|
static bool classof(const IRRewrite *rewrite) { return true; }
|
|
|
|
protected:
|
|
IRRewrite(Kind kind, ConversionPatternRewriterImpl &rewriterImpl)
|
|
: kind(kind), rewriterImpl(rewriterImpl) {}
|
|
|
|
const ConversionConfig &getConfig() const;
|
|
|
|
const Kind kind;
|
|
ConversionPatternRewriterImpl &rewriterImpl;
|
|
};
|
|
|
|
/// A block rewrite.
|
|
class BlockRewrite : public IRRewrite {
|
|
public:
|
|
/// Return the block that this rewrite operates on.
|
|
Block *getBlock() const { return block; }
|
|
|
|
static bool classof(const IRRewrite *rewrite) {
|
|
return rewrite->getKind() >= Kind::CreateBlock &&
|
|
rewrite->getKind() <= Kind::ReplaceBlockArg;
|
|
}
|
|
|
|
protected:
|
|
BlockRewrite(Kind kind, ConversionPatternRewriterImpl &rewriterImpl,
|
|
Block *block)
|
|
: IRRewrite(kind, rewriterImpl), block(block) {}
|
|
|
|
// The block that this rewrite operates on.
|
|
Block *block;
|
|
};
|
|
|
|
/// Creation of a block. Block creations are immediately reflected in the IR.
|
|
/// There is no extra work to commit the rewrite. During rollback, the newly
|
|
/// created block is erased.
|
|
class CreateBlockRewrite : public BlockRewrite {
|
|
public:
|
|
CreateBlockRewrite(ConversionPatternRewriterImpl &rewriterImpl, Block *block)
|
|
: BlockRewrite(Kind::CreateBlock, rewriterImpl, block) {}
|
|
|
|
static bool classof(const IRRewrite *rewrite) {
|
|
return rewrite->getKind() == Kind::CreateBlock;
|
|
}
|
|
|
|
void commit(RewriterBase &rewriter) override {
|
|
// The block was already created and inserted. Just inform the listener.
|
|
if (auto *listener = rewriter.getListener())
|
|
listener->notifyBlockInserted(block, /*previous=*/{}, /*previousIt=*/{});
|
|
}
|
|
|
|
void rollback() override {
|
|
// Unlink all of the operations within this block, they will be deleted
|
|
// separately.
|
|
auto &blockOps = block->getOperations();
|
|
while (!blockOps.empty())
|
|
blockOps.remove(blockOps.begin());
|
|
block->dropAllUses();
|
|
if (block->getParent())
|
|
block->erase();
|
|
else
|
|
delete block;
|
|
}
|
|
};
|
|
|
|
/// Erasure of a block. Block erasures are partially reflected in the IR. Erased
|
|
/// blocks are immediately unlinked, but only erased during cleanup. This makes
|
|
/// it easier to rollback a block erasure: the block is simply inserted into its
|
|
/// original location.
|
|
class EraseBlockRewrite : public BlockRewrite {
|
|
public:
|
|
EraseBlockRewrite(ConversionPatternRewriterImpl &rewriterImpl, Block *block)
|
|
: BlockRewrite(Kind::EraseBlock, rewriterImpl, block),
|
|
region(block->getParent()), insertBeforeBlock(block->getNextNode()) {}
|
|
|
|
static bool classof(const IRRewrite *rewrite) {
|
|
return rewrite->getKind() == Kind::EraseBlock;
|
|
}
|
|
|
|
~EraseBlockRewrite() override {
|
|
assert(!block &&
|
|
"rewrite was neither rolled back nor committed/cleaned up");
|
|
}
|
|
|
|
void rollback() override {
|
|
// The block (owned by this rewrite) was not actually erased yet. It was
|
|
// just unlinked. Put it back into its original position.
|
|
assert(block && "expected block");
|
|
auto &blockList = region->getBlocks();
|
|
Region::iterator before = insertBeforeBlock
|
|
? Region::iterator(insertBeforeBlock)
|
|
: blockList.end();
|
|
blockList.insert(before, block);
|
|
block = nullptr;
|
|
}
|
|
|
|
void commit(RewriterBase &rewriter) override {
|
|
// Erase the block.
|
|
assert(block && "expected block");
|
|
assert(block->empty() && "expected empty block");
|
|
|
|
// Notify the listener that the block is about to be erased.
|
|
if (auto *listener =
|
|
dyn_cast_or_null<RewriterBase::Listener>(rewriter.getListener()))
|
|
listener->notifyBlockErased(block);
|
|
}
|
|
|
|
void cleanup(RewriterBase &rewriter) override {
|
|
// Erase the block.
|
|
block->dropAllDefinedValueUses();
|
|
delete block;
|
|
block = nullptr;
|
|
}
|
|
|
|
private:
|
|
// The region in which this block was previously contained.
|
|
Region *region;
|
|
|
|
// The original successor of this block before it was unlinked. "nullptr" if
|
|
// this block was the only block in the region.
|
|
Block *insertBeforeBlock;
|
|
};
|
|
|
|
/// Inlining of a block. This rewrite is immediately reflected in the IR.
|
|
/// Note: This rewrite represents only the inlining of the operations. The
|
|
/// erasure of the inlined block is a separate rewrite.
|
|
class InlineBlockRewrite : public BlockRewrite {
|
|
public:
|
|
InlineBlockRewrite(ConversionPatternRewriterImpl &rewriterImpl, Block *block,
|
|
Block *sourceBlock, Block::iterator before)
|
|
: BlockRewrite(Kind::InlineBlock, rewriterImpl, block),
|
|
sourceBlock(sourceBlock),
|
|
firstInlinedInst(sourceBlock->empty() ? nullptr
|
|
: &sourceBlock->front()),
|
|
lastInlinedInst(sourceBlock->empty() ? nullptr : &sourceBlock->back()) {
|
|
// If a listener is attached to the dialect conversion, ops must be moved
|
|
// one-by-one. When they are moved in bulk, notifications cannot be sent
|
|
// because the ops that used to be in the source block at the time of the
|
|
// inlining (before the "commit" phase) are unknown at the time when
|
|
// notifications are sent (which is during the "commit" phase).
|
|
assert(!getConfig().listener &&
|
|
"InlineBlockRewrite not supported if listener is attached");
|
|
}
|
|
|
|
static bool classof(const IRRewrite *rewrite) {
|
|
return rewrite->getKind() == Kind::InlineBlock;
|
|
}
|
|
|
|
void rollback() override {
|
|
// Put the operations from the destination block (owned by the rewrite)
|
|
// back into the source block.
|
|
if (firstInlinedInst) {
|
|
assert(lastInlinedInst && "expected operation");
|
|
sourceBlock->getOperations().splice(sourceBlock->begin(),
|
|
block->getOperations(),
|
|
Block::iterator(firstInlinedInst),
|
|
++Block::iterator(lastInlinedInst));
|
|
}
|
|
}
|
|
|
|
private:
|
|
// The block that originally contained the operations.
|
|
Block *sourceBlock;
|
|
|
|
// The first inlined operation.
|
|
Operation *firstInlinedInst;
|
|
|
|
// The last inlined operation.
|
|
Operation *lastInlinedInst;
|
|
};
|
|
|
|
/// Moving of a block. This rewrite is immediately reflected in the IR.
|
|
class MoveBlockRewrite : public BlockRewrite {
|
|
public:
|
|
MoveBlockRewrite(ConversionPatternRewriterImpl &rewriterImpl, Block *block,
|
|
Region *region, Block *insertBeforeBlock)
|
|
: BlockRewrite(Kind::MoveBlock, rewriterImpl, block), region(region),
|
|
insertBeforeBlock(insertBeforeBlock) {}
|
|
|
|
static bool classof(const IRRewrite *rewrite) {
|
|
return rewrite->getKind() == Kind::MoveBlock;
|
|
}
|
|
|
|
void commit(RewriterBase &rewriter) override {
|
|
// The block was already moved. Just inform the listener.
|
|
if (auto *listener = rewriter.getListener()) {
|
|
// Note: `previousIt` cannot be passed because this is a delayed
|
|
// notification and iterators into past IR state cannot be represented.
|
|
listener->notifyBlockInserted(block, /*previous=*/region,
|
|
/*previousIt=*/{});
|
|
}
|
|
}
|
|
|
|
void rollback() override {
|
|
// Move the block back to its original position.
|
|
Region::iterator before =
|
|
insertBeforeBlock ? Region::iterator(insertBeforeBlock) : region->end();
|
|
region->getBlocks().splice(before, block->getParent()->getBlocks(), block);
|
|
}
|
|
|
|
private:
|
|
// The region in which this block was previously contained.
|
|
Region *region;
|
|
|
|
// The original successor of this block before it was moved. "nullptr" if
|
|
// this block was the only block in the region.
|
|
Block *insertBeforeBlock;
|
|
};
|
|
|
|
/// Block type conversion. This rewrite is partially reflected in the IR.
|
|
class BlockTypeConversionRewrite : public BlockRewrite {
|
|
public:
|
|
BlockTypeConversionRewrite(ConversionPatternRewriterImpl &rewriterImpl,
|
|
Block *block, Block *origBlock,
|
|
const TypeConverter *converter)
|
|
: BlockRewrite(Kind::BlockTypeConversion, rewriterImpl, block),
|
|
origBlock(origBlock), converter(converter) {}
|
|
|
|
static bool classof(const IRRewrite *rewrite) {
|
|
return rewrite->getKind() == Kind::BlockTypeConversion;
|
|
}
|
|
|
|
/// Materialize any necessary conversions for converted arguments that have
|
|
/// live users, using the provided `findLiveUser` to search for a user that
|
|
/// survives the conversion process.
|
|
LogicalResult
|
|
materializeLiveConversions(function_ref<Operation *(Value)> findLiveUser);
|
|
|
|
void commit(RewriterBase &rewriter) override;
|
|
|
|
void rollback() override;
|
|
|
|
private:
|
|
/// The original block that was requested to have its signature converted.
|
|
Block *origBlock;
|
|
|
|
/// The type converter used to convert the arguments.
|
|
const TypeConverter *converter;
|
|
};
|
|
|
|
/// Replacing a block argument. This rewrite is not immediately reflected in the
|
|
/// IR. An internal IR mapping is updated, but the actual replacement is delayed
|
|
/// until the rewrite is committed.
|
|
class ReplaceBlockArgRewrite : public BlockRewrite {
|
|
public:
|
|
ReplaceBlockArgRewrite(ConversionPatternRewriterImpl &rewriterImpl,
|
|
Block *block, BlockArgument arg)
|
|
: BlockRewrite(Kind::ReplaceBlockArg, rewriterImpl, block), arg(arg) {}
|
|
|
|
static bool classof(const IRRewrite *rewrite) {
|
|
return rewrite->getKind() == Kind::ReplaceBlockArg;
|
|
}
|
|
|
|
void commit(RewriterBase &rewriter) override;
|
|
|
|
void rollback() override;
|
|
|
|
private:
|
|
BlockArgument arg;
|
|
};
|
|
|
|
/// An operation rewrite.
|
|
class OperationRewrite : public IRRewrite {
|
|
public:
|
|
/// Return the operation that this rewrite operates on.
|
|
Operation *getOperation() const { return op; }
|
|
|
|
static bool classof(const IRRewrite *rewrite) {
|
|
return rewrite->getKind() >= Kind::MoveOperation &&
|
|
rewrite->getKind() <= Kind::UnresolvedMaterialization;
|
|
}
|
|
|
|
protected:
|
|
OperationRewrite(Kind kind, ConversionPatternRewriterImpl &rewriterImpl,
|
|
Operation *op)
|
|
: IRRewrite(kind, rewriterImpl), op(op) {}
|
|
|
|
// The operation that this rewrite operates on.
|
|
Operation *op;
|
|
};
|
|
|
|
/// Moving of an operation. This rewrite is immediately reflected in the IR.
|
|
class MoveOperationRewrite : public OperationRewrite {
|
|
public:
|
|
MoveOperationRewrite(ConversionPatternRewriterImpl &rewriterImpl,
|
|
Operation *op, Block *block, Operation *insertBeforeOp)
|
|
: OperationRewrite(Kind::MoveOperation, rewriterImpl, op), block(block),
|
|
insertBeforeOp(insertBeforeOp) {}
|
|
|
|
static bool classof(const IRRewrite *rewrite) {
|
|
return rewrite->getKind() == Kind::MoveOperation;
|
|
}
|
|
|
|
void commit(RewriterBase &rewriter) override {
|
|
// The operation was already moved. Just inform the listener.
|
|
if (auto *listener = rewriter.getListener()) {
|
|
// Note: `previousIt` cannot be passed because this is a delayed
|
|
// notification and iterators into past IR state cannot be represented.
|
|
listener->notifyOperationInserted(
|
|
op, /*previous=*/OpBuilder::InsertPoint(/*insertBlock=*/block,
|
|
/*insertPt=*/{}));
|
|
}
|
|
}
|
|
|
|
void rollback() override {
|
|
// Move the operation back to its original position.
|
|
Block::iterator before =
|
|
insertBeforeOp ? Block::iterator(insertBeforeOp) : block->end();
|
|
block->getOperations().splice(before, op->getBlock()->getOperations(), op);
|
|
}
|
|
|
|
private:
|
|
// The block in which this operation was previously contained.
|
|
Block *block;
|
|
|
|
// The original successor of this operation before it was moved. "nullptr"
|
|
// if this operation was the only operation in the region.
|
|
Operation *insertBeforeOp;
|
|
};
|
|
|
|
/// In-place modification of an op. This rewrite is immediately reflected in
|
|
/// the IR. The previous state of the operation is stored in this object.
|
|
class ModifyOperationRewrite : public OperationRewrite {
|
|
public:
|
|
ModifyOperationRewrite(ConversionPatternRewriterImpl &rewriterImpl,
|
|
Operation *op)
|
|
: OperationRewrite(Kind::ModifyOperation, rewriterImpl, op),
|
|
name(op->getName()), loc(op->getLoc()), attrs(op->getAttrDictionary()),
|
|
operands(op->operand_begin(), op->operand_end()),
|
|
successors(op->successor_begin(), op->successor_end()) {
|
|
if (OpaqueProperties prop = op->getPropertiesStorage()) {
|
|
// Make a copy of the properties.
|
|
propertiesStorage = operator new(op->getPropertiesStorageSize());
|
|
OpaqueProperties propCopy(propertiesStorage);
|
|
name.initOpProperties(propCopy, /*init=*/prop);
|
|
}
|
|
}
|
|
|
|
static bool classof(const IRRewrite *rewrite) {
|
|
return rewrite->getKind() == Kind::ModifyOperation;
|
|
}
|
|
|
|
~ModifyOperationRewrite() override {
|
|
assert(!propertiesStorage &&
|
|
"rewrite was neither committed nor rolled back");
|
|
}
|
|
|
|
void commit(RewriterBase &rewriter) override {
|
|
// Notify the listener that the operation was modified in-place.
|
|
if (auto *listener =
|
|
dyn_cast_or_null<RewriterBase::Listener>(rewriter.getListener()))
|
|
listener->notifyOperationModified(op);
|
|
|
|
if (propertiesStorage) {
|
|
OpaqueProperties propCopy(propertiesStorage);
|
|
// Note: The operation may have been erased in the mean time, so
|
|
// OperationName must be stored in this object.
|
|
name.destroyOpProperties(propCopy);
|
|
operator delete(propertiesStorage);
|
|
propertiesStorage = nullptr;
|
|
}
|
|
}
|
|
|
|
void rollback() override {
|
|
op->setLoc(loc);
|
|
op->setAttrs(attrs);
|
|
op->setOperands(operands);
|
|
for (const auto &it : llvm::enumerate(successors))
|
|
op->setSuccessor(it.value(), it.index());
|
|
if (propertiesStorage) {
|
|
OpaqueProperties propCopy(propertiesStorage);
|
|
op->copyProperties(propCopy);
|
|
name.destroyOpProperties(propCopy);
|
|
operator delete(propertiesStorage);
|
|
propertiesStorage = nullptr;
|
|
}
|
|
}
|
|
|
|
private:
|
|
OperationName name;
|
|
LocationAttr loc;
|
|
DictionaryAttr attrs;
|
|
SmallVector<Value, 8> operands;
|
|
SmallVector<Block *, 2> successors;
|
|
void *propertiesStorage = nullptr;
|
|
};
|
|
|
|
/// Replacing an operation. Erasing an operation is treated as a special case
|
|
/// with "null" replacements. This rewrite is not immediately reflected in the
|
|
/// IR. An internal IR mapping is updated, but values are not replaced and the
|
|
/// original op is not erased until the rewrite is committed.
|
|
class ReplaceOperationRewrite : public OperationRewrite {
|
|
public:
|
|
ReplaceOperationRewrite(ConversionPatternRewriterImpl &rewriterImpl,
|
|
Operation *op, const TypeConverter *converter,
|
|
bool changedResults)
|
|
: OperationRewrite(Kind::ReplaceOperation, rewriterImpl, op),
|
|
converter(converter), changedResults(changedResults) {}
|
|
|
|
static bool classof(const IRRewrite *rewrite) {
|
|
return rewrite->getKind() == Kind::ReplaceOperation;
|
|
}
|
|
|
|
void commit(RewriterBase &rewriter) override;
|
|
|
|
void rollback() override;
|
|
|
|
void cleanup(RewriterBase &rewriter) override;
|
|
|
|
const TypeConverter *getConverter() const { return converter; }
|
|
|
|
bool hasChangedResults() const { return changedResults; }
|
|
|
|
private:
|
|
/// An optional type converter that can be used to materialize conversions
|
|
/// between the new and old values if necessary.
|
|
const TypeConverter *converter;
|
|
|
|
/// A boolean flag that indicates whether result types have changed or not.
|
|
bool changedResults;
|
|
};
|
|
|
|
class CreateOperationRewrite : public OperationRewrite {
|
|
public:
|
|
CreateOperationRewrite(ConversionPatternRewriterImpl &rewriterImpl,
|
|
Operation *op)
|
|
: OperationRewrite(Kind::CreateOperation, rewriterImpl, op) {}
|
|
|
|
static bool classof(const IRRewrite *rewrite) {
|
|
return rewrite->getKind() == Kind::CreateOperation;
|
|
}
|
|
|
|
void commit(RewriterBase &rewriter) override {
|
|
// The operation was already created and inserted. Just inform the listener.
|
|
if (auto *listener = rewriter.getListener())
|
|
listener->notifyOperationInserted(op, /*previous=*/{});
|
|
}
|
|
|
|
void rollback() override;
|
|
};
|
|
|
|
/// The type of materialization.
|
|
enum MaterializationKind {
|
|
/// This materialization materializes a conversion for an illegal block
|
|
/// argument type, to the original one.
|
|
Argument,
|
|
|
|
/// This materialization materializes a conversion from an illegal type to a
|
|
/// legal one.
|
|
Target,
|
|
|
|
/// This materialization materializes a conversion from a legal type back to
|
|
/// an illegal one.
|
|
Source
|
|
};
|
|
|
|
/// An unresolved materialization, i.e., a "builtin.unrealized_conversion_cast"
|
|
/// op. Unresolved materializations are erased at the end of the dialect
|
|
/// conversion.
|
|
class UnresolvedMaterializationRewrite : public OperationRewrite {
|
|
public:
|
|
UnresolvedMaterializationRewrite(
|
|
ConversionPatternRewriterImpl &rewriterImpl,
|
|
UnrealizedConversionCastOp op, const TypeConverter *converter = nullptr,
|
|
MaterializationKind kind = MaterializationKind::Target)
|
|
: OperationRewrite(Kind::UnresolvedMaterialization, rewriterImpl, op),
|
|
converterAndKind(converter, kind) {}
|
|
|
|
static bool classof(const IRRewrite *rewrite) {
|
|
return rewrite->getKind() == Kind::UnresolvedMaterialization;
|
|
}
|
|
|
|
UnrealizedConversionCastOp getOperation() const {
|
|
return cast<UnrealizedConversionCastOp>(op);
|
|
}
|
|
|
|
void rollback() override;
|
|
|
|
void cleanup(RewriterBase &rewriter) override;
|
|
|
|
/// Return the type converter of this materialization (which may be null).
|
|
const TypeConverter *getConverter() const {
|
|
return converterAndKind.getPointer();
|
|
}
|
|
|
|
/// Return the kind of this materialization.
|
|
MaterializationKind getMaterializationKind() const {
|
|
return converterAndKind.getInt();
|
|
}
|
|
|
|
private:
|
|
/// The corresponding type converter to use when resolving this
|
|
/// materialization, and the kind of this materialization.
|
|
llvm::PointerIntPair<const TypeConverter *, 2, MaterializationKind>
|
|
converterAndKind;
|
|
};
|
|
} // namespace
|
|
|
|
/// Return "true" if there is an operation rewrite that matches the specified
|
|
/// rewrite type and operation among the given rewrites.
|
|
template <typename RewriteTy, typename R>
|
|
static bool hasRewrite(R &&rewrites, Operation *op) {
|
|
return any_of(std::forward<R>(rewrites), [&](auto &rewrite) {
|
|
auto *rewriteTy = dyn_cast<RewriteTy>(rewrite.get());
|
|
return rewriteTy && rewriteTy->getOperation() == op;
|
|
});
|
|
}
|
|
|
|
/// Find the single rewrite object of the specified type and block among the
|
|
/// given rewrites. In debug mode, asserts that there is mo more than one such
|
|
/// object. Return "nullptr" if no object was found.
|
|
template <typename RewriteTy, typename R>
|
|
static RewriteTy *findSingleRewrite(R &&rewrites, Block *block) {
|
|
RewriteTy *result = nullptr;
|
|
for (auto &rewrite : rewrites) {
|
|
auto *rewriteTy = dyn_cast<RewriteTy>(rewrite.get());
|
|
if (rewriteTy && rewriteTy->getBlock() == block) {
|
|
#ifndef NDEBUG
|
|
assert(!result && "expected single matching rewrite");
|
|
result = rewriteTy;
|
|
#else
|
|
return rewriteTy;
|
|
#endif // NDEBUG
|
|
}
|
|
}
|
|
return result;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// ConversionPatternRewriterImpl
|
|
//===----------------------------------------------------------------------===//
|
|
namespace mlir {
|
|
namespace detail {
|
|
struct ConversionPatternRewriterImpl : public RewriterBase::Listener {
|
|
explicit ConversionPatternRewriterImpl(MLIRContext *ctx,
|
|
const ConversionConfig &config)
|
|
: context(ctx), config(config) {}
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// State Management
|
|
//===--------------------------------------------------------------------===//
|
|
|
|
/// Return the current state of the rewriter.
|
|
RewriterState getCurrentState();
|
|
|
|
/// Apply all requested operation rewrites. This method is invoked when the
|
|
/// conversion process succeeds.
|
|
void applyRewrites();
|
|
|
|
/// Reset the state of the rewriter to a previously saved point.
|
|
void resetState(RewriterState state);
|
|
|
|
/// Append a rewrite. Rewrites are committed upon success and rolled back upon
|
|
/// failure.
|
|
template <typename RewriteTy, typename... Args>
|
|
void appendRewrite(Args &&...args) {
|
|
rewrites.push_back(
|
|
std::make_unique<RewriteTy>(*this, std::forward<Args>(args)...));
|
|
}
|
|
|
|
/// Undo the rewrites (motions, splits) one by one in reverse order until
|
|
/// "numRewritesToKeep" rewrites remains.
|
|
void undoRewrites(unsigned numRewritesToKeep = 0);
|
|
|
|
/// Remap the given values to those with potentially different types. Returns
|
|
/// success if the values could be remapped, failure otherwise. `valueDiagTag`
|
|
/// is the tag used when describing a value within a diagnostic, e.g.
|
|
/// "operand".
|
|
LogicalResult remapValues(StringRef valueDiagTag,
|
|
std::optional<Location> inputLoc,
|
|
PatternRewriter &rewriter, ValueRange values,
|
|
SmallVectorImpl<Value> &remapped);
|
|
|
|
/// Return "true" if the given operation is ignored, and does not need to be
|
|
/// converted.
|
|
bool isOpIgnored(Operation *op) const;
|
|
|
|
/// Return "true" if the given operation was replaced or erased.
|
|
bool wasOpReplaced(Operation *op) const;
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// Type Conversion
|
|
//===--------------------------------------------------------------------===//
|
|
|
|
/// Convert the types of block arguments within the given region.
|
|
FailureOr<Block *>
|
|
convertRegionTypes(ConversionPatternRewriter &rewriter, Region *region,
|
|
const TypeConverter &converter,
|
|
TypeConverter::SignatureConversion *entryConversion);
|
|
|
|
/// Apply the given signature conversion on the given block. The new block
|
|
/// containing the updated signature is returned. If no conversions were
|
|
/// necessary, e.g. if the block has no arguments, `block` is returned.
|
|
/// `converter` is used to generate any necessary cast operations that
|
|
/// translate between the origin argument types and those specified in the
|
|
/// signature conversion.
|
|
Block *applySignatureConversion(
|
|
ConversionPatternRewriter &rewriter, Block *block,
|
|
const TypeConverter *converter,
|
|
TypeConverter::SignatureConversion &signatureConversion);
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// Materializations
|
|
//===--------------------------------------------------------------------===//
|
|
/// Build an unresolved materialization operation given an output type and set
|
|
/// of input operands.
|
|
Value buildUnresolvedMaterialization(MaterializationKind kind,
|
|
Block *insertBlock,
|
|
Block::iterator insertPt, Location loc,
|
|
ValueRange inputs, Type outputType,
|
|
const TypeConverter *converter);
|
|
|
|
Value buildUnresolvedTargetMaterialization(Location loc, Value input,
|
|
Type outputType,
|
|
const TypeConverter *converter);
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// Rewriter Notification Hooks
|
|
//===--------------------------------------------------------------------===//
|
|
|
|
//// Notifies that an op was inserted.
|
|
void notifyOperationInserted(Operation *op,
|
|
OpBuilder::InsertPoint previous) override;
|
|
|
|
/// Notifies that an op is about to be replaced with the given values.
|
|
void notifyOpReplaced(Operation *op, ValueRange newValues);
|
|
|
|
/// Notifies that a block is about to be erased.
|
|
void notifyBlockIsBeingErased(Block *block);
|
|
|
|
/// Notifies that a block was inserted.
|
|
void notifyBlockInserted(Block *block, Region *previous,
|
|
Region::iterator previousIt) override;
|
|
|
|
/// Notifies that a block is being inlined into another block.
|
|
void notifyBlockBeingInlined(Block *block, Block *srcBlock,
|
|
Block::iterator before);
|
|
|
|
/// Notifies that a pattern match failed for the given reason.
|
|
void
|
|
notifyMatchFailure(Location loc,
|
|
function_ref<void(Diagnostic &)> reasonCallback) override;
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// IR Erasure
|
|
//===--------------------------------------------------------------------===//
|
|
|
|
/// A rewriter that keeps track of erased ops and blocks. It ensures that no
|
|
/// operation or block is erased multiple times. This rewriter assumes that
|
|
/// no new IR is created between calls to `eraseOp`/`eraseBlock`.
|
|
struct SingleEraseRewriter : public RewriterBase, RewriterBase::Listener {
|
|
public:
|
|
SingleEraseRewriter(MLIRContext *context)
|
|
: RewriterBase(context, /*listener=*/this) {}
|
|
|
|
/// Erase the given op (unless it was already erased).
|
|
void eraseOp(Operation *op) override {
|
|
if (erased.contains(op))
|
|
return;
|
|
op->dropAllUses();
|
|
RewriterBase::eraseOp(op);
|
|
}
|
|
|
|
/// Erase the given block (unless it was already erased).
|
|
void eraseBlock(Block *block) override {
|
|
if (erased.contains(block))
|
|
return;
|
|
assert(block->empty() && "expected empty block");
|
|
block->dropAllDefinedValueUses();
|
|
RewriterBase::eraseBlock(block);
|
|
}
|
|
|
|
void notifyOperationErased(Operation *op) override { erased.insert(op); }
|
|
|
|
void notifyBlockErased(Block *block) override { erased.insert(block); }
|
|
|
|
/// Pointers to all erased operations and blocks.
|
|
DenseSet<void *> erased;
|
|
};
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// State
|
|
//===--------------------------------------------------------------------===//
|
|
|
|
/// MLIR context.
|
|
MLIRContext *context;
|
|
|
|
// Mapping between replaced values that differ in type. This happens when
|
|
// replacing a value with one of a different type.
|
|
ConversionValueMapping mapping;
|
|
|
|
/// Ordered list of block operations (creations, splits, motions).
|
|
SmallVector<std::unique_ptr<IRRewrite>> rewrites;
|
|
|
|
/// A set of operations that should no longer be considered for legalization.
|
|
/// E.g., ops that are recursively legal. Ops that were replaced/erased are
|
|
/// tracked separately.
|
|
SetVector<Operation *> ignoredOps;
|
|
|
|
/// A set of operations that were replaced/erased. Such ops are not erased
|
|
/// immediately but only when the dialect conversion succeeds. In the mean
|
|
/// time, they should no longer be considered for legalization and any attempt
|
|
/// to modify/access them is invalid rewriter API usage.
|
|
SetVector<Operation *> replacedOps;
|
|
|
|
/// The current type converter, or nullptr if no type converter is currently
|
|
/// active.
|
|
const TypeConverter *currentTypeConverter = nullptr;
|
|
|
|
/// A mapping of regions to type converters that should be used when
|
|
/// converting the arguments of blocks within that region.
|
|
DenseMap<Region *, const TypeConverter *> regionToConverter;
|
|
|
|
/// Dialect conversion configuration.
|
|
const ConversionConfig &config;
|
|
|
|
#ifndef NDEBUG
|
|
/// A set of operations that have pending updates. This tracking isn't
|
|
/// strictly necessary, and is thus only active during debug builds for extra
|
|
/// verification.
|
|
SmallPtrSet<Operation *, 1> pendingRootUpdates;
|
|
|
|
/// A logger used to emit diagnostics during the conversion process.
|
|
llvm::ScopedPrinter logger{llvm::dbgs()};
|
|
#endif
|
|
};
|
|
} // namespace detail
|
|
} // namespace mlir
|
|
|
|
const ConversionConfig &IRRewrite::getConfig() const {
|
|
return rewriterImpl.config;
|
|
}
|
|
|
|
void BlockTypeConversionRewrite::commit(RewriterBase &rewriter) {
|
|
// Inform the listener about all IR modifications that have already taken
|
|
// place: References to the original block have been replaced with the new
|
|
// block.
|
|
if (auto *listener =
|
|
dyn_cast_or_null<RewriterBase::Listener>(rewriter.getListener()))
|
|
for (Operation *op : block->getUsers())
|
|
listener->notifyOperationModified(op);
|
|
}
|
|
|
|
void BlockTypeConversionRewrite::rollback() {
|
|
block->replaceAllUsesWith(origBlock);
|
|
}
|
|
|
|
LogicalResult BlockTypeConversionRewrite::materializeLiveConversions(
|
|
function_ref<Operation *(Value)> findLiveUser) {
|
|
// Process the remapping for each of the original arguments.
|
|
for (auto it : llvm::enumerate(origBlock->getArguments())) {
|
|
BlockArgument origArg = it.value();
|
|
// Note: `block` may be detached, so OpBuilder::atBlockBegin cannot be used.
|
|
OpBuilder builder(it.value().getContext(), /*listener=*/&rewriterImpl);
|
|
builder.setInsertionPointToStart(block);
|
|
|
|
// If the type of this argument changed and the argument is still live, we
|
|
// need to materialize a conversion.
|
|
if (rewriterImpl.mapping.lookupOrNull(origArg, origArg.getType()))
|
|
continue;
|
|
Operation *liveUser = findLiveUser(origArg);
|
|
if (!liveUser)
|
|
continue;
|
|
|
|
Value replacementValue = rewriterImpl.mapping.lookupOrDefault(origArg);
|
|
assert(replacementValue && "replacement value not found");
|
|
Value newArg;
|
|
if (converter) {
|
|
builder.setInsertionPointAfterValue(replacementValue);
|
|
newArg = converter->materializeSourceConversion(
|
|
builder, origArg.getLoc(), origArg.getType(), replacementValue);
|
|
assert((!newArg || newArg.getType() == origArg.getType()) &&
|
|
"materialization hook did not provide a value of the expected "
|
|
"type");
|
|
}
|
|
if (!newArg) {
|
|
InFlightDiagnostic diag =
|
|
emitError(origArg.getLoc())
|
|
<< "failed to materialize conversion for block argument #"
|
|
<< it.index() << " that remained live after conversion, type was "
|
|
<< origArg.getType();
|
|
diag.attachNote(liveUser->getLoc())
|
|
<< "see existing live user here: " << *liveUser;
|
|
return failure();
|
|
}
|
|
rewriterImpl.mapping.map(origArg, newArg);
|
|
}
|
|
return success();
|
|
}
|
|
|
|
void ReplaceBlockArgRewrite::commit(RewriterBase &rewriter) {
|
|
Value repl = rewriterImpl.mapping.lookupOrNull(arg, arg.getType());
|
|
if (!repl)
|
|
return;
|
|
|
|
if (isa<BlockArgument>(repl)) {
|
|
rewriter.replaceAllUsesWith(arg, repl);
|
|
return;
|
|
}
|
|
|
|
// If the replacement value is an operation, we check to make sure that we
|
|
// don't replace uses that are within the parent operation of the
|
|
// replacement value.
|
|
Operation *replOp = cast<OpResult>(repl).getOwner();
|
|
Block *replBlock = replOp->getBlock();
|
|
rewriter.replaceUsesWithIf(arg, repl, [&](OpOperand &operand) {
|
|
Operation *user = operand.getOwner();
|
|
return user->getBlock() != replBlock || replOp->isBeforeInBlock(user);
|
|
});
|
|
}
|
|
|
|
void ReplaceBlockArgRewrite::rollback() { rewriterImpl.mapping.erase(arg); }
|
|
|
|
void ReplaceOperationRewrite::commit(RewriterBase &rewriter) {
|
|
auto *listener =
|
|
dyn_cast_or_null<RewriterBase::Listener>(rewriter.getListener());
|
|
|
|
// Compute replacement values.
|
|
SmallVector<Value> replacements =
|
|
llvm::map_to_vector(op->getResults(), [&](OpResult result) {
|
|
return rewriterImpl.mapping.lookupOrNull(result, result.getType());
|
|
});
|
|
|
|
// Notify the listener that the operation is about to be replaced.
|
|
if (listener)
|
|
listener->notifyOperationReplaced(op, replacements);
|
|
|
|
// Replace all uses with the new values.
|
|
for (auto [result, newValue] :
|
|
llvm::zip_equal(op->getResults(), replacements))
|
|
if (newValue)
|
|
rewriter.replaceAllUsesWith(result, newValue);
|
|
|
|
// The original op will be erased, so remove it from the set of unlegalized
|
|
// ops.
|
|
if (getConfig().unlegalizedOps)
|
|
getConfig().unlegalizedOps->erase(op);
|
|
|
|
// Notify the listener that the operation (and its nested operations) was
|
|
// erased.
|
|
if (listener) {
|
|
op->walk<WalkOrder::PostOrder>(
|
|
[&](Operation *op) { listener->notifyOperationErased(op); });
|
|
}
|
|
|
|
// Do not erase the operation yet. It may still be referenced in `mapping`.
|
|
// Just unlink it for now and erase it during cleanup.
|
|
op->getBlock()->getOperations().remove(op);
|
|
}
|
|
|
|
void ReplaceOperationRewrite::rollback() {
|
|
for (auto result : op->getResults())
|
|
rewriterImpl.mapping.erase(result);
|
|
}
|
|
|
|
void ReplaceOperationRewrite::cleanup(RewriterBase &rewriter) {
|
|
rewriter.eraseOp(op);
|
|
}
|
|
|
|
void CreateOperationRewrite::rollback() {
|
|
for (Region ®ion : op->getRegions()) {
|
|
while (!region.getBlocks().empty())
|
|
region.getBlocks().remove(region.getBlocks().begin());
|
|
}
|
|
op->dropAllUses();
|
|
op->erase();
|
|
}
|
|
|
|
void UnresolvedMaterializationRewrite::rollback() {
|
|
if (getMaterializationKind() == MaterializationKind::Target) {
|
|
for (Value input : op->getOperands())
|
|
rewriterImpl.mapping.erase(input);
|
|
}
|
|
op->erase();
|
|
}
|
|
|
|
void UnresolvedMaterializationRewrite::cleanup(RewriterBase &rewriter) {
|
|
rewriter.eraseOp(op);
|
|
}
|
|
|
|
void ConversionPatternRewriterImpl::applyRewrites() {
|
|
// Commit all rewrites.
|
|
IRRewriter rewriter(context, config.listener);
|
|
for (auto &rewrite : rewrites)
|
|
rewrite->commit(rewriter);
|
|
|
|
// Clean up all rewrites.
|
|
SingleEraseRewriter eraseRewriter(context);
|
|
for (auto &rewrite : rewrites)
|
|
rewrite->cleanup(eraseRewriter);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// State Management
|
|
|
|
RewriterState ConversionPatternRewriterImpl::getCurrentState() {
|
|
return RewriterState(rewrites.size(), ignoredOps.size(), replacedOps.size());
|
|
}
|
|
|
|
void ConversionPatternRewriterImpl::resetState(RewriterState state) {
|
|
// Undo any rewrites.
|
|
undoRewrites(state.numRewrites);
|
|
|
|
// Pop all of the recorded ignored operations that are no longer valid.
|
|
while (ignoredOps.size() != state.numIgnoredOperations)
|
|
ignoredOps.pop_back();
|
|
|
|
while (replacedOps.size() != state.numReplacedOps)
|
|
replacedOps.pop_back();
|
|
}
|
|
|
|
void ConversionPatternRewriterImpl::undoRewrites(unsigned numRewritesToKeep) {
|
|
for (auto &rewrite :
|
|
llvm::reverse(llvm::drop_begin(rewrites, numRewritesToKeep)))
|
|
rewrite->rollback();
|
|
rewrites.resize(numRewritesToKeep);
|
|
}
|
|
|
|
LogicalResult ConversionPatternRewriterImpl::remapValues(
|
|
StringRef valueDiagTag, std::optional<Location> inputLoc,
|
|
PatternRewriter &rewriter, ValueRange values,
|
|
SmallVectorImpl<Value> &remapped) {
|
|
remapped.reserve(llvm::size(values));
|
|
|
|
SmallVector<Type, 1> legalTypes;
|
|
for (const auto &it : llvm::enumerate(values)) {
|
|
Value operand = it.value();
|
|
Type origType = operand.getType();
|
|
|
|
// If a converter was provided, get the desired legal types for this
|
|
// operand.
|
|
Type desiredType;
|
|
if (currentTypeConverter) {
|
|
// If there is no legal conversion, fail to match this pattern.
|
|
legalTypes.clear();
|
|
if (failed(currentTypeConverter->convertType(origType, legalTypes))) {
|
|
Location operandLoc = inputLoc ? *inputLoc : operand.getLoc();
|
|
notifyMatchFailure(operandLoc, [=](Diagnostic &diag) {
|
|
diag << "unable to convert type for " << valueDiagTag << " #"
|
|
<< it.index() << ", type was " << origType;
|
|
});
|
|
return failure();
|
|
}
|
|
// TODO: There currently isn't any mechanism to do 1->N type conversion
|
|
// via the PatternRewriter replacement API, so for now we just ignore it.
|
|
if (legalTypes.size() == 1)
|
|
desiredType = legalTypes.front();
|
|
} else {
|
|
// TODO: What we should do here is just set `desiredType` to `origType`
|
|
// and then handle the necessary type conversions after the conversion
|
|
// process has finished. Unfortunately a lot of patterns currently rely on
|
|
// receiving the new operands even if the types change, so we keep the
|
|
// original behavior here for now until all of the patterns relying on
|
|
// this get updated.
|
|
}
|
|
Value newOperand = mapping.lookupOrDefault(operand, desiredType);
|
|
|
|
// Handle the case where the conversion was 1->1 and the new operand type
|
|
// isn't legal.
|
|
Type newOperandType = newOperand.getType();
|
|
if (currentTypeConverter && desiredType && newOperandType != desiredType) {
|
|
Location operandLoc = inputLoc ? *inputLoc : operand.getLoc();
|
|
Value castValue = buildUnresolvedTargetMaterialization(
|
|
operandLoc, newOperand, desiredType, currentTypeConverter);
|
|
mapping.map(mapping.lookupOrDefault(newOperand), castValue);
|
|
newOperand = castValue;
|
|
}
|
|
remapped.push_back(newOperand);
|
|
}
|
|
return success();
|
|
}
|
|
|
|
bool ConversionPatternRewriterImpl::isOpIgnored(Operation *op) const {
|
|
// Check to see if this operation is ignored or was replaced.
|
|
return replacedOps.count(op) || ignoredOps.count(op);
|
|
}
|
|
|
|
bool ConversionPatternRewriterImpl::wasOpReplaced(Operation *op) const {
|
|
// Check to see if this operation was replaced.
|
|
return replacedOps.count(op);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Type Conversion
|
|
|
|
FailureOr<Block *> ConversionPatternRewriterImpl::convertRegionTypes(
|
|
ConversionPatternRewriter &rewriter, Region *region,
|
|
const TypeConverter &converter,
|
|
TypeConverter::SignatureConversion *entryConversion) {
|
|
regionToConverter[region] = &converter;
|
|
if (region->empty())
|
|
return nullptr;
|
|
|
|
// Convert the arguments of each non-entry block within the region.
|
|
for (Block &block :
|
|
llvm::make_early_inc_range(llvm::drop_begin(*region, 1))) {
|
|
// Compute the signature for the block with the provided converter.
|
|
std::optional<TypeConverter::SignatureConversion> conversion =
|
|
converter.convertBlockSignature(&block);
|
|
if (!conversion)
|
|
return failure();
|
|
// Convert the block with the computed signature.
|
|
applySignatureConversion(rewriter, &block, &converter, *conversion);
|
|
}
|
|
|
|
// Convert the entry block. If an entry signature conversion was provided,
|
|
// use that one. Otherwise, compute the signature with the type converter.
|
|
if (entryConversion)
|
|
return applySignatureConversion(rewriter, ®ion->front(), &converter,
|
|
*entryConversion);
|
|
std::optional<TypeConverter::SignatureConversion> conversion =
|
|
converter.convertBlockSignature(®ion->front());
|
|
if (!conversion)
|
|
return failure();
|
|
return applySignatureConversion(rewriter, ®ion->front(), &converter,
|
|
*conversion);
|
|
}
|
|
|
|
Block *ConversionPatternRewriterImpl::applySignatureConversion(
|
|
ConversionPatternRewriter &rewriter, Block *block,
|
|
const TypeConverter *converter,
|
|
TypeConverter::SignatureConversion &signatureConversion) {
|
|
OpBuilder::InsertionGuard g(rewriter);
|
|
|
|
// If no arguments are being changed or added, there is nothing to do.
|
|
unsigned origArgCount = block->getNumArguments();
|
|
auto convertedTypes = signatureConversion.getConvertedTypes();
|
|
if (llvm::equal(block->getArgumentTypes(), convertedTypes))
|
|
return block;
|
|
|
|
// Compute the locations of all block arguments in the new block.
|
|
SmallVector<Location> newLocs(convertedTypes.size(),
|
|
rewriter.getUnknownLoc());
|
|
for (unsigned i = 0; i < origArgCount; ++i) {
|
|
auto inputMap = signatureConversion.getInputMapping(i);
|
|
if (!inputMap || inputMap->replacementValue)
|
|
continue;
|
|
Location origLoc = block->getArgument(i).getLoc();
|
|
for (unsigned j = 0; j < inputMap->size; ++j)
|
|
newLocs[inputMap->inputNo + j] = origLoc;
|
|
}
|
|
|
|
// Insert a new block with the converted block argument types and move all ops
|
|
// from the old block to the new block.
|
|
Block *newBlock =
|
|
rewriter.createBlock(block->getParent(), std::next(block->getIterator()),
|
|
convertedTypes, newLocs);
|
|
|
|
// If a listener is attached to the dialect conversion, ops cannot be moved
|
|
// to the destination block in bulk ("fast path"). This is because at the time
|
|
// the notifications are sent, it is unknown which ops were moved. Instead,
|
|
// ops should be moved one-by-one ("slow path"), so that a separate
|
|
// `MoveOperationRewrite` is enqueued for each moved op. Moving ops in bulk is
|
|
// a bit more efficient, so we try to do that when possible.
|
|
bool fastPath = !config.listener;
|
|
if (fastPath) {
|
|
appendRewrite<InlineBlockRewrite>(newBlock, block, newBlock->end());
|
|
newBlock->getOperations().splice(newBlock->end(), block->getOperations());
|
|
} else {
|
|
while (!block->empty())
|
|
rewriter.moveOpBefore(&block->front(), newBlock, newBlock->end());
|
|
}
|
|
|
|
// Replace all uses of the old block with the new block.
|
|
block->replaceAllUsesWith(newBlock);
|
|
|
|
for (unsigned i = 0; i != origArgCount; ++i) {
|
|
BlockArgument origArg = block->getArgument(i);
|
|
Type origArgType = origArg.getType();
|
|
|
|
std::optional<TypeConverter::SignatureConversion::InputMapping> inputMap =
|
|
signatureConversion.getInputMapping(i);
|
|
if (!inputMap) {
|
|
// This block argument was dropped and no replacement value was provided.
|
|
// Materialize a replacement value "out of thin air".
|
|
Value repl = buildUnresolvedMaterialization(
|
|
MaterializationKind::Source, newBlock, newBlock->begin(),
|
|
origArg.getLoc(), /*inputs=*/ValueRange(),
|
|
/*outputType=*/origArgType, converter);
|
|
mapping.map(origArg, repl);
|
|
appendRewrite<ReplaceBlockArgRewrite>(block, origArg);
|
|
continue;
|
|
}
|
|
|
|
if (Value repl = inputMap->replacementValue) {
|
|
// This block argument was dropped and a replacement value was provided.
|
|
assert(inputMap->size == 0 &&
|
|
"invalid to provide a replacement value when the argument isn't "
|
|
"dropped");
|
|
mapping.map(origArg, repl);
|
|
appendRewrite<ReplaceBlockArgRewrite>(block, origArg);
|
|
continue;
|
|
}
|
|
|
|
// This is a 1->1+ mapping. 1->N mappings are not fully supported in the
|
|
// dialect conversion. Therefore, we need an argument materialization to
|
|
// turn the replacement block arguments into a single SSA value that can be
|
|
// used as a replacement.
|
|
auto replArgs =
|
|
newBlock->getArguments().slice(inputMap->inputNo, inputMap->size);
|
|
Value argMat = buildUnresolvedMaterialization(
|
|
MaterializationKind::Argument, newBlock, newBlock->begin(),
|
|
origArg.getLoc(), /*inputs=*/replArgs, origArgType, converter);
|
|
mapping.map(origArg, argMat);
|
|
appendRewrite<ReplaceBlockArgRewrite>(block, origArg);
|
|
|
|
Type legalOutputType;
|
|
if (converter) {
|
|
legalOutputType = converter->convertType(origArgType);
|
|
} else if (replArgs.size() == 1) {
|
|
// When there is no type converter, assume that the new block argument
|
|
// types are legal. This is reasonable to assume because they were
|
|
// specified by the user.
|
|
// FIXME: This won't work for 1->N conversions because multiple output
|
|
// types are not supported in parts of the dialect conversion. In such a
|
|
// case, we currently use the original block argument type (produced by
|
|
// the argument materialization).
|
|
legalOutputType = replArgs[0].getType();
|
|
}
|
|
if (legalOutputType && legalOutputType != origArgType) {
|
|
Value targetMat = buildUnresolvedTargetMaterialization(
|
|
origArg.getLoc(), argMat, legalOutputType, converter);
|
|
mapping.map(argMat, targetMat);
|
|
}
|
|
appendRewrite<ReplaceBlockArgRewrite>(block, origArg);
|
|
}
|
|
|
|
appendRewrite<BlockTypeConversionRewrite>(newBlock, block, converter);
|
|
|
|
// Erase the old block. (It is just unlinked for now and will be erased during
|
|
// cleanup.)
|
|
rewriter.eraseBlock(block);
|
|
|
|
return newBlock;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Materializations
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// Build an unresolved materialization operation given an output type and set
|
|
/// of input operands.
|
|
Value ConversionPatternRewriterImpl::buildUnresolvedMaterialization(
|
|
MaterializationKind kind, Block *insertBlock, Block::iterator insertPt,
|
|
Location loc, ValueRange inputs, Type outputType,
|
|
const TypeConverter *converter) {
|
|
// Avoid materializing an unnecessary cast.
|
|
if (inputs.size() == 1 && inputs.front().getType() == outputType)
|
|
return inputs.front();
|
|
|
|
// Create an unresolved materialization. We use a new OpBuilder to avoid
|
|
// tracking the materialization like we do for other operations.
|
|
OpBuilder builder(outputType.getContext());
|
|
builder.setInsertionPoint(insertBlock, insertPt);
|
|
auto convertOp =
|
|
builder.create<UnrealizedConversionCastOp>(loc, outputType, inputs);
|
|
appendRewrite<UnresolvedMaterializationRewrite>(convertOp, converter, kind);
|
|
return convertOp.getResult(0);
|
|
}
|
|
Value ConversionPatternRewriterImpl::buildUnresolvedTargetMaterialization(
|
|
Location loc, Value input, Type outputType,
|
|
const TypeConverter *converter) {
|
|
Block *insertBlock = input.getParentBlock();
|
|
Block::iterator insertPt = insertBlock->begin();
|
|
if (OpResult inputRes = dyn_cast<OpResult>(input))
|
|
insertPt = ++inputRes.getOwner()->getIterator();
|
|
|
|
return buildUnresolvedMaterialization(MaterializationKind::Target,
|
|
insertBlock, insertPt, loc, input,
|
|
outputType, converter);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Rewriter Notification Hooks
|
|
|
|
void ConversionPatternRewriterImpl::notifyOperationInserted(
|
|
Operation *op, OpBuilder::InsertPoint previous) {
|
|
LLVM_DEBUG({
|
|
logger.startLine() << "** Insert : '" << op->getName() << "'(" << op
|
|
<< ")\n";
|
|
});
|
|
assert(!wasOpReplaced(op->getParentOp()) &&
|
|
"attempting to insert into a block within a replaced/erased op");
|
|
|
|
if (!previous.isSet()) {
|
|
// This is a newly created op.
|
|
appendRewrite<CreateOperationRewrite>(op);
|
|
return;
|
|
}
|
|
Operation *prevOp = previous.getPoint() == previous.getBlock()->end()
|
|
? nullptr
|
|
: &*previous.getPoint();
|
|
appendRewrite<MoveOperationRewrite>(op, previous.getBlock(), prevOp);
|
|
}
|
|
|
|
void ConversionPatternRewriterImpl::notifyOpReplaced(Operation *op,
|
|
ValueRange newValues) {
|
|
assert(newValues.size() == op->getNumResults());
|
|
assert(!ignoredOps.contains(op) && "operation was already replaced");
|
|
|
|
// Track if any of the results changed, e.g. erased and replaced with null.
|
|
bool resultChanged = false;
|
|
|
|
// Create mappings for each of the new result values.
|
|
for (auto [newValue, result] : llvm::zip(newValues, op->getResults())) {
|
|
if (!newValue) {
|
|
resultChanged = true;
|
|
continue;
|
|
}
|
|
// Remap, and check for any result type changes.
|
|
mapping.map(result, newValue);
|
|
resultChanged |= (newValue.getType() != result.getType());
|
|
}
|
|
|
|
appendRewrite<ReplaceOperationRewrite>(op, currentTypeConverter,
|
|
resultChanged);
|
|
|
|
// Mark this operation and all nested ops as replaced.
|
|
op->walk([&](Operation *op) { replacedOps.insert(op); });
|
|
}
|
|
|
|
void ConversionPatternRewriterImpl::notifyBlockIsBeingErased(Block *block) {
|
|
appendRewrite<EraseBlockRewrite>(block);
|
|
}
|
|
|
|
void ConversionPatternRewriterImpl::notifyBlockInserted(
|
|
Block *block, Region *previous, Region::iterator previousIt) {
|
|
assert(!wasOpReplaced(block->getParentOp()) &&
|
|
"attempting to insert into a region within a replaced/erased op");
|
|
LLVM_DEBUG(
|
|
{
|
|
Operation *parent = block->getParentOp();
|
|
if (parent) {
|
|
logger.startLine() << "** Insert Block into : '" << parent->getName()
|
|
<< "'(" << parent << ")\n";
|
|
} else {
|
|
logger.startLine()
|
|
<< "** Insert Block into detached Region (nullptr parent op)'";
|
|
}
|
|
});
|
|
|
|
if (!previous) {
|
|
// This is a newly created block.
|
|
appendRewrite<CreateBlockRewrite>(block);
|
|
return;
|
|
}
|
|
Block *prevBlock = previousIt == previous->end() ? nullptr : &*previousIt;
|
|
appendRewrite<MoveBlockRewrite>(block, previous, prevBlock);
|
|
}
|
|
|
|
void ConversionPatternRewriterImpl::notifyBlockBeingInlined(
|
|
Block *block, Block *srcBlock, Block::iterator before) {
|
|
appendRewrite<InlineBlockRewrite>(block, srcBlock, before);
|
|
}
|
|
|
|
void ConversionPatternRewriterImpl::notifyMatchFailure(
|
|
Location loc, function_ref<void(Diagnostic &)> reasonCallback) {
|
|
LLVM_DEBUG({
|
|
Diagnostic diag(loc, DiagnosticSeverity::Remark);
|
|
reasonCallback(diag);
|
|
logger.startLine() << "** Failure : " << diag.str() << "\n";
|
|
if (config.notifyCallback)
|
|
config.notifyCallback(diag);
|
|
});
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// ConversionPatternRewriter
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
ConversionPatternRewriter::ConversionPatternRewriter(
|
|
MLIRContext *ctx, const ConversionConfig &config)
|
|
: PatternRewriter(ctx),
|
|
impl(new detail::ConversionPatternRewriterImpl(ctx, config)) {
|
|
setListener(impl.get());
|
|
}
|
|
|
|
ConversionPatternRewriter::~ConversionPatternRewriter() = default;
|
|
|
|
void ConversionPatternRewriter::replaceOp(Operation *op, Operation *newOp) {
|
|
assert(op && newOp && "expected non-null op");
|
|
replaceOp(op, newOp->getResults());
|
|
}
|
|
|
|
void ConversionPatternRewriter::replaceOp(Operation *op, ValueRange newValues) {
|
|
assert(op->getNumResults() == newValues.size() &&
|
|
"incorrect # of replacement values");
|
|
LLVM_DEBUG({
|
|
impl->logger.startLine()
|
|
<< "** Replace : '" << op->getName() << "'(" << op << ")\n";
|
|
});
|
|
impl->notifyOpReplaced(op, newValues);
|
|
}
|
|
|
|
void ConversionPatternRewriter::eraseOp(Operation *op) {
|
|
LLVM_DEBUG({
|
|
impl->logger.startLine()
|
|
<< "** Erase : '" << op->getName() << "'(" << op << ")\n";
|
|
});
|
|
SmallVector<Value, 1> nullRepls(op->getNumResults(), nullptr);
|
|
impl->notifyOpReplaced(op, nullRepls);
|
|
}
|
|
|
|
void ConversionPatternRewriter::eraseBlock(Block *block) {
|
|
assert(!impl->wasOpReplaced(block->getParentOp()) &&
|
|
"attempting to erase a block within a replaced/erased op");
|
|
|
|
// Mark all ops for erasure.
|
|
for (Operation &op : *block)
|
|
eraseOp(&op);
|
|
|
|
// Unlink the block from its parent region. The block is kept in the rewrite
|
|
// object and will be actually destroyed when rewrites are applied. This
|
|
// allows us to keep the operations in the block live and undo the removal by
|
|
// re-inserting the block.
|
|
impl->notifyBlockIsBeingErased(block);
|
|
block->getParent()->getBlocks().remove(block);
|
|
}
|
|
|
|
Block *ConversionPatternRewriter::applySignatureConversion(
|
|
Block *block, TypeConverter::SignatureConversion &conversion,
|
|
const TypeConverter *converter) {
|
|
assert(!impl->wasOpReplaced(block->getParentOp()) &&
|
|
"attempting to apply a signature conversion to a block within a "
|
|
"replaced/erased op");
|
|
return impl->applySignatureConversion(*this, block, converter, conversion);
|
|
}
|
|
|
|
FailureOr<Block *> ConversionPatternRewriter::convertRegionTypes(
|
|
Region *region, const TypeConverter &converter,
|
|
TypeConverter::SignatureConversion *entryConversion) {
|
|
assert(!impl->wasOpReplaced(region->getParentOp()) &&
|
|
"attempting to apply a signature conversion to a block within a "
|
|
"replaced/erased op");
|
|
return impl->convertRegionTypes(*this, region, converter, entryConversion);
|
|
}
|
|
|
|
void ConversionPatternRewriter::replaceUsesOfBlockArgument(BlockArgument from,
|
|
Value to) {
|
|
LLVM_DEBUG({
|
|
Operation *parentOp = from.getOwner()->getParentOp();
|
|
impl->logger.startLine() << "** Replace Argument : '" << from
|
|
<< "'(in region of '" << parentOp->getName()
|
|
<< "'(" << from.getOwner()->getParentOp() << ")\n";
|
|
});
|
|
impl->appendRewrite<ReplaceBlockArgRewrite>(from.getOwner(), from);
|
|
impl->mapping.map(impl->mapping.lookupOrDefault(from), to);
|
|
}
|
|
|
|
Value ConversionPatternRewriter::getRemappedValue(Value key) {
|
|
SmallVector<Value> remappedValues;
|
|
if (failed(impl->remapValues("value", /*inputLoc=*/std::nullopt, *this, key,
|
|
remappedValues)))
|
|
return nullptr;
|
|
return remappedValues.front();
|
|
}
|
|
|
|
LogicalResult
|
|
ConversionPatternRewriter::getRemappedValues(ValueRange keys,
|
|
SmallVectorImpl<Value> &results) {
|
|
if (keys.empty())
|
|
return success();
|
|
return impl->remapValues("value", /*inputLoc=*/std::nullopt, *this, keys,
|
|
results);
|
|
}
|
|
|
|
void ConversionPatternRewriter::inlineBlockBefore(Block *source, Block *dest,
|
|
Block::iterator before,
|
|
ValueRange argValues) {
|
|
#ifndef NDEBUG
|
|
assert(argValues.size() == source->getNumArguments() &&
|
|
"incorrect # of argument replacement values");
|
|
assert(!impl->wasOpReplaced(source->getParentOp()) &&
|
|
"attempting to inline a block from a replaced/erased op");
|
|
assert(!impl->wasOpReplaced(dest->getParentOp()) &&
|
|
"attempting to inline a block into a replaced/erased op");
|
|
auto opIgnored = [&](Operation *op) { return impl->isOpIgnored(op); };
|
|
// The source block will be deleted, so it should not have any users (i.e.,
|
|
// there should be no predecessors).
|
|
assert(llvm::all_of(source->getUsers(), opIgnored) &&
|
|
"expected 'source' to have no predecessors");
|
|
#endif // NDEBUG
|
|
|
|
// If a listener is attached to the dialect conversion, ops cannot be moved
|
|
// to the destination block in bulk ("fast path"). This is because at the time
|
|
// the notifications are sent, it is unknown which ops were moved. Instead,
|
|
// ops should be moved one-by-one ("slow path"), so that a separate
|
|
// `MoveOperationRewrite` is enqueued for each moved op. Moving ops in bulk is
|
|
// a bit more efficient, so we try to do that when possible.
|
|
bool fastPath = !impl->config.listener;
|
|
|
|
if (fastPath)
|
|
impl->notifyBlockBeingInlined(dest, source, before);
|
|
|
|
// Replace all uses of block arguments.
|
|
for (auto it : llvm::zip(source->getArguments(), argValues))
|
|
replaceUsesOfBlockArgument(std::get<0>(it), std::get<1>(it));
|
|
|
|
if (fastPath) {
|
|
// Move all ops at once.
|
|
dest->getOperations().splice(before, source->getOperations());
|
|
} else {
|
|
// Move op by op.
|
|
while (!source->empty())
|
|
moveOpBefore(&source->front(), dest, before);
|
|
}
|
|
|
|
// Erase the source block.
|
|
eraseBlock(source);
|
|
}
|
|
|
|
void ConversionPatternRewriter::startOpModification(Operation *op) {
|
|
assert(!impl->wasOpReplaced(op) &&
|
|
"attempting to modify a replaced/erased op");
|
|
#ifndef NDEBUG
|
|
impl->pendingRootUpdates.insert(op);
|
|
#endif
|
|
impl->appendRewrite<ModifyOperationRewrite>(op);
|
|
}
|
|
|
|
void ConversionPatternRewriter::finalizeOpModification(Operation *op) {
|
|
assert(!impl->wasOpReplaced(op) &&
|
|
"attempting to modify a replaced/erased op");
|
|
PatternRewriter::finalizeOpModification(op);
|
|
// There is nothing to do here, we only need to track the operation at the
|
|
// start of the update.
|
|
#ifndef NDEBUG
|
|
assert(impl->pendingRootUpdates.erase(op) &&
|
|
"operation did not have a pending in-place update");
|
|
#endif
|
|
}
|
|
|
|
void ConversionPatternRewriter::cancelOpModification(Operation *op) {
|
|
#ifndef NDEBUG
|
|
assert(impl->pendingRootUpdates.erase(op) &&
|
|
"operation did not have a pending in-place update");
|
|
#endif
|
|
// Erase the last update for this operation.
|
|
auto it = llvm::find_if(
|
|
llvm::reverse(impl->rewrites), [&](std::unique_ptr<IRRewrite> &rewrite) {
|
|
auto *modifyRewrite = dyn_cast<ModifyOperationRewrite>(rewrite.get());
|
|
return modifyRewrite && modifyRewrite->getOperation() == op;
|
|
});
|
|
assert(it != impl->rewrites.rend() && "no root update started on op");
|
|
(*it)->rollback();
|
|
int updateIdx = std::prev(impl->rewrites.rend()) - it;
|
|
impl->rewrites.erase(impl->rewrites.begin() + updateIdx);
|
|
}
|
|
|
|
detail::ConversionPatternRewriterImpl &ConversionPatternRewriter::getImpl() {
|
|
return *impl;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// ConversionPattern
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
LogicalResult
|
|
ConversionPattern::matchAndRewrite(Operation *op,
|
|
PatternRewriter &rewriter) const {
|
|
auto &dialectRewriter = static_cast<ConversionPatternRewriter &>(rewriter);
|
|
auto &rewriterImpl = dialectRewriter.getImpl();
|
|
|
|
// Track the current conversion pattern type converter in the rewriter.
|
|
llvm::SaveAndRestore currentConverterGuard(rewriterImpl.currentTypeConverter,
|
|
getTypeConverter());
|
|
|
|
// Remap the operands of the operation.
|
|
SmallVector<Value, 4> operands;
|
|
if (failed(rewriterImpl.remapValues("operand", op->getLoc(), rewriter,
|
|
op->getOperands(), operands))) {
|
|
return failure();
|
|
}
|
|
return matchAndRewrite(op, operands, dialectRewriter);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// OperationLegalizer
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
/// A set of rewrite patterns that can be used to legalize a given operation.
|
|
using LegalizationPatterns = SmallVector<const Pattern *, 1>;
|
|
|
|
/// This class defines a recursive operation legalizer.
|
|
class OperationLegalizer {
|
|
public:
|
|
using LegalizationAction = ConversionTarget::LegalizationAction;
|
|
|
|
OperationLegalizer(const ConversionTarget &targetInfo,
|
|
const FrozenRewritePatternSet &patterns,
|
|
const ConversionConfig &config);
|
|
|
|
/// Returns true if the given operation is known to be illegal on the target.
|
|
bool isIllegal(Operation *op) const;
|
|
|
|
/// Attempt to legalize the given operation. Returns success if the operation
|
|
/// was legalized, failure otherwise.
|
|
LogicalResult legalize(Operation *op, ConversionPatternRewriter &rewriter);
|
|
|
|
/// Returns the conversion target in use by the legalizer.
|
|
const ConversionTarget &getTarget() { return target; }
|
|
|
|
private:
|
|
/// Attempt to legalize the given operation by folding it.
|
|
LogicalResult legalizeWithFold(Operation *op,
|
|
ConversionPatternRewriter &rewriter);
|
|
|
|
/// Attempt to legalize the given operation by applying a pattern. Returns
|
|
/// success if the operation was legalized, failure otherwise.
|
|
LogicalResult legalizeWithPattern(Operation *op,
|
|
ConversionPatternRewriter &rewriter);
|
|
|
|
/// Return true if the given pattern may be applied to the given operation,
|
|
/// false otherwise.
|
|
bool canApplyPattern(Operation *op, const Pattern &pattern,
|
|
ConversionPatternRewriter &rewriter);
|
|
|
|
/// Legalize the resultant IR after successfully applying the given pattern.
|
|
LogicalResult legalizePatternResult(Operation *op, const Pattern &pattern,
|
|
ConversionPatternRewriter &rewriter,
|
|
RewriterState &curState);
|
|
|
|
/// Legalizes the actions registered during the execution of a pattern.
|
|
LogicalResult
|
|
legalizePatternBlockRewrites(Operation *op,
|
|
ConversionPatternRewriter &rewriter,
|
|
ConversionPatternRewriterImpl &impl,
|
|
RewriterState &state, RewriterState &newState);
|
|
LogicalResult legalizePatternCreatedOperations(
|
|
ConversionPatternRewriter &rewriter, ConversionPatternRewriterImpl &impl,
|
|
RewriterState &state, RewriterState &newState);
|
|
LogicalResult legalizePatternRootUpdates(ConversionPatternRewriter &rewriter,
|
|
ConversionPatternRewriterImpl &impl,
|
|
RewriterState &state,
|
|
RewriterState &newState);
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// Cost Model
|
|
//===--------------------------------------------------------------------===//
|
|
|
|
/// Build an optimistic legalization graph given the provided patterns. This
|
|
/// function populates 'anyOpLegalizerPatterns' and 'legalizerPatterns' with
|
|
/// patterns for operations that are not directly legal, but may be
|
|
/// transitively legal for the current target given the provided patterns.
|
|
void buildLegalizationGraph(
|
|
LegalizationPatterns &anyOpLegalizerPatterns,
|
|
DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns);
|
|
|
|
/// Compute the benefit of each node within the computed legalization graph.
|
|
/// This orders the patterns within 'legalizerPatterns' based upon two
|
|
/// criteria:
|
|
/// 1) Prefer patterns that have the lowest legalization depth, i.e.
|
|
/// represent the more direct mapping to the target.
|
|
/// 2) When comparing patterns with the same legalization depth, prefer the
|
|
/// pattern with the highest PatternBenefit. This allows for users to
|
|
/// prefer specific legalizations over others.
|
|
void computeLegalizationGraphBenefit(
|
|
LegalizationPatterns &anyOpLegalizerPatterns,
|
|
DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns);
|
|
|
|
/// Compute the legalization depth when legalizing an operation of the given
|
|
/// type.
|
|
unsigned computeOpLegalizationDepth(
|
|
OperationName op, DenseMap<OperationName, unsigned> &minOpPatternDepth,
|
|
DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns);
|
|
|
|
/// Apply the conversion cost model to the given set of patterns, and return
|
|
/// the smallest legalization depth of any of the patterns. See
|
|
/// `computeLegalizationGraphBenefit` for the breakdown of the cost model.
|
|
unsigned applyCostModelToPatterns(
|
|
LegalizationPatterns &patterns,
|
|
DenseMap<OperationName, unsigned> &minOpPatternDepth,
|
|
DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns);
|
|
|
|
/// The current set of patterns that have been applied.
|
|
SmallPtrSet<const Pattern *, 8> appliedPatterns;
|
|
|
|
/// The legalization information provided by the target.
|
|
const ConversionTarget ⌖
|
|
|
|
/// The pattern applicator to use for conversions.
|
|
PatternApplicator applicator;
|
|
|
|
/// Dialect conversion configuration.
|
|
const ConversionConfig &config;
|
|
};
|
|
} // namespace
|
|
|
|
OperationLegalizer::OperationLegalizer(const ConversionTarget &targetInfo,
|
|
const FrozenRewritePatternSet &patterns,
|
|
const ConversionConfig &config)
|
|
: target(targetInfo), applicator(patterns), config(config) {
|
|
// The set of patterns that can be applied to illegal operations to transform
|
|
// them into legal ones.
|
|
DenseMap<OperationName, LegalizationPatterns> legalizerPatterns;
|
|
LegalizationPatterns anyOpLegalizerPatterns;
|
|
|
|
buildLegalizationGraph(anyOpLegalizerPatterns, legalizerPatterns);
|
|
computeLegalizationGraphBenefit(anyOpLegalizerPatterns, legalizerPatterns);
|
|
}
|
|
|
|
bool OperationLegalizer::isIllegal(Operation *op) const {
|
|
return target.isIllegal(op);
|
|
}
|
|
|
|
LogicalResult
|
|
OperationLegalizer::legalize(Operation *op,
|
|
ConversionPatternRewriter &rewriter) {
|
|
#ifndef NDEBUG
|
|
const char *logLineComment =
|
|
"//===-------------------------------------------===//\n";
|
|
|
|
auto &logger = rewriter.getImpl().logger;
|
|
#endif
|
|
LLVM_DEBUG({
|
|
logger.getOStream() << "\n";
|
|
logger.startLine() << logLineComment;
|
|
logger.startLine() << "Legalizing operation : '" << op->getName() << "'("
|
|
<< op << ") {\n";
|
|
logger.indent();
|
|
|
|
// If the operation has no regions, just print it here.
|
|
if (op->getNumRegions() == 0) {
|
|
op->print(logger.startLine(), OpPrintingFlags().printGenericOpForm());
|
|
logger.getOStream() << "\n\n";
|
|
}
|
|
});
|
|
|
|
// Check if this operation is legal on the target.
|
|
if (auto legalityInfo = target.isLegal(op)) {
|
|
LLVM_DEBUG({
|
|
logSuccess(
|
|
logger, "operation marked legal by the target{0}",
|
|
legalityInfo->isRecursivelyLegal
|
|
? "; NOTE: operation is recursively legal; skipping internals"
|
|
: "");
|
|
logger.startLine() << logLineComment;
|
|
});
|
|
|
|
// If this operation is recursively legal, mark its children as ignored so
|
|
// that we don't consider them for legalization.
|
|
if (legalityInfo->isRecursivelyLegal) {
|
|
op->walk([&](Operation *nested) {
|
|
if (op != nested)
|
|
rewriter.getImpl().ignoredOps.insert(nested);
|
|
});
|
|
}
|
|
|
|
return success();
|
|
}
|
|
|
|
// Check to see if the operation is ignored and doesn't need to be converted.
|
|
if (rewriter.getImpl().isOpIgnored(op)) {
|
|
LLVM_DEBUG({
|
|
logSuccess(logger, "operation marked 'ignored' during conversion");
|
|
logger.startLine() << logLineComment;
|
|
});
|
|
return success();
|
|
}
|
|
|
|
// If the operation isn't legal, try to fold it in-place.
|
|
// TODO: Should we always try to do this, even if the op is
|
|
// already legal?
|
|
if (succeeded(legalizeWithFold(op, rewriter))) {
|
|
LLVM_DEBUG({
|
|
logSuccess(logger, "operation was folded");
|
|
logger.startLine() << logLineComment;
|
|
});
|
|
return success();
|
|
}
|
|
|
|
// Otherwise, we need to apply a legalization pattern to this operation.
|
|
if (succeeded(legalizeWithPattern(op, rewriter))) {
|
|
LLVM_DEBUG({
|
|
logSuccess(logger, "");
|
|
logger.startLine() << logLineComment;
|
|
});
|
|
return success();
|
|
}
|
|
|
|
LLVM_DEBUG({
|
|
logFailure(logger, "no matched legalization pattern");
|
|
logger.startLine() << logLineComment;
|
|
});
|
|
return failure();
|
|
}
|
|
|
|
LogicalResult
|
|
OperationLegalizer::legalizeWithFold(Operation *op,
|
|
ConversionPatternRewriter &rewriter) {
|
|
auto &rewriterImpl = rewriter.getImpl();
|
|
RewriterState curState = rewriterImpl.getCurrentState();
|
|
|
|
LLVM_DEBUG({
|
|
rewriterImpl.logger.startLine() << "* Fold {\n";
|
|
rewriterImpl.logger.indent();
|
|
});
|
|
|
|
// Try to fold the operation.
|
|
SmallVector<Value, 2> replacementValues;
|
|
rewriter.setInsertionPoint(op);
|
|
if (failed(rewriter.tryFold(op, replacementValues))) {
|
|
LLVM_DEBUG(logFailure(rewriterImpl.logger, "unable to fold"));
|
|
return failure();
|
|
}
|
|
// An empty list of replacement values indicates that the fold was in-place.
|
|
// As the operation changed, a new legalization needs to be attempted.
|
|
if (replacementValues.empty())
|
|
return legalize(op, rewriter);
|
|
|
|
// Insert a replacement for 'op' with the folded replacement values.
|
|
rewriter.replaceOp(op, replacementValues);
|
|
|
|
// Recursively legalize any new constant operations.
|
|
for (unsigned i = curState.numRewrites, e = rewriterImpl.rewrites.size();
|
|
i != e; ++i) {
|
|
auto *createOp =
|
|
dyn_cast<CreateOperationRewrite>(rewriterImpl.rewrites[i].get());
|
|
if (!createOp)
|
|
continue;
|
|
if (failed(legalize(createOp->getOperation(), rewriter))) {
|
|
LLVM_DEBUG(logFailure(rewriterImpl.logger,
|
|
"failed to legalize generated constant '{0}'",
|
|
createOp->getOperation()->getName()));
|
|
rewriterImpl.resetState(curState);
|
|
return failure();
|
|
}
|
|
}
|
|
|
|
LLVM_DEBUG(logSuccess(rewriterImpl.logger, ""));
|
|
return success();
|
|
}
|
|
|
|
LogicalResult
|
|
OperationLegalizer::legalizeWithPattern(Operation *op,
|
|
ConversionPatternRewriter &rewriter) {
|
|
auto &rewriterImpl = rewriter.getImpl();
|
|
|
|
// Functor that returns if the given pattern may be applied.
|
|
auto canApply = [&](const Pattern &pattern) {
|
|
bool canApply = canApplyPattern(op, pattern, rewriter);
|
|
if (canApply && config.listener)
|
|
config.listener->notifyPatternBegin(pattern, op);
|
|
return canApply;
|
|
};
|
|
|
|
// Functor that cleans up the rewriter state after a pattern failed to match.
|
|
RewriterState curState = rewriterImpl.getCurrentState();
|
|
auto onFailure = [&](const Pattern &pattern) {
|
|
assert(rewriterImpl.pendingRootUpdates.empty() && "dangling root updates");
|
|
LLVM_DEBUG({
|
|
logFailure(rewriterImpl.logger, "pattern failed to match");
|
|
if (rewriterImpl.config.notifyCallback) {
|
|
Diagnostic diag(op->getLoc(), DiagnosticSeverity::Remark);
|
|
diag << "Failed to apply pattern \"" << pattern.getDebugName()
|
|
<< "\" on op:\n"
|
|
<< *op;
|
|
rewriterImpl.config.notifyCallback(diag);
|
|
}
|
|
});
|
|
if (config.listener)
|
|
config.listener->notifyPatternEnd(pattern, failure());
|
|
rewriterImpl.resetState(curState);
|
|
appliedPatterns.erase(&pattern);
|
|
};
|
|
|
|
// Functor that performs additional legalization when a pattern is
|
|
// successfully applied.
|
|
auto onSuccess = [&](const Pattern &pattern) {
|
|
assert(rewriterImpl.pendingRootUpdates.empty() && "dangling root updates");
|
|
auto result = legalizePatternResult(op, pattern, rewriter, curState);
|
|
appliedPatterns.erase(&pattern);
|
|
if (failed(result))
|
|
rewriterImpl.resetState(curState);
|
|
if (config.listener)
|
|
config.listener->notifyPatternEnd(pattern, result);
|
|
return result;
|
|
};
|
|
|
|
// Try to match and rewrite a pattern on this operation.
|
|
return applicator.matchAndRewrite(op, rewriter, canApply, onFailure,
|
|
onSuccess);
|
|
}
|
|
|
|
bool OperationLegalizer::canApplyPattern(Operation *op, const Pattern &pattern,
|
|
ConversionPatternRewriter &rewriter) {
|
|
LLVM_DEBUG({
|
|
auto &os = rewriter.getImpl().logger;
|
|
os.getOStream() << "\n";
|
|
os.startLine() << "* Pattern : '" << op->getName() << " -> (";
|
|
llvm::interleaveComma(pattern.getGeneratedOps(), os.getOStream());
|
|
os.getOStream() << ")' {\n";
|
|
os.indent();
|
|
});
|
|
|
|
// Ensure that we don't cycle by not allowing the same pattern to be
|
|
// applied twice in the same recursion stack if it is not known to be safe.
|
|
if (!pattern.hasBoundedRewriteRecursion() &&
|
|
!appliedPatterns.insert(&pattern).second) {
|
|
LLVM_DEBUG(
|
|
logFailure(rewriter.getImpl().logger, "pattern was already applied"));
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
LogicalResult
|
|
OperationLegalizer::legalizePatternResult(Operation *op, const Pattern &pattern,
|
|
ConversionPatternRewriter &rewriter,
|
|
RewriterState &curState) {
|
|
auto &impl = rewriter.getImpl();
|
|
|
|
#ifndef NDEBUG
|
|
assert(impl.pendingRootUpdates.empty() && "dangling root updates");
|
|
// Check that the root was either replaced or updated in place.
|
|
auto newRewrites = llvm::drop_begin(impl.rewrites, curState.numRewrites);
|
|
auto replacedRoot = [&] {
|
|
return hasRewrite<ReplaceOperationRewrite>(newRewrites, op);
|
|
};
|
|
auto updatedRootInPlace = [&] {
|
|
return hasRewrite<ModifyOperationRewrite>(newRewrites, op);
|
|
};
|
|
assert((replacedRoot() || updatedRootInPlace()) &&
|
|
"expected pattern to replace the root operation");
|
|
#endif // NDEBUG
|
|
|
|
// Legalize each of the actions registered during application.
|
|
RewriterState newState = impl.getCurrentState();
|
|
if (failed(legalizePatternBlockRewrites(op, rewriter, impl, curState,
|
|
newState)) ||
|
|
failed(legalizePatternRootUpdates(rewriter, impl, curState, newState)) ||
|
|
failed(legalizePatternCreatedOperations(rewriter, impl, curState,
|
|
newState))) {
|
|
return failure();
|
|
}
|
|
|
|
LLVM_DEBUG(logSuccess(impl.logger, "pattern applied successfully"));
|
|
return success();
|
|
}
|
|
|
|
LogicalResult OperationLegalizer::legalizePatternBlockRewrites(
|
|
Operation *op, ConversionPatternRewriter &rewriter,
|
|
ConversionPatternRewriterImpl &impl, RewriterState &state,
|
|
RewriterState &newState) {
|
|
SmallPtrSet<Operation *, 16> operationsToIgnore;
|
|
|
|
// If the pattern moved or created any blocks, make sure the types of block
|
|
// arguments get legalized.
|
|
for (int i = state.numRewrites, e = newState.numRewrites; i != e; ++i) {
|
|
BlockRewrite *rewrite = dyn_cast<BlockRewrite>(impl.rewrites[i].get());
|
|
if (!rewrite)
|
|
continue;
|
|
Block *block = rewrite->getBlock();
|
|
if (isa<BlockTypeConversionRewrite, EraseBlockRewrite,
|
|
ReplaceBlockArgRewrite>(rewrite))
|
|
continue;
|
|
// Only check blocks outside of the current operation.
|
|
Operation *parentOp = block->getParentOp();
|
|
if (!parentOp || parentOp == op || block->getNumArguments() == 0)
|
|
continue;
|
|
|
|
// If the region of the block has a type converter, try to convert the block
|
|
// directly.
|
|
if (auto *converter = impl.regionToConverter.lookup(block->getParent())) {
|
|
std::optional<TypeConverter::SignatureConversion> conversion =
|
|
converter->convertBlockSignature(block);
|
|
if (!conversion) {
|
|
LLVM_DEBUG(logFailure(impl.logger, "failed to convert types of moved "
|
|
"block"));
|
|
return failure();
|
|
}
|
|
impl.applySignatureConversion(rewriter, block, converter, *conversion);
|
|
continue;
|
|
}
|
|
|
|
// Otherwise, check that this operation isn't one generated by this pattern.
|
|
// This is because we will attempt to legalize the parent operation, and
|
|
// blocks in regions created by this pattern will already be legalized later
|
|
// on. If we haven't built the set yet, build it now.
|
|
if (operationsToIgnore.empty()) {
|
|
for (unsigned i = state.numRewrites, e = impl.rewrites.size(); i != e;
|
|
++i) {
|
|
auto *createOp =
|
|
dyn_cast<CreateOperationRewrite>(impl.rewrites[i].get());
|
|
if (!createOp)
|
|
continue;
|
|
operationsToIgnore.insert(createOp->getOperation());
|
|
}
|
|
}
|
|
|
|
// If this operation should be considered for re-legalization, try it.
|
|
if (operationsToIgnore.insert(parentOp).second &&
|
|
failed(legalize(parentOp, rewriter))) {
|
|
LLVM_DEBUG(logFailure(impl.logger,
|
|
"operation '{0}'({1}) became illegal after rewrite",
|
|
parentOp->getName(), parentOp));
|
|
return failure();
|
|
}
|
|
}
|
|
return success();
|
|
}
|
|
|
|
LogicalResult OperationLegalizer::legalizePatternCreatedOperations(
|
|
ConversionPatternRewriter &rewriter, ConversionPatternRewriterImpl &impl,
|
|
RewriterState &state, RewriterState &newState) {
|
|
for (int i = state.numRewrites, e = newState.numRewrites; i != e; ++i) {
|
|
auto *createOp = dyn_cast<CreateOperationRewrite>(impl.rewrites[i].get());
|
|
if (!createOp)
|
|
continue;
|
|
Operation *op = createOp->getOperation();
|
|
if (failed(legalize(op, rewriter))) {
|
|
LLVM_DEBUG(logFailure(impl.logger,
|
|
"failed to legalize generated operation '{0}'({1})",
|
|
op->getName(), op));
|
|
return failure();
|
|
}
|
|
}
|
|
return success();
|
|
}
|
|
|
|
LogicalResult OperationLegalizer::legalizePatternRootUpdates(
|
|
ConversionPatternRewriter &rewriter, ConversionPatternRewriterImpl &impl,
|
|
RewriterState &state, RewriterState &newState) {
|
|
for (int i = state.numRewrites, e = newState.numRewrites; i != e; ++i) {
|
|
auto *rewrite = dyn_cast<ModifyOperationRewrite>(impl.rewrites[i].get());
|
|
if (!rewrite)
|
|
continue;
|
|
Operation *op = rewrite->getOperation();
|
|
if (failed(legalize(op, rewriter))) {
|
|
LLVM_DEBUG(logFailure(
|
|
impl.logger, "failed to legalize operation updated in-place '{0}'",
|
|
op->getName()));
|
|
return failure();
|
|
}
|
|
}
|
|
return success();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Cost Model
|
|
|
|
void OperationLegalizer::buildLegalizationGraph(
|
|
LegalizationPatterns &anyOpLegalizerPatterns,
|
|
DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns) {
|
|
// A mapping between an operation and a set of operations that can be used to
|
|
// generate it.
|
|
DenseMap<OperationName, SmallPtrSet<OperationName, 2>> parentOps;
|
|
// A mapping between an operation and any currently invalid patterns it has.
|
|
DenseMap<OperationName, SmallPtrSet<const Pattern *, 2>> invalidPatterns;
|
|
// A worklist of patterns to consider for legality.
|
|
SetVector<const Pattern *> patternWorklist;
|
|
|
|
// Build the mapping from operations to the parent ops that may generate them.
|
|
applicator.walkAllPatterns([&](const Pattern &pattern) {
|
|
std::optional<OperationName> root = pattern.getRootKind();
|
|
|
|
// If the pattern has no specific root, we can't analyze the relationship
|
|
// between the root op and generated operations. Given that, add all such
|
|
// patterns to the legalization set.
|
|
if (!root) {
|
|
anyOpLegalizerPatterns.push_back(&pattern);
|
|
return;
|
|
}
|
|
|
|
// Skip operations that are always known to be legal.
|
|
if (target.getOpAction(*root) == LegalizationAction::Legal)
|
|
return;
|
|
|
|
// Add this pattern to the invalid set for the root op and record this root
|
|
// as a parent for any generated operations.
|
|
invalidPatterns[*root].insert(&pattern);
|
|
for (auto op : pattern.getGeneratedOps())
|
|
parentOps[op].insert(*root);
|
|
|
|
// Add this pattern to the worklist.
|
|
patternWorklist.insert(&pattern);
|
|
});
|
|
|
|
// If there are any patterns that don't have a specific root kind, we can't
|
|
// make direct assumptions about what operations will never be legalized.
|
|
// Note: Technically we could, but it would require an analysis that may
|
|
// recurse into itself. It would be better to perform this kind of filtering
|
|
// at a higher level than here anyways.
|
|
if (!anyOpLegalizerPatterns.empty()) {
|
|
for (const Pattern *pattern : patternWorklist)
|
|
legalizerPatterns[*pattern->getRootKind()].push_back(pattern);
|
|
return;
|
|
}
|
|
|
|
while (!patternWorklist.empty()) {
|
|
auto *pattern = patternWorklist.pop_back_val();
|
|
|
|
// Check to see if any of the generated operations are invalid.
|
|
if (llvm::any_of(pattern->getGeneratedOps(), [&](OperationName op) {
|
|
std::optional<LegalizationAction> action = target.getOpAction(op);
|
|
return !legalizerPatterns.count(op) &&
|
|
(!action || action == LegalizationAction::Illegal);
|
|
}))
|
|
continue;
|
|
|
|
// Otherwise, if all of the generated operation are valid, this op is now
|
|
// legal so add all of the child patterns to the worklist.
|
|
legalizerPatterns[*pattern->getRootKind()].push_back(pattern);
|
|
invalidPatterns[*pattern->getRootKind()].erase(pattern);
|
|
|
|
// Add any invalid patterns of the parent operations to see if they have now
|
|
// become legal.
|
|
for (auto op : parentOps[*pattern->getRootKind()])
|
|
patternWorklist.set_union(invalidPatterns[op]);
|
|
}
|
|
}
|
|
|
|
void OperationLegalizer::computeLegalizationGraphBenefit(
|
|
LegalizationPatterns &anyOpLegalizerPatterns,
|
|
DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns) {
|
|
// The smallest pattern depth, when legalizing an operation.
|
|
DenseMap<OperationName, unsigned> minOpPatternDepth;
|
|
|
|
// For each operation that is transitively legal, compute a cost for it.
|
|
for (auto &opIt : legalizerPatterns)
|
|
if (!minOpPatternDepth.count(opIt.first))
|
|
computeOpLegalizationDepth(opIt.first, minOpPatternDepth,
|
|
legalizerPatterns);
|
|
|
|
// Apply the cost model to the patterns that can match any operation. Those
|
|
// with a specific operation type are already resolved when computing the op
|
|
// legalization depth.
|
|
if (!anyOpLegalizerPatterns.empty())
|
|
applyCostModelToPatterns(anyOpLegalizerPatterns, minOpPatternDepth,
|
|
legalizerPatterns);
|
|
|
|
// Apply a cost model to the pattern applicator. We order patterns first by
|
|
// depth then benefit. `legalizerPatterns` contains per-op patterns by
|
|
// decreasing benefit.
|
|
applicator.applyCostModel([&](const Pattern &pattern) {
|
|
ArrayRef<const Pattern *> orderedPatternList;
|
|
if (std::optional<OperationName> rootName = pattern.getRootKind())
|
|
orderedPatternList = legalizerPatterns[*rootName];
|
|
else
|
|
orderedPatternList = anyOpLegalizerPatterns;
|
|
|
|
// If the pattern is not found, then it was removed and cannot be matched.
|
|
auto *it = llvm::find(orderedPatternList, &pattern);
|
|
if (it == orderedPatternList.end())
|
|
return PatternBenefit::impossibleToMatch();
|
|
|
|
// Patterns found earlier in the list have higher benefit.
|
|
return PatternBenefit(std::distance(it, orderedPatternList.end()));
|
|
});
|
|
}
|
|
|
|
unsigned OperationLegalizer::computeOpLegalizationDepth(
|
|
OperationName op, DenseMap<OperationName, unsigned> &minOpPatternDepth,
|
|
DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns) {
|
|
// Check for existing depth.
|
|
auto depthIt = minOpPatternDepth.find(op);
|
|
if (depthIt != minOpPatternDepth.end())
|
|
return depthIt->second;
|
|
|
|
// If a mapping for this operation does not exist, then this operation
|
|
// is always legal. Return 0 as the depth for a directly legal operation.
|
|
auto opPatternsIt = legalizerPatterns.find(op);
|
|
if (opPatternsIt == legalizerPatterns.end() || opPatternsIt->second.empty())
|
|
return 0u;
|
|
|
|
// Record this initial depth in case we encounter this op again when
|
|
// recursively computing the depth.
|
|
minOpPatternDepth.try_emplace(op, std::numeric_limits<unsigned>::max());
|
|
|
|
// Apply the cost model to the operation patterns, and update the minimum
|
|
// depth.
|
|
unsigned minDepth = applyCostModelToPatterns(
|
|
opPatternsIt->second, minOpPatternDepth, legalizerPatterns);
|
|
minOpPatternDepth[op] = minDepth;
|
|
return minDepth;
|
|
}
|
|
|
|
unsigned OperationLegalizer::applyCostModelToPatterns(
|
|
LegalizationPatterns &patterns,
|
|
DenseMap<OperationName, unsigned> &minOpPatternDepth,
|
|
DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns) {
|
|
unsigned minDepth = std::numeric_limits<unsigned>::max();
|
|
|
|
// Compute the depth for each pattern within the set.
|
|
SmallVector<std::pair<const Pattern *, unsigned>, 4> patternsByDepth;
|
|
patternsByDepth.reserve(patterns.size());
|
|
for (const Pattern *pattern : patterns) {
|
|
unsigned depth = 1;
|
|
for (auto generatedOp : pattern->getGeneratedOps()) {
|
|
unsigned generatedOpDepth = computeOpLegalizationDepth(
|
|
generatedOp, minOpPatternDepth, legalizerPatterns);
|
|
depth = std::max(depth, generatedOpDepth + 1);
|
|
}
|
|
patternsByDepth.emplace_back(pattern, depth);
|
|
|
|
// Update the minimum depth of the pattern list.
|
|
minDepth = std::min(minDepth, depth);
|
|
}
|
|
|
|
// If the operation only has one legalization pattern, there is no need to
|
|
// sort them.
|
|
if (patternsByDepth.size() == 1)
|
|
return minDepth;
|
|
|
|
// Sort the patterns by those likely to be the most beneficial.
|
|
std::stable_sort(patternsByDepth.begin(), patternsByDepth.end(),
|
|
[](const std::pair<const Pattern *, unsigned> &lhs,
|
|
const std::pair<const Pattern *, unsigned> &rhs) {
|
|
// First sort by the smaller pattern legalization
|
|
// depth.
|
|
if (lhs.second != rhs.second)
|
|
return lhs.second < rhs.second;
|
|
|
|
// Then sort by the larger pattern benefit.
|
|
auto lhsBenefit = lhs.first->getBenefit();
|
|
auto rhsBenefit = rhs.first->getBenefit();
|
|
return lhsBenefit > rhsBenefit;
|
|
});
|
|
|
|
// Update the legalization pattern to use the new sorted list.
|
|
patterns.clear();
|
|
for (auto &patternIt : patternsByDepth)
|
|
patterns.push_back(patternIt.first);
|
|
return minDepth;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// OperationConverter
|
|
//===----------------------------------------------------------------------===//
|
|
namespace {
|
|
enum OpConversionMode {
|
|
/// In this mode, the conversion will ignore failed conversions to allow
|
|
/// illegal operations to co-exist in the IR.
|
|
Partial,
|
|
|
|
/// In this mode, all operations must be legal for the given target for the
|
|
/// conversion to succeed.
|
|
Full,
|
|
|
|
/// In this mode, operations are analyzed for legality. No actual rewrites are
|
|
/// applied to the operations on success.
|
|
Analysis,
|
|
};
|
|
} // namespace
|
|
|
|
namespace mlir {
|
|
// This class converts operations to a given conversion target via a set of
|
|
// rewrite patterns. The conversion behaves differently depending on the
|
|
// conversion mode.
|
|
struct OperationConverter {
|
|
explicit OperationConverter(const ConversionTarget &target,
|
|
const FrozenRewritePatternSet &patterns,
|
|
const ConversionConfig &config,
|
|
OpConversionMode mode)
|
|
: config(config), opLegalizer(target, patterns, this->config),
|
|
mode(mode) {}
|
|
|
|
/// Converts the given operations to the conversion target.
|
|
LogicalResult convertOperations(ArrayRef<Operation *> ops);
|
|
|
|
private:
|
|
/// Converts an operation with the given rewriter.
|
|
LogicalResult convert(ConversionPatternRewriter &rewriter, Operation *op);
|
|
|
|
/// This method is called after the conversion process to legalize any
|
|
/// remaining artifacts and complete the conversion.
|
|
LogicalResult finalize(ConversionPatternRewriter &rewriter);
|
|
|
|
/// Legalize the types of converted block arguments.
|
|
LogicalResult
|
|
legalizeConvertedArgumentTypes(ConversionPatternRewriter &rewriter,
|
|
ConversionPatternRewriterImpl &rewriterImpl);
|
|
|
|
/// Legalize any unresolved type materializations.
|
|
LogicalResult legalizeUnresolvedMaterializations(
|
|
ConversionPatternRewriter &rewriter,
|
|
ConversionPatternRewriterImpl &rewriterImpl,
|
|
std::optional<DenseMap<Value, SmallVector<Value>>> &inverseMapping);
|
|
|
|
/// Legalize an operation result that was marked as "erased".
|
|
LogicalResult
|
|
legalizeErasedResult(Operation *op, OpResult result,
|
|
ConversionPatternRewriterImpl &rewriterImpl);
|
|
|
|
/// Legalize an operation result that was replaced with a value of a different
|
|
/// type.
|
|
LogicalResult legalizeChangedResultType(
|
|
Operation *op, OpResult result, Value newValue,
|
|
const TypeConverter *replConverter, ConversionPatternRewriter &rewriter,
|
|
ConversionPatternRewriterImpl &rewriterImpl,
|
|
const DenseMap<Value, SmallVector<Value>> &inverseMapping);
|
|
|
|
/// Dialect conversion configuration.
|
|
ConversionConfig config;
|
|
|
|
/// The legalizer to use when converting operations.
|
|
OperationLegalizer opLegalizer;
|
|
|
|
/// The conversion mode to use when legalizing operations.
|
|
OpConversionMode mode;
|
|
};
|
|
} // namespace mlir
|
|
|
|
LogicalResult OperationConverter::convert(ConversionPatternRewriter &rewriter,
|
|
Operation *op) {
|
|
// Legalize the given operation.
|
|
if (failed(opLegalizer.legalize(op, rewriter))) {
|
|
// Handle the case of a failed conversion for each of the different modes.
|
|
// Full conversions expect all operations to be converted.
|
|
if (mode == OpConversionMode::Full)
|
|
return op->emitError()
|
|
<< "failed to legalize operation '" << op->getName() << "'";
|
|
// Partial conversions allow conversions to fail iff the operation was not
|
|
// explicitly marked as illegal. If the user provided a `unlegalizedOps`
|
|
// set, non-legalizable ops are added to that set.
|
|
if (mode == OpConversionMode::Partial) {
|
|
if (opLegalizer.isIllegal(op))
|
|
return op->emitError()
|
|
<< "failed to legalize operation '" << op->getName()
|
|
<< "' that was explicitly marked illegal";
|
|
if (config.unlegalizedOps)
|
|
config.unlegalizedOps->insert(op);
|
|
}
|
|
} else if (mode == OpConversionMode::Analysis) {
|
|
// Analysis conversions don't fail if any operations fail to legalize,
|
|
// they are only interested in the operations that were successfully
|
|
// legalized.
|
|
if (config.legalizableOps)
|
|
config.legalizableOps->insert(op);
|
|
}
|
|
return success();
|
|
}
|
|
|
|
LogicalResult OperationConverter::convertOperations(ArrayRef<Operation *> ops) {
|
|
if (ops.empty())
|
|
return success();
|
|
const ConversionTarget &target = opLegalizer.getTarget();
|
|
|
|
// Compute the set of operations and blocks to convert.
|
|
SmallVector<Operation *> toConvert;
|
|
for (auto *op : ops) {
|
|
op->walk<WalkOrder::PreOrder, ForwardDominanceIterator<>>(
|
|
[&](Operation *op) {
|
|
toConvert.push_back(op);
|
|
// Don't check this operation's children for conversion if the
|
|
// operation is recursively legal.
|
|
auto legalityInfo = target.isLegal(op);
|
|
if (legalityInfo && legalityInfo->isRecursivelyLegal)
|
|
return WalkResult::skip();
|
|
return WalkResult::advance();
|
|
});
|
|
}
|
|
|
|
// Convert each operation and discard rewrites on failure.
|
|
ConversionPatternRewriter rewriter(ops.front()->getContext(), config);
|
|
ConversionPatternRewriterImpl &rewriterImpl = rewriter.getImpl();
|
|
|
|
for (auto *op : toConvert)
|
|
if (failed(convert(rewriter, op)))
|
|
return rewriterImpl.undoRewrites(), failure();
|
|
|
|
// Now that all of the operations have been converted, finalize the conversion
|
|
// process to ensure any lingering conversion artifacts are cleaned up and
|
|
// legalized.
|
|
if (failed(finalize(rewriter)))
|
|
return rewriterImpl.undoRewrites(), failure();
|
|
|
|
// After a successful conversion, apply rewrites if this is not an analysis
|
|
// conversion.
|
|
if (mode == OpConversionMode::Analysis) {
|
|
rewriterImpl.undoRewrites();
|
|
} else {
|
|
rewriterImpl.applyRewrites();
|
|
}
|
|
return success();
|
|
}
|
|
|
|
LogicalResult
|
|
OperationConverter::finalize(ConversionPatternRewriter &rewriter) {
|
|
std::optional<DenseMap<Value, SmallVector<Value>>> inverseMapping;
|
|
ConversionPatternRewriterImpl &rewriterImpl = rewriter.getImpl();
|
|
if (failed(legalizeUnresolvedMaterializations(rewriter, rewriterImpl,
|
|
inverseMapping)) ||
|
|
failed(legalizeConvertedArgumentTypes(rewriter, rewriterImpl)))
|
|
return failure();
|
|
|
|
// Process requested operation replacements.
|
|
for (unsigned i = 0; i < rewriterImpl.rewrites.size(); ++i) {
|
|
auto *opReplacement =
|
|
dyn_cast<ReplaceOperationRewrite>(rewriterImpl.rewrites[i].get());
|
|
if (!opReplacement || !opReplacement->hasChangedResults())
|
|
continue;
|
|
Operation *op = opReplacement->getOperation();
|
|
for (OpResult result : op->getResults()) {
|
|
Value newValue = rewriterImpl.mapping.lookupOrNull(result);
|
|
|
|
// If the operation result was replaced with null, all of the uses of this
|
|
// value should be replaced.
|
|
if (!newValue) {
|
|
if (failed(legalizeErasedResult(op, result, rewriterImpl)))
|
|
return failure();
|
|
continue;
|
|
}
|
|
|
|
// Otherwise, check to see if the type of the result changed.
|
|
if (result.getType() == newValue.getType())
|
|
continue;
|
|
|
|
// Compute the inverse mapping only if it is really needed.
|
|
if (!inverseMapping)
|
|
inverseMapping = rewriterImpl.mapping.getInverse();
|
|
|
|
// Legalize this result.
|
|
rewriter.setInsertionPoint(op);
|
|
if (failed(legalizeChangedResultType(
|
|
op, result, newValue, opReplacement->getConverter(), rewriter,
|
|
rewriterImpl, *inverseMapping)))
|
|
return failure();
|
|
}
|
|
}
|
|
return success();
|
|
}
|
|
|
|
LogicalResult OperationConverter::legalizeConvertedArgumentTypes(
|
|
ConversionPatternRewriter &rewriter,
|
|
ConversionPatternRewriterImpl &rewriterImpl) {
|
|
// Functor used to check if all users of a value will be dead after
|
|
// conversion.
|
|
auto findLiveUser = [&](Value val) {
|
|
auto liveUserIt = llvm::find_if_not(val.getUsers(), [&](Operation *user) {
|
|
return rewriterImpl.isOpIgnored(user);
|
|
});
|
|
return liveUserIt == val.user_end() ? nullptr : *liveUserIt;
|
|
};
|
|
// Note: `rewrites` may be reallocated as the loop is running.
|
|
for (int64_t i = 0; i < static_cast<int64_t>(rewriterImpl.rewrites.size());
|
|
++i) {
|
|
auto &rewrite = rewriterImpl.rewrites[i];
|
|
if (auto *blockTypeConversionRewrite =
|
|
dyn_cast<BlockTypeConversionRewrite>(rewrite.get()))
|
|
if (failed(blockTypeConversionRewrite->materializeLiveConversions(
|
|
findLiveUser)))
|
|
return failure();
|
|
}
|
|
return success();
|
|
}
|
|
|
|
/// Replace the results of a materialization operation with the given values.
|
|
static void
|
|
replaceMaterialization(ConversionPatternRewriterImpl &rewriterImpl,
|
|
ResultRange matResults, ValueRange values,
|
|
DenseMap<Value, SmallVector<Value>> &inverseMapping) {
|
|
matResults.replaceAllUsesWith(values);
|
|
|
|
// For each of the materialization results, update the inverse mappings to
|
|
// point to the replacement values.
|
|
for (auto [matResult, newValue] : llvm::zip(matResults, values)) {
|
|
auto inverseMapIt = inverseMapping.find(matResult);
|
|
if (inverseMapIt == inverseMapping.end())
|
|
continue;
|
|
|
|
// Update the reverse mapping, or remove the mapping if we couldn't update
|
|
// it. Not being able to update signals that the mapping would have become
|
|
// circular (i.e. %foo -> newValue -> %foo), which may occur as values are
|
|
// propagated through temporary materializations. We simply drop the
|
|
// mapping, and let the post-conversion replacement logic handle updating
|
|
// uses.
|
|
for (Value inverseMapVal : inverseMapIt->second)
|
|
if (!rewriterImpl.mapping.tryMap(inverseMapVal, newValue))
|
|
rewriterImpl.mapping.erase(inverseMapVal);
|
|
}
|
|
}
|
|
|
|
/// Compute all of the unresolved materializations that will persist beyond the
|
|
/// conversion process, and require inserting a proper user materialization for.
|
|
static void computeNecessaryMaterializations(
|
|
DenseMap<Operation *, UnresolvedMaterializationRewrite *>
|
|
&materializationOps,
|
|
ConversionPatternRewriter &rewriter,
|
|
ConversionPatternRewriterImpl &rewriterImpl,
|
|
DenseMap<Value, SmallVector<Value>> &inverseMapping,
|
|
SetVector<UnresolvedMaterializationRewrite *> &necessaryMaterializations) {
|
|
// Helper function to check if the given value or a not yet materialized
|
|
// replacement of the given value is live.
|
|
// Note: `inverseMapping` maps from replaced values to original values.
|
|
auto isLive = [&](Value value) {
|
|
auto findFn = [&](Operation *user) {
|
|
auto matIt = materializationOps.find(user);
|
|
if (matIt != materializationOps.end())
|
|
return !necessaryMaterializations.count(matIt->second);
|
|
return rewriterImpl.isOpIgnored(user);
|
|
};
|
|
// A worklist is needed because a value may have gone through a chain of
|
|
// replacements and each of the replaced values may have live users.
|
|
SmallVector<Value> worklist;
|
|
worklist.push_back(value);
|
|
while (!worklist.empty()) {
|
|
Value next = worklist.pop_back_val();
|
|
if (llvm::find_if_not(next.getUsers(), findFn) != next.user_end())
|
|
return true;
|
|
// This value may be replacing another value that has a live user.
|
|
llvm::append_range(worklist, inverseMapping.lookup(next));
|
|
}
|
|
return false;
|
|
};
|
|
|
|
llvm::unique_function<Value(Value, Value, Type)> lookupRemappedValue =
|
|
[&](Value invalidRoot, Value value, Type type) {
|
|
// Check to see if the input operation was remapped to a variant of the
|
|
// output.
|
|
Value remappedValue = rewriterImpl.mapping.lookupOrDefault(value, type);
|
|
if (remappedValue.getType() == type && remappedValue != invalidRoot)
|
|
return remappedValue;
|
|
|
|
// Check to see if the input is a materialization operation that
|
|
// provides an inverse conversion. We just check blindly for
|
|
// UnrealizedConversionCastOp here, but it has no effect on correctness.
|
|
auto inputCastOp = value.getDefiningOp<UnrealizedConversionCastOp>();
|
|
if (inputCastOp && inputCastOp->getNumOperands() == 1)
|
|
return lookupRemappedValue(invalidRoot, inputCastOp->getOperand(0),
|
|
type);
|
|
|
|
return Value();
|
|
};
|
|
|
|
SetVector<UnresolvedMaterializationRewrite *> worklist;
|
|
for (auto &rewrite : rewriterImpl.rewrites) {
|
|
auto *mat = dyn_cast<UnresolvedMaterializationRewrite>(rewrite.get());
|
|
if (!mat)
|
|
continue;
|
|
materializationOps.try_emplace(mat->getOperation(), mat);
|
|
worklist.insert(mat);
|
|
}
|
|
while (!worklist.empty()) {
|
|
UnresolvedMaterializationRewrite *mat = worklist.pop_back_val();
|
|
UnrealizedConversionCastOp op = mat->getOperation();
|
|
|
|
// We currently only handle target materializations here.
|
|
assert(op->getNumResults() == 1 && "unexpected materialization type");
|
|
OpResult opResult = op->getOpResult(0);
|
|
Type outputType = opResult.getType();
|
|
Operation::operand_range inputOperands = op.getOperands();
|
|
|
|
// Try to forward propagate operands for user conversion casts that result
|
|
// in the input types of the current cast.
|
|
for (Operation *user : llvm::make_early_inc_range(opResult.getUsers())) {
|
|
auto castOp = dyn_cast<UnrealizedConversionCastOp>(user);
|
|
if (!castOp)
|
|
continue;
|
|
if (castOp->getResultTypes() == inputOperands.getTypes()) {
|
|
replaceMaterialization(rewriterImpl, opResult, inputOperands,
|
|
inverseMapping);
|
|
necessaryMaterializations.remove(materializationOps.lookup(user));
|
|
}
|
|
}
|
|
|
|
// Try to avoid materializing a resolved materialization if possible.
|
|
// Handle the case of a 1-1 materialization.
|
|
if (inputOperands.size() == 1) {
|
|
// Check to see if the input operation was remapped to a variant of the
|
|
// output.
|
|
Value remappedValue =
|
|
lookupRemappedValue(opResult, inputOperands[0], outputType);
|
|
if (remappedValue && remappedValue != opResult) {
|
|
replaceMaterialization(rewriterImpl, opResult, remappedValue,
|
|
inverseMapping);
|
|
necessaryMaterializations.remove(mat);
|
|
continue;
|
|
}
|
|
} else {
|
|
// TODO: Avoid materializing other types of conversions here.
|
|
}
|
|
|
|
// If the materialization does not have any live users, we don't need to
|
|
// generate a user materialization for it.
|
|
bool isMaterializationLive = isLive(opResult);
|
|
if (!isMaterializationLive)
|
|
continue;
|
|
if (!necessaryMaterializations.insert(mat))
|
|
continue;
|
|
|
|
// Reprocess input materializations to see if they have an updated status.
|
|
for (Value input : inputOperands) {
|
|
if (auto parentOp = input.getDefiningOp<UnrealizedConversionCastOp>()) {
|
|
if (auto *mat = materializationOps.lookup(parentOp))
|
|
worklist.insert(mat);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Legalize the given unresolved materialization. Returns success if the
|
|
/// materialization was legalized, failure otherise.
|
|
static LogicalResult legalizeUnresolvedMaterialization(
|
|
UnresolvedMaterializationRewrite &mat,
|
|
DenseMap<Operation *, UnresolvedMaterializationRewrite *>
|
|
&materializationOps,
|
|
ConversionPatternRewriter &rewriter,
|
|
ConversionPatternRewriterImpl &rewriterImpl,
|
|
DenseMap<Value, SmallVector<Value>> &inverseMapping) {
|
|
auto findLiveUser = [&](auto &&users) {
|
|
auto liveUserIt = llvm::find_if_not(
|
|
users, [&](Operation *user) { return rewriterImpl.isOpIgnored(user); });
|
|
return liveUserIt == users.end() ? nullptr : *liveUserIt;
|
|
};
|
|
|
|
llvm::unique_function<Value(Value, Type)> lookupRemappedValue =
|
|
[&](Value value, Type type) {
|
|
// Check to see if the input operation was remapped to a variant of the
|
|
// output.
|
|
Value remappedValue = rewriterImpl.mapping.lookupOrDefault(value, type);
|
|
if (remappedValue.getType() == type)
|
|
return remappedValue;
|
|
return Value();
|
|
};
|
|
|
|
UnrealizedConversionCastOp op = mat.getOperation();
|
|
if (!rewriterImpl.ignoredOps.insert(op))
|
|
return success();
|
|
|
|
// We currently only handle target materializations here.
|
|
OpResult opResult = op->getOpResult(0);
|
|
Operation::operand_range inputOperands = op.getOperands();
|
|
Type outputType = opResult.getType();
|
|
|
|
// If any input to this materialization is another materialization, resolve
|
|
// the input first.
|
|
for (Value value : op->getOperands()) {
|
|
auto valueCast = value.getDefiningOp<UnrealizedConversionCastOp>();
|
|
if (!valueCast)
|
|
continue;
|
|
|
|
auto matIt = materializationOps.find(valueCast);
|
|
if (matIt != materializationOps.end())
|
|
if (failed(legalizeUnresolvedMaterialization(
|
|
*matIt->second, materializationOps, rewriter, rewriterImpl,
|
|
inverseMapping)))
|
|
return failure();
|
|
}
|
|
|
|
// Perform a last ditch attempt to avoid materializing a resolved
|
|
// materialization if possible.
|
|
// Handle the case of a 1-1 materialization.
|
|
if (inputOperands.size() == 1) {
|
|
// Check to see if the input operation was remapped to a variant of the
|
|
// output.
|
|
Value remappedValue = lookupRemappedValue(inputOperands[0], outputType);
|
|
if (remappedValue && remappedValue != opResult) {
|
|
replaceMaterialization(rewriterImpl, opResult, remappedValue,
|
|
inverseMapping);
|
|
return success();
|
|
}
|
|
} else {
|
|
// TODO: Avoid materializing other types of conversions here.
|
|
}
|
|
|
|
// Try to materialize the conversion.
|
|
if (const TypeConverter *converter = mat.getConverter()) {
|
|
rewriter.setInsertionPoint(op);
|
|
Value newMaterialization;
|
|
switch (mat.getMaterializationKind()) {
|
|
case MaterializationKind::Argument:
|
|
// Try to materialize an argument conversion.
|
|
newMaterialization = converter->materializeArgumentConversion(
|
|
rewriter, op->getLoc(), outputType, inputOperands);
|
|
if (newMaterialization)
|
|
break;
|
|
// If an argument materialization failed, fallback to trying a target
|
|
// materialization.
|
|
[[fallthrough]];
|
|
case MaterializationKind::Target:
|
|
newMaterialization = converter->materializeTargetConversion(
|
|
rewriter, op->getLoc(), outputType, inputOperands);
|
|
break;
|
|
case MaterializationKind::Source:
|
|
newMaterialization = converter->materializeSourceConversion(
|
|
rewriter, op->getLoc(), outputType, inputOperands);
|
|
break;
|
|
}
|
|
if (newMaterialization) {
|
|
assert(newMaterialization.getType() == outputType &&
|
|
"materialization callback produced value of incorrect type");
|
|
replaceMaterialization(rewriterImpl, opResult, newMaterialization,
|
|
inverseMapping);
|
|
return success();
|
|
}
|
|
}
|
|
|
|
InFlightDiagnostic diag = op->emitError()
|
|
<< "failed to legalize unresolved materialization "
|
|
"from ("
|
|
<< inputOperands.getTypes() << ") to " << outputType
|
|
<< " that remained live after conversion";
|
|
if (Operation *liveUser = findLiveUser(op->getUsers())) {
|
|
diag.attachNote(liveUser->getLoc())
|
|
<< "see existing live user here: " << *liveUser;
|
|
}
|
|
return failure();
|
|
}
|
|
|
|
LogicalResult OperationConverter::legalizeUnresolvedMaterializations(
|
|
ConversionPatternRewriter &rewriter,
|
|
ConversionPatternRewriterImpl &rewriterImpl,
|
|
std::optional<DenseMap<Value, SmallVector<Value>>> &inverseMapping) {
|
|
inverseMapping = rewriterImpl.mapping.getInverse();
|
|
|
|
// As an initial step, compute all of the inserted materializations that we
|
|
// expect to persist beyond the conversion process.
|
|
DenseMap<Operation *, UnresolvedMaterializationRewrite *> materializationOps;
|
|
SetVector<UnresolvedMaterializationRewrite *> necessaryMaterializations;
|
|
computeNecessaryMaterializations(materializationOps, rewriter, rewriterImpl,
|
|
*inverseMapping, necessaryMaterializations);
|
|
|
|
// Once computed, legalize any necessary materializations.
|
|
for (auto *mat : necessaryMaterializations) {
|
|
if (failed(legalizeUnresolvedMaterialization(
|
|
*mat, materializationOps, rewriter, rewriterImpl, *inverseMapping)))
|
|
return failure();
|
|
}
|
|
return success();
|
|
}
|
|
|
|
LogicalResult OperationConverter::legalizeErasedResult(
|
|
Operation *op, OpResult result,
|
|
ConversionPatternRewriterImpl &rewriterImpl) {
|
|
// If the operation result was replaced with null, all of the uses of this
|
|
// value should be replaced.
|
|
auto liveUserIt = llvm::find_if_not(result.getUsers(), [&](Operation *user) {
|
|
return rewriterImpl.isOpIgnored(user);
|
|
});
|
|
if (liveUserIt != result.user_end()) {
|
|
InFlightDiagnostic diag = op->emitError("failed to legalize operation '")
|
|
<< op->getName() << "' marked as erased";
|
|
diag.attachNote(liveUserIt->getLoc())
|
|
<< "found live user of result #" << result.getResultNumber() << ": "
|
|
<< *liveUserIt;
|
|
return failure();
|
|
}
|
|
return success();
|
|
}
|
|
|
|
/// Finds a user of the given value, or of any other value that the given value
|
|
/// replaced, that was not replaced in the conversion process.
|
|
static Operation *findLiveUserOfReplaced(
|
|
Value initialValue, ConversionPatternRewriterImpl &rewriterImpl,
|
|
const DenseMap<Value, SmallVector<Value>> &inverseMapping) {
|
|
SmallVector<Value> worklist(1, initialValue);
|
|
while (!worklist.empty()) {
|
|
Value value = worklist.pop_back_val();
|
|
|
|
// Walk the users of this value to see if there are any live users that
|
|
// weren't replaced during conversion.
|
|
auto liveUserIt = llvm::find_if_not(value.getUsers(), [&](Operation *user) {
|
|
return rewriterImpl.isOpIgnored(user);
|
|
});
|
|
if (liveUserIt != value.user_end())
|
|
return *liveUserIt;
|
|
auto mapIt = inverseMapping.find(value);
|
|
if (mapIt != inverseMapping.end())
|
|
worklist.append(mapIt->second);
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
LogicalResult OperationConverter::legalizeChangedResultType(
|
|
Operation *op, OpResult result, Value newValue,
|
|
const TypeConverter *replConverter, ConversionPatternRewriter &rewriter,
|
|
ConversionPatternRewriterImpl &rewriterImpl,
|
|
const DenseMap<Value, SmallVector<Value>> &inverseMapping) {
|
|
Operation *liveUser =
|
|
findLiveUserOfReplaced(result, rewriterImpl, inverseMapping);
|
|
if (!liveUser)
|
|
return success();
|
|
|
|
// Functor used to emit a conversion error for a failed materialization.
|
|
auto emitConversionError = [&] {
|
|
InFlightDiagnostic diag = op->emitError()
|
|
<< "failed to materialize conversion for result #"
|
|
<< result.getResultNumber() << " of operation '"
|
|
<< op->getName()
|
|
<< "' that remained live after conversion";
|
|
diag.attachNote(liveUser->getLoc())
|
|
<< "see existing live user here: " << *liveUser;
|
|
return failure();
|
|
};
|
|
|
|
// If the replacement has a type converter, attempt to materialize a
|
|
// conversion back to the original type.
|
|
if (!replConverter)
|
|
return emitConversionError();
|
|
|
|
// Materialize a conversion for this live result value.
|
|
Type resultType = result.getType();
|
|
Value convertedValue = replConverter->materializeSourceConversion(
|
|
rewriter, op->getLoc(), resultType, newValue);
|
|
if (!convertedValue)
|
|
return emitConversionError();
|
|
|
|
rewriterImpl.mapping.map(result, convertedValue);
|
|
return success();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Type Conversion
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void TypeConverter::SignatureConversion::addInputs(unsigned origInputNo,
|
|
ArrayRef<Type> types) {
|
|
assert(!types.empty() && "expected valid types");
|
|
remapInput(origInputNo, /*newInputNo=*/argTypes.size(), types.size());
|
|
addInputs(types);
|
|
}
|
|
|
|
void TypeConverter::SignatureConversion::addInputs(ArrayRef<Type> types) {
|
|
assert(!types.empty() &&
|
|
"1->0 type remappings don't need to be added explicitly");
|
|
argTypes.append(types.begin(), types.end());
|
|
}
|
|
|
|
void TypeConverter::SignatureConversion::remapInput(unsigned origInputNo,
|
|
unsigned newInputNo,
|
|
unsigned newInputCount) {
|
|
assert(!remappedInputs[origInputNo] && "input has already been remapped");
|
|
assert(newInputCount != 0 && "expected valid input count");
|
|
remappedInputs[origInputNo] =
|
|
InputMapping{newInputNo, newInputCount, /*replacementValue=*/nullptr};
|
|
}
|
|
|
|
void TypeConverter::SignatureConversion::remapInput(unsigned origInputNo,
|
|
Value replacementValue) {
|
|
assert(!remappedInputs[origInputNo] && "input has already been remapped");
|
|
remappedInputs[origInputNo] =
|
|
InputMapping{origInputNo, /*size=*/0, replacementValue};
|
|
}
|
|
|
|
LogicalResult TypeConverter::convertType(Type t,
|
|
SmallVectorImpl<Type> &results) const {
|
|
{
|
|
std::shared_lock<decltype(cacheMutex)> cacheReadLock(cacheMutex,
|
|
std::defer_lock);
|
|
if (t.getContext()->isMultithreadingEnabled())
|
|
cacheReadLock.lock();
|
|
auto existingIt = cachedDirectConversions.find(t);
|
|
if (existingIt != cachedDirectConversions.end()) {
|
|
if (existingIt->second)
|
|
results.push_back(existingIt->second);
|
|
return success(existingIt->second != nullptr);
|
|
}
|
|
auto multiIt = cachedMultiConversions.find(t);
|
|
if (multiIt != cachedMultiConversions.end()) {
|
|
results.append(multiIt->second.begin(), multiIt->second.end());
|
|
return success();
|
|
}
|
|
}
|
|
// Walk the added converters in reverse order to apply the most recently
|
|
// registered first.
|
|
size_t currentCount = results.size();
|
|
|
|
std::unique_lock<decltype(cacheMutex)> cacheWriteLock(cacheMutex,
|
|
std::defer_lock);
|
|
|
|
for (const ConversionCallbackFn &converter : llvm::reverse(conversions)) {
|
|
if (std::optional<LogicalResult> result = converter(t, results)) {
|
|
if (t.getContext()->isMultithreadingEnabled())
|
|
cacheWriteLock.lock();
|
|
if (!succeeded(*result)) {
|
|
cachedDirectConversions.try_emplace(t, nullptr);
|
|
return failure();
|
|
}
|
|
auto newTypes = ArrayRef<Type>(results).drop_front(currentCount);
|
|
if (newTypes.size() == 1)
|
|
cachedDirectConversions.try_emplace(t, newTypes.front());
|
|
else
|
|
cachedMultiConversions.try_emplace(t, llvm::to_vector<2>(newTypes));
|
|
return success();
|
|
}
|
|
}
|
|
return failure();
|
|
}
|
|
|
|
Type TypeConverter::convertType(Type t) const {
|
|
// Use the multi-type result version to convert the type.
|
|
SmallVector<Type, 1> results;
|
|
if (failed(convertType(t, results)))
|
|
return nullptr;
|
|
|
|
// Check to ensure that only one type was produced.
|
|
return results.size() == 1 ? results.front() : nullptr;
|
|
}
|
|
|
|
LogicalResult
|
|
TypeConverter::convertTypes(TypeRange types,
|
|
SmallVectorImpl<Type> &results) const {
|
|
for (Type type : types)
|
|
if (failed(convertType(type, results)))
|
|
return failure();
|
|
return success();
|
|
}
|
|
|
|
bool TypeConverter::isLegal(Type type) const {
|
|
return convertType(type) == type;
|
|
}
|
|
bool TypeConverter::isLegal(Operation *op) const {
|
|
return isLegal(op->getOperandTypes()) && isLegal(op->getResultTypes());
|
|
}
|
|
|
|
bool TypeConverter::isLegal(Region *region) const {
|
|
return llvm::all_of(*region, [this](Block &block) {
|
|
return isLegal(block.getArgumentTypes());
|
|
});
|
|
}
|
|
|
|
bool TypeConverter::isSignatureLegal(FunctionType ty) const {
|
|
return isLegal(llvm::concat<const Type>(ty.getInputs(), ty.getResults()));
|
|
}
|
|
|
|
LogicalResult
|
|
TypeConverter::convertSignatureArg(unsigned inputNo, Type type,
|
|
SignatureConversion &result) const {
|
|
// Try to convert the given input type.
|
|
SmallVector<Type, 1> convertedTypes;
|
|
if (failed(convertType(type, convertedTypes)))
|
|
return failure();
|
|
|
|
// If this argument is being dropped, there is nothing left to do.
|
|
if (convertedTypes.empty())
|
|
return success();
|
|
|
|
// Otherwise, add the new inputs.
|
|
result.addInputs(inputNo, convertedTypes);
|
|
return success();
|
|
}
|
|
LogicalResult
|
|
TypeConverter::convertSignatureArgs(TypeRange types,
|
|
SignatureConversion &result,
|
|
unsigned origInputOffset) const {
|
|
for (unsigned i = 0, e = types.size(); i != e; ++i)
|
|
if (failed(convertSignatureArg(origInputOffset + i, types[i], result)))
|
|
return failure();
|
|
return success();
|
|
}
|
|
|
|
Value TypeConverter::materializeConversion(
|
|
ArrayRef<MaterializationCallbackFn> materializations, OpBuilder &builder,
|
|
Location loc, Type resultType, ValueRange inputs) const {
|
|
for (const MaterializationCallbackFn &fn : llvm::reverse(materializations))
|
|
if (std::optional<Value> result = fn(builder, resultType, inputs, loc))
|
|
return *result;
|
|
return nullptr;
|
|
}
|
|
|
|
std::optional<TypeConverter::SignatureConversion>
|
|
TypeConverter::convertBlockSignature(Block *block) const {
|
|
SignatureConversion conversion(block->getNumArguments());
|
|
if (failed(convertSignatureArgs(block->getArgumentTypes(), conversion)))
|
|
return std::nullopt;
|
|
return conversion;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Type attribute conversion
|
|
//===----------------------------------------------------------------------===//
|
|
TypeConverter::AttributeConversionResult
|
|
TypeConverter::AttributeConversionResult::result(Attribute attr) {
|
|
return AttributeConversionResult(attr, resultTag);
|
|
}
|
|
|
|
TypeConverter::AttributeConversionResult
|
|
TypeConverter::AttributeConversionResult::na() {
|
|
return AttributeConversionResult(nullptr, naTag);
|
|
}
|
|
|
|
TypeConverter::AttributeConversionResult
|
|
TypeConverter::AttributeConversionResult::abort() {
|
|
return AttributeConversionResult(nullptr, abortTag);
|
|
}
|
|
|
|
bool TypeConverter::AttributeConversionResult::hasResult() const {
|
|
return impl.getInt() == resultTag;
|
|
}
|
|
|
|
bool TypeConverter::AttributeConversionResult::isNa() const {
|
|
return impl.getInt() == naTag;
|
|
}
|
|
|
|
bool TypeConverter::AttributeConversionResult::isAbort() const {
|
|
return impl.getInt() == abortTag;
|
|
}
|
|
|
|
Attribute TypeConverter::AttributeConversionResult::getResult() const {
|
|
assert(hasResult() && "Cannot get result from N/A or abort");
|
|
return impl.getPointer();
|
|
}
|
|
|
|
std::optional<Attribute>
|
|
TypeConverter::convertTypeAttribute(Type type, Attribute attr) const {
|
|
for (const TypeAttributeConversionCallbackFn &fn :
|
|
llvm::reverse(typeAttributeConversions)) {
|
|
AttributeConversionResult res = fn(type, attr);
|
|
if (res.hasResult())
|
|
return res.getResult();
|
|
if (res.isAbort())
|
|
return std::nullopt;
|
|
}
|
|
return std::nullopt;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// FunctionOpInterfaceSignatureConversion
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
static LogicalResult convertFuncOpTypes(FunctionOpInterface funcOp,
|
|
const TypeConverter &typeConverter,
|
|
ConversionPatternRewriter &rewriter) {
|
|
FunctionType type = dyn_cast<FunctionType>(funcOp.getFunctionType());
|
|
if (!type)
|
|
return failure();
|
|
|
|
// Convert the original function types.
|
|
TypeConverter::SignatureConversion result(type.getNumInputs());
|
|
SmallVector<Type, 1> newResults;
|
|
if (failed(typeConverter.convertSignatureArgs(type.getInputs(), result)) ||
|
|
failed(typeConverter.convertTypes(type.getResults(), newResults)) ||
|
|
failed(rewriter.convertRegionTypes(&funcOp.getFunctionBody(),
|
|
typeConverter, &result)))
|
|
return failure();
|
|
|
|
// Update the function signature in-place.
|
|
auto newType = FunctionType::get(rewriter.getContext(),
|
|
result.getConvertedTypes(), newResults);
|
|
|
|
rewriter.modifyOpInPlace(funcOp, [&] { funcOp.setType(newType); });
|
|
|
|
return success();
|
|
}
|
|
|
|
/// Create a default conversion pattern that rewrites the type signature of a
|
|
/// FunctionOpInterface op. This only supports ops which use FunctionType to
|
|
/// represent their type.
|
|
namespace {
|
|
struct FunctionOpInterfaceSignatureConversion : public ConversionPattern {
|
|
FunctionOpInterfaceSignatureConversion(StringRef functionLikeOpName,
|
|
MLIRContext *ctx,
|
|
const TypeConverter &converter)
|
|
: ConversionPattern(converter, functionLikeOpName, /*benefit=*/1, ctx) {}
|
|
|
|
LogicalResult
|
|
matchAndRewrite(Operation *op, ArrayRef<Value> /*operands*/,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
FunctionOpInterface funcOp = cast<FunctionOpInterface>(op);
|
|
return convertFuncOpTypes(funcOp, *typeConverter, rewriter);
|
|
}
|
|
};
|
|
|
|
struct AnyFunctionOpInterfaceSignatureConversion
|
|
: public OpInterfaceConversionPattern<FunctionOpInterface> {
|
|
using OpInterfaceConversionPattern::OpInterfaceConversionPattern;
|
|
|
|
LogicalResult
|
|
matchAndRewrite(FunctionOpInterface funcOp, ArrayRef<Value> /*operands*/,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
return convertFuncOpTypes(funcOp, *typeConverter, rewriter);
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
FailureOr<Operation *>
|
|
mlir::convertOpResultTypes(Operation *op, ValueRange operands,
|
|
const TypeConverter &converter,
|
|
ConversionPatternRewriter &rewriter) {
|
|
assert(op && "Invalid op");
|
|
Location loc = op->getLoc();
|
|
if (converter.isLegal(op))
|
|
return rewriter.notifyMatchFailure(loc, "op already legal");
|
|
|
|
OperationState newOp(loc, op->getName());
|
|
newOp.addOperands(operands);
|
|
|
|
SmallVector<Type> newResultTypes;
|
|
if (failed(converter.convertTypes(op->getResultTypes(), newResultTypes)))
|
|
return rewriter.notifyMatchFailure(loc, "couldn't convert return types");
|
|
|
|
newOp.addTypes(newResultTypes);
|
|
newOp.addAttributes(op->getAttrs());
|
|
return rewriter.create(newOp);
|
|
}
|
|
|
|
void mlir::populateFunctionOpInterfaceTypeConversionPattern(
|
|
StringRef functionLikeOpName, RewritePatternSet &patterns,
|
|
const TypeConverter &converter) {
|
|
patterns.add<FunctionOpInterfaceSignatureConversion>(
|
|
functionLikeOpName, patterns.getContext(), converter);
|
|
}
|
|
|
|
void mlir::populateAnyFunctionOpInterfaceTypeConversionPattern(
|
|
RewritePatternSet &patterns, const TypeConverter &converter) {
|
|
patterns.add<AnyFunctionOpInterfaceSignatureConversion>(
|
|
converter, patterns.getContext());
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// ConversionTarget
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void ConversionTarget::setOpAction(OperationName op,
|
|
LegalizationAction action) {
|
|
legalOperations[op].action = action;
|
|
}
|
|
|
|
void ConversionTarget::setDialectAction(ArrayRef<StringRef> dialectNames,
|
|
LegalizationAction action) {
|
|
for (StringRef dialect : dialectNames)
|
|
legalDialects[dialect] = action;
|
|
}
|
|
|
|
auto ConversionTarget::getOpAction(OperationName op) const
|
|
-> std::optional<LegalizationAction> {
|
|
std::optional<LegalizationInfo> info = getOpInfo(op);
|
|
return info ? info->action : std::optional<LegalizationAction>();
|
|
}
|
|
|
|
auto ConversionTarget::isLegal(Operation *op) const
|
|
-> std::optional<LegalOpDetails> {
|
|
std::optional<LegalizationInfo> info = getOpInfo(op->getName());
|
|
if (!info)
|
|
return std::nullopt;
|
|
|
|
// Returns true if this operation instance is known to be legal.
|
|
auto isOpLegal = [&] {
|
|
// Handle dynamic legality either with the provided legality function.
|
|
if (info->action == LegalizationAction::Dynamic) {
|
|
std::optional<bool> result = info->legalityFn(op);
|
|
if (result)
|
|
return *result;
|
|
}
|
|
|
|
// Otherwise, the operation is only legal if it was marked 'Legal'.
|
|
return info->action == LegalizationAction::Legal;
|
|
};
|
|
if (!isOpLegal())
|
|
return std::nullopt;
|
|
|
|
// This operation is legal, compute any additional legality information.
|
|
LegalOpDetails legalityDetails;
|
|
if (info->isRecursivelyLegal) {
|
|
auto legalityFnIt = opRecursiveLegalityFns.find(op->getName());
|
|
if (legalityFnIt != opRecursiveLegalityFns.end()) {
|
|
legalityDetails.isRecursivelyLegal =
|
|
legalityFnIt->second(op).value_or(true);
|
|
} else {
|
|
legalityDetails.isRecursivelyLegal = true;
|
|
}
|
|
}
|
|
return legalityDetails;
|
|
}
|
|
|
|
bool ConversionTarget::isIllegal(Operation *op) const {
|
|
std::optional<LegalizationInfo> info = getOpInfo(op->getName());
|
|
if (!info)
|
|
return false;
|
|
|
|
if (info->action == LegalizationAction::Dynamic) {
|
|
std::optional<bool> result = info->legalityFn(op);
|
|
if (!result)
|
|
return false;
|
|
|
|
return !(*result);
|
|
}
|
|
|
|
return info->action == LegalizationAction::Illegal;
|
|
}
|
|
|
|
static ConversionTarget::DynamicLegalityCallbackFn composeLegalityCallbacks(
|
|
ConversionTarget::DynamicLegalityCallbackFn oldCallback,
|
|
ConversionTarget::DynamicLegalityCallbackFn newCallback) {
|
|
if (!oldCallback)
|
|
return newCallback;
|
|
|
|
auto chain = [oldCl = std::move(oldCallback), newCl = std::move(newCallback)](
|
|
Operation *op) -> std::optional<bool> {
|
|
if (std::optional<bool> result = newCl(op))
|
|
return *result;
|
|
|
|
return oldCl(op);
|
|
};
|
|
return chain;
|
|
}
|
|
|
|
void ConversionTarget::setLegalityCallback(
|
|
OperationName name, const DynamicLegalityCallbackFn &callback) {
|
|
assert(callback && "expected valid legality callback");
|
|
auto *infoIt = legalOperations.find(name);
|
|
assert(infoIt != legalOperations.end() &&
|
|
infoIt->second.action == LegalizationAction::Dynamic &&
|
|
"expected operation to already be marked as dynamically legal");
|
|
infoIt->second.legalityFn =
|
|
composeLegalityCallbacks(std::move(infoIt->second.legalityFn), callback);
|
|
}
|
|
|
|
void ConversionTarget::markOpRecursivelyLegal(
|
|
OperationName name, const DynamicLegalityCallbackFn &callback) {
|
|
auto *infoIt = legalOperations.find(name);
|
|
assert(infoIt != legalOperations.end() &&
|
|
infoIt->second.action != LegalizationAction::Illegal &&
|
|
"expected operation to already be marked as legal");
|
|
infoIt->second.isRecursivelyLegal = true;
|
|
if (callback)
|
|
opRecursiveLegalityFns[name] = composeLegalityCallbacks(
|
|
std::move(opRecursiveLegalityFns[name]), callback);
|
|
else
|
|
opRecursiveLegalityFns.erase(name);
|
|
}
|
|
|
|
void ConversionTarget::setLegalityCallback(
|
|
ArrayRef<StringRef> dialects, const DynamicLegalityCallbackFn &callback) {
|
|
assert(callback && "expected valid legality callback");
|
|
for (StringRef dialect : dialects)
|
|
dialectLegalityFns[dialect] = composeLegalityCallbacks(
|
|
std::move(dialectLegalityFns[dialect]), callback);
|
|
}
|
|
|
|
void ConversionTarget::setLegalityCallback(
|
|
const DynamicLegalityCallbackFn &callback) {
|
|
assert(callback && "expected valid legality callback");
|
|
unknownLegalityFn = composeLegalityCallbacks(unknownLegalityFn, callback);
|
|
}
|
|
|
|
auto ConversionTarget::getOpInfo(OperationName op) const
|
|
-> std::optional<LegalizationInfo> {
|
|
// Check for info for this specific operation.
|
|
const auto *it = legalOperations.find(op);
|
|
if (it != legalOperations.end())
|
|
return it->second;
|
|
// Check for info for the parent dialect.
|
|
auto dialectIt = legalDialects.find(op.getDialectNamespace());
|
|
if (dialectIt != legalDialects.end()) {
|
|
DynamicLegalityCallbackFn callback;
|
|
auto dialectFn = dialectLegalityFns.find(op.getDialectNamespace());
|
|
if (dialectFn != dialectLegalityFns.end())
|
|
callback = dialectFn->second;
|
|
return LegalizationInfo{dialectIt->second, /*isRecursivelyLegal=*/false,
|
|
callback};
|
|
}
|
|
// Otherwise, check if we mark unknown operations as dynamic.
|
|
if (unknownLegalityFn)
|
|
return LegalizationInfo{LegalizationAction::Dynamic,
|
|
/*isRecursivelyLegal=*/false, unknownLegalityFn};
|
|
return std::nullopt;
|
|
}
|
|
|
|
#if MLIR_ENABLE_PDL_IN_PATTERNMATCH
|
|
//===----------------------------------------------------------------------===//
|
|
// PDL Configuration
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void PDLConversionConfig::notifyRewriteBegin(PatternRewriter &rewriter) {
|
|
auto &rewriterImpl =
|
|
static_cast<ConversionPatternRewriter &>(rewriter).getImpl();
|
|
rewriterImpl.currentTypeConverter = getTypeConverter();
|
|
}
|
|
|
|
void PDLConversionConfig::notifyRewriteEnd(PatternRewriter &rewriter) {
|
|
auto &rewriterImpl =
|
|
static_cast<ConversionPatternRewriter &>(rewriter).getImpl();
|
|
rewriterImpl.currentTypeConverter = nullptr;
|
|
}
|
|
|
|
/// Remap the given value using the rewriter and the type converter in the
|
|
/// provided config.
|
|
static FailureOr<SmallVector<Value>>
|
|
pdllConvertValues(ConversionPatternRewriter &rewriter, ValueRange values) {
|
|
SmallVector<Value> mappedValues;
|
|
if (failed(rewriter.getRemappedValues(values, mappedValues)))
|
|
return failure();
|
|
return std::move(mappedValues);
|
|
}
|
|
|
|
void mlir::registerConversionPDLFunctions(RewritePatternSet &patterns) {
|
|
patterns.getPDLPatterns().registerRewriteFunction(
|
|
"convertValue",
|
|
[](PatternRewriter &rewriter, Value value) -> FailureOr<Value> {
|
|
auto results = pdllConvertValues(
|
|
static_cast<ConversionPatternRewriter &>(rewriter), value);
|
|
if (failed(results))
|
|
return failure();
|
|
return results->front();
|
|
});
|
|
patterns.getPDLPatterns().registerRewriteFunction(
|
|
"convertValues", [](PatternRewriter &rewriter, ValueRange values) {
|
|
return pdllConvertValues(
|
|
static_cast<ConversionPatternRewriter &>(rewriter), values);
|
|
});
|
|
patterns.getPDLPatterns().registerRewriteFunction(
|
|
"convertType",
|
|
[](PatternRewriter &rewriter, Type type) -> FailureOr<Type> {
|
|
auto &rewriterImpl =
|
|
static_cast<ConversionPatternRewriter &>(rewriter).getImpl();
|
|
if (const TypeConverter *converter =
|
|
rewriterImpl.currentTypeConverter) {
|
|
if (Type newType = converter->convertType(type))
|
|
return newType;
|
|
return failure();
|
|
}
|
|
return type;
|
|
});
|
|
patterns.getPDLPatterns().registerRewriteFunction(
|
|
"convertTypes",
|
|
[](PatternRewriter &rewriter,
|
|
TypeRange types) -> FailureOr<SmallVector<Type>> {
|
|
auto &rewriterImpl =
|
|
static_cast<ConversionPatternRewriter &>(rewriter).getImpl();
|
|
const TypeConverter *converter = rewriterImpl.currentTypeConverter;
|
|
if (!converter)
|
|
return SmallVector<Type>(types);
|
|
|
|
SmallVector<Type> remappedTypes;
|
|
if (failed(converter->convertTypes(types, remappedTypes)))
|
|
return failure();
|
|
return std::move(remappedTypes);
|
|
});
|
|
}
|
|
#endif // MLIR_ENABLE_PDL_IN_PATTERNMATCH
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Op Conversion Entry Points
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Partial Conversion
|
|
|
|
LogicalResult mlir::applyPartialConversion(
|
|
ArrayRef<Operation *> ops, const ConversionTarget &target,
|
|
const FrozenRewritePatternSet &patterns, ConversionConfig config) {
|
|
OperationConverter opConverter(target, patterns, config,
|
|
OpConversionMode::Partial);
|
|
return opConverter.convertOperations(ops);
|
|
}
|
|
LogicalResult
|
|
mlir::applyPartialConversion(Operation *op, const ConversionTarget &target,
|
|
const FrozenRewritePatternSet &patterns,
|
|
ConversionConfig config) {
|
|
return applyPartialConversion(llvm::ArrayRef(op), target, patterns, config);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Full Conversion
|
|
|
|
LogicalResult mlir::applyFullConversion(ArrayRef<Operation *> ops,
|
|
const ConversionTarget &target,
|
|
const FrozenRewritePatternSet &patterns,
|
|
ConversionConfig config) {
|
|
OperationConverter opConverter(target, patterns, config,
|
|
OpConversionMode::Full);
|
|
return opConverter.convertOperations(ops);
|
|
}
|
|
LogicalResult mlir::applyFullConversion(Operation *op,
|
|
const ConversionTarget &target,
|
|
const FrozenRewritePatternSet &patterns,
|
|
ConversionConfig config) {
|
|
return applyFullConversion(llvm::ArrayRef(op), target, patterns, config);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Analysis Conversion
|
|
|
|
LogicalResult mlir::applyAnalysisConversion(
|
|
ArrayRef<Operation *> ops, ConversionTarget &target,
|
|
const FrozenRewritePatternSet &patterns, ConversionConfig config) {
|
|
OperationConverter opConverter(target, patterns, config,
|
|
OpConversionMode::Analysis);
|
|
return opConverter.convertOperations(ops);
|
|
}
|
|
LogicalResult
|
|
mlir::applyAnalysisConversion(Operation *op, ConversionTarget &target,
|
|
const FrozenRewritePatternSet &patterns,
|
|
ConversionConfig config) {
|
|
return applyAnalysisConversion(llvm::ArrayRef(op), target, patterns, config);
|
|
}
|