llvm-project/llvm/lib/Target/RISCV/RISCVFrameLowering.cpp
Craig Topper 9069ba183d [RISCV] Rename Spimm to StackAdj in most places. NFC
Spimm in the spec refers to the 2-bit encoded value. All of the code
uses the 0, 16, 32, or 48 adjustment value.

Also remove the decodeZcmpSpimm as its identical to the default
behavior for no custom DecoderMethod.
2025-04-04 12:49:09 -07:00

2372 lines
90 KiB
C++

//===-- RISCVFrameLowering.cpp - RISC-V Frame Information -----------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains the RISC-V implementation of TargetFrameLowering class.
//
//===----------------------------------------------------------------------===//
#include "RISCVFrameLowering.h"
#include "RISCVMachineFunctionInfo.h"
#include "RISCVSubtarget.h"
#include "llvm/BinaryFormat/Dwarf.h"
#include "llvm/CodeGen/LivePhysRegs.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/RegisterScavenging.h"
#include "llvm/IR/DiagnosticInfo.h"
#include "llvm/MC/MCDwarf.h"
#include "llvm/Support/LEB128.h"
#include <algorithm>
using namespace llvm;
namespace {
class CFISaveRegisterEmitter {
MachineFunction &MF;
MachineFrameInfo &MFI;
public:
CFISaveRegisterEmitter(MachineFunction &MF)
: MF{MF}, MFI{MF.getFrameInfo()} {};
void emit(MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI,
const RISCVRegisterInfo &RI, const RISCVInstrInfo &TII,
const DebugLoc &DL, const CalleeSavedInfo &CS) const {
int FrameIdx = CS.getFrameIdx();
int64_t Offset = MFI.getObjectOffset(FrameIdx);
MCRegister Reg = CS.getReg();
unsigned CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset(
nullptr, RI.getDwarfRegNum(Reg, true), Offset));
BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
.addCFIIndex(CFIIndex)
.setMIFlag(MachineInstr::FrameSetup);
}
};
class CFIRestoreRegisterEmitter {
MachineFunction &MF;
public:
CFIRestoreRegisterEmitter(MachineFunction &MF) : MF{MF} {};
void emit(MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI,
const RISCVRegisterInfo &RI, const RISCVInstrInfo &TII,
const DebugLoc &DL, const CalleeSavedInfo &CS) const {
MCRegister Reg = CS.getReg();
unsigned CFIIndex = MF.addFrameInst(
MCCFIInstruction::createRestore(nullptr, RI.getDwarfRegNum(Reg, true)));
BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
.addCFIIndex(CFIIndex)
.setMIFlag(MachineInstr::FrameDestroy);
}
};
} // namespace
template <typename Emitter>
void RISCVFrameLowering::emitCFIForCSI(
MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI,
const SmallVector<CalleeSavedInfo, 8> &CSI) const {
MachineFunction *MF = MBB.getParent();
const RISCVRegisterInfo *RI = STI.getRegisterInfo();
const RISCVInstrInfo *TII = STI.getInstrInfo();
DebugLoc DL = MBB.findDebugLoc(MBBI);
Emitter E{*MF};
for (const auto &CS : CSI)
E.emit(MBB, MBBI, *RI, *TII, DL, CS);
}
static Align getABIStackAlignment(RISCVABI::ABI ABI) {
if (ABI == RISCVABI::ABI_ILP32E)
return Align(4);
if (ABI == RISCVABI::ABI_LP64E)
return Align(8);
return Align(16);
}
RISCVFrameLowering::RISCVFrameLowering(const RISCVSubtarget &STI)
: TargetFrameLowering(
StackGrowsDown, getABIStackAlignment(STI.getTargetABI()),
/*LocalAreaOffset=*/0,
/*TransientStackAlignment=*/getABIStackAlignment(STI.getTargetABI())),
STI(STI) {}
// The register used to hold the frame pointer.
static constexpr MCPhysReg FPReg = RISCV::X8;
// The register used to hold the stack pointer.
static constexpr MCPhysReg SPReg = RISCV::X2;
// The register used to hold the return address.
static constexpr MCPhysReg RAReg = RISCV::X1;
// LIst of CSRs that are given a fixed location by save/restore libcalls or
// Zcmp/Xqccmp Push/Pop. The order in this table indicates the order the
// registers are saved on the stack. Zcmp uses the reverse order of save/restore
// and Xqccmp on the stack, but this is handled when offsets are calculated.
static const MCPhysReg FixedCSRFIMap[] = {
/*ra*/ RAReg, /*s0*/ FPReg, /*s1*/ RISCV::X9,
/*s2*/ RISCV::X18, /*s3*/ RISCV::X19, /*s4*/ RISCV::X20,
/*s5*/ RISCV::X21, /*s6*/ RISCV::X22, /*s7*/ RISCV::X23,
/*s8*/ RISCV::X24, /*s9*/ RISCV::X25, /*s10*/ RISCV::X26,
/*s11*/ RISCV::X27};
// The number of stack bytes allocated by `QC.C.MIENTER(.NEST)` and popped by
// `QC.C.MILEAVERET`.
static constexpr uint64_t QCIInterruptPushAmount = 96;
static const std::pair<MCPhysReg, int8_t> FixedCSRFIQCIInterruptMap[] = {
/* -1 is a gap for mepc/mnepc */
{/*fp*/ FPReg, -2},
/* -3 is a gap for qc.mcause */
{/*ra*/ RAReg, -4},
/* -5 is reserved */
{/*t0*/ RISCV::X5, -6},
{/*t1*/ RISCV::X6, -7},
{/*t2*/ RISCV::X7, -8},
{/*a0*/ RISCV::X10, -9},
{/*a1*/ RISCV::X11, -10},
{/*a2*/ RISCV::X12, -11},
{/*a3*/ RISCV::X13, -12},
{/*a4*/ RISCV::X14, -13},
{/*a5*/ RISCV::X15, -14},
{/*a6*/ RISCV::X16, -15},
{/*a7*/ RISCV::X17, -16},
{/*t3*/ RISCV::X28, -17},
{/*t4*/ RISCV::X29, -18},
{/*t5*/ RISCV::X30, -19},
{/*t6*/ RISCV::X31, -20},
/* -21, -22, -23, -24 are reserved */
};
// For now we use x3, a.k.a gp, as pointer to shadow call stack.
// User should not use x3 in their asm.
static void emitSCSPrologue(MachineFunction &MF, MachineBasicBlock &MBB,
MachineBasicBlock::iterator MI,
const DebugLoc &DL) {
const auto &STI = MF.getSubtarget<RISCVSubtarget>();
bool HasHWShadowStack = MF.getFunction().hasFnAttribute("hw-shadow-stack") &&
STI.hasStdExtZicfiss();
bool HasSWShadowStack =
MF.getFunction().hasFnAttribute(Attribute::ShadowCallStack);
if (!HasHWShadowStack && !HasSWShadowStack)
return;
const llvm::RISCVRegisterInfo *TRI = STI.getRegisterInfo();
// Do not save RA to the SCS if it's not saved to the regular stack,
// i.e. RA is not at risk of being overwritten.
std::vector<CalleeSavedInfo> &CSI = MF.getFrameInfo().getCalleeSavedInfo();
if (llvm::none_of(
CSI, [&](CalleeSavedInfo &CSR) { return CSR.getReg() == RAReg; }))
return;
const RISCVInstrInfo *TII = STI.getInstrInfo();
if (HasHWShadowStack) {
BuildMI(MBB, MI, DL, TII->get(RISCV::SSPUSH)).addReg(RAReg);
return;
}
Register SCSPReg = RISCVABI::getSCSPReg();
bool IsRV64 = STI.is64Bit();
int64_t SlotSize = STI.getXLen() / 8;
// Store return address to shadow call stack
// addi gp, gp, [4|8]
// s[w|d] ra, -[4|8](gp)
BuildMI(MBB, MI, DL, TII->get(RISCV::ADDI))
.addReg(SCSPReg, RegState::Define)
.addReg(SCSPReg)
.addImm(SlotSize)
.setMIFlag(MachineInstr::FrameSetup);
BuildMI(MBB, MI, DL, TII->get(IsRV64 ? RISCV::SD : RISCV::SW))
.addReg(RAReg)
.addReg(SCSPReg)
.addImm(-SlotSize)
.setMIFlag(MachineInstr::FrameSetup);
// Emit a CFI instruction that causes SlotSize to be subtracted from the value
// of the shadow stack pointer when unwinding past this frame.
char DwarfSCSReg = TRI->getDwarfRegNum(SCSPReg, /*IsEH*/ true);
assert(DwarfSCSReg < 32 && "SCS Register should be < 32 (X3).");
char Offset = static_cast<char>(-SlotSize) & 0x7f;
const char CFIInst[] = {
dwarf::DW_CFA_val_expression,
DwarfSCSReg, // register
2, // length
static_cast<char>(unsigned(dwarf::DW_OP_breg0 + DwarfSCSReg)),
Offset, // addend (sleb128)
};
unsigned CFIIndex = MF.addFrameInst(MCCFIInstruction::createEscape(
nullptr, StringRef(CFIInst, sizeof(CFIInst))));
BuildMI(MBB, MI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION))
.addCFIIndex(CFIIndex)
.setMIFlag(MachineInstr::FrameSetup);
}
static void emitSCSEpilogue(MachineFunction &MF, MachineBasicBlock &MBB,
MachineBasicBlock::iterator MI,
const DebugLoc &DL) {
const auto &STI = MF.getSubtarget<RISCVSubtarget>();
bool HasHWShadowStack = MF.getFunction().hasFnAttribute("hw-shadow-stack") &&
STI.hasStdExtZicfiss();
bool HasSWShadowStack =
MF.getFunction().hasFnAttribute(Attribute::ShadowCallStack);
if (!HasHWShadowStack && !HasSWShadowStack)
return;
// See emitSCSPrologue() above.
std::vector<CalleeSavedInfo> &CSI = MF.getFrameInfo().getCalleeSavedInfo();
if (llvm::none_of(
CSI, [&](CalleeSavedInfo &CSR) { return CSR.getReg() == RAReg; }))
return;
const RISCVInstrInfo *TII = STI.getInstrInfo();
if (HasHWShadowStack) {
BuildMI(MBB, MI, DL, TII->get(RISCV::SSPOPCHK)).addReg(RAReg);
return;
}
Register SCSPReg = RISCVABI::getSCSPReg();
bool IsRV64 = STI.is64Bit();
int64_t SlotSize = STI.getXLen() / 8;
// Load return address from shadow call stack
// l[w|d] ra, -[4|8](gp)
// addi gp, gp, -[4|8]
BuildMI(MBB, MI, DL, TII->get(IsRV64 ? RISCV::LD : RISCV::LW))
.addReg(RAReg, RegState::Define)
.addReg(SCSPReg)
.addImm(-SlotSize)
.setMIFlag(MachineInstr::FrameDestroy);
BuildMI(MBB, MI, DL, TII->get(RISCV::ADDI))
.addReg(SCSPReg, RegState::Define)
.addReg(SCSPReg)
.addImm(-SlotSize)
.setMIFlag(MachineInstr::FrameDestroy);
// Restore the SCS pointer
unsigned CFIIndex = MF.addFrameInst(MCCFIInstruction::createRestore(
nullptr, STI.getRegisterInfo()->getDwarfRegNum(SCSPReg, /*IsEH*/ true)));
BuildMI(MBB, MI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION))
.addCFIIndex(CFIIndex)
.setMIFlags(MachineInstr::FrameDestroy);
}
// Get the ID of the libcall used for spilling and restoring callee saved
// registers. The ID is representative of the number of registers saved or
// restored by the libcall, except it is zero-indexed - ID 0 corresponds to a
// single register.
static int getLibCallID(const MachineFunction &MF,
const std::vector<CalleeSavedInfo> &CSI) {
const auto *RVFI = MF.getInfo<RISCVMachineFunctionInfo>();
if (CSI.empty() || !RVFI->useSaveRestoreLibCalls(MF))
return -1;
MCRegister MaxReg;
for (auto &CS : CSI)
// assignCalleeSavedSpillSlots assigns negative frame indexes to
// registers which can be saved by libcall.
if (CS.getFrameIdx() < 0)
MaxReg = std::max(MaxReg.id(), CS.getReg().id());
if (!MaxReg)
return -1;
switch (MaxReg.id()) {
default:
llvm_unreachable("Something has gone wrong!");
// clang-format off
case /*s11*/ RISCV::X27: return 12;
case /*s10*/ RISCV::X26: return 11;
case /*s9*/ RISCV::X25: return 10;
case /*s8*/ RISCV::X24: return 9;
case /*s7*/ RISCV::X23: return 8;
case /*s6*/ RISCV::X22: return 7;
case /*s5*/ RISCV::X21: return 6;
case /*s4*/ RISCV::X20: return 5;
case /*s3*/ RISCV::X19: return 4;
case /*s2*/ RISCV::X18: return 3;
case /*s1*/ RISCV::X9: return 2;
case /*s0*/ FPReg: return 1;
case /*ra*/ RAReg: return 0;
// clang-format on
}
}
// Get the name of the libcall used for spilling callee saved registers.
// If this function will not use save/restore libcalls, then return a nullptr.
static const char *
getSpillLibCallName(const MachineFunction &MF,
const std::vector<CalleeSavedInfo> &CSI) {
static const char *const SpillLibCalls[] = {
"__riscv_save_0",
"__riscv_save_1",
"__riscv_save_2",
"__riscv_save_3",
"__riscv_save_4",
"__riscv_save_5",
"__riscv_save_6",
"__riscv_save_7",
"__riscv_save_8",
"__riscv_save_9",
"__riscv_save_10",
"__riscv_save_11",
"__riscv_save_12"
};
int LibCallID = getLibCallID(MF, CSI);
if (LibCallID == -1)
return nullptr;
return SpillLibCalls[LibCallID];
}
// Get the name of the libcall used for restoring callee saved registers.
// If this function will not use save/restore libcalls, then return a nullptr.
static const char *
getRestoreLibCallName(const MachineFunction &MF,
const std::vector<CalleeSavedInfo> &CSI) {
static const char *const RestoreLibCalls[] = {
"__riscv_restore_0",
"__riscv_restore_1",
"__riscv_restore_2",
"__riscv_restore_3",
"__riscv_restore_4",
"__riscv_restore_5",
"__riscv_restore_6",
"__riscv_restore_7",
"__riscv_restore_8",
"__riscv_restore_9",
"__riscv_restore_10",
"__riscv_restore_11",
"__riscv_restore_12"
};
int LibCallID = getLibCallID(MF, CSI);
if (LibCallID == -1)
return nullptr;
return RestoreLibCalls[LibCallID];
}
// Get the max reg of Push/Pop for restoring callee saved registers.
static unsigned getNumPushPopRegs(const std::vector<CalleeSavedInfo> &CSI) {
unsigned NumPushPopRegs = 0;
for (auto &CS : CSI) {
auto *FII = llvm::find_if(FixedCSRFIMap,
[&](MCPhysReg P) { return P == CS.getReg(); });
if (FII != std::end(FixedCSRFIMap)) {
unsigned RegNum = std::distance(std::begin(FixedCSRFIMap), FII);
NumPushPopRegs = std::max(NumPushPopRegs, RegNum + 1);
}
}
assert(NumPushPopRegs != 12 && "x26 requires x27 to also be pushed");
return NumPushPopRegs;
}
// Return true if the specified function should have a dedicated frame
// pointer register. This is true if frame pointer elimination is
// disabled, if it needs dynamic stack realignment, if the function has
// variable sized allocas, or if the frame address is taken.
bool RISCVFrameLowering::hasFPImpl(const MachineFunction &MF) const {
const TargetRegisterInfo *RegInfo = MF.getSubtarget().getRegisterInfo();
const MachineFrameInfo &MFI = MF.getFrameInfo();
return MF.getTarget().Options.DisableFramePointerElim(MF) ||
RegInfo->hasStackRealignment(MF) || MFI.hasVarSizedObjects() ||
MFI.isFrameAddressTaken();
}
bool RISCVFrameLowering::hasBP(const MachineFunction &MF) const {
const MachineFrameInfo &MFI = MF.getFrameInfo();
const TargetRegisterInfo *TRI = STI.getRegisterInfo();
// If we do not reserve stack space for outgoing arguments in prologue,
// we will adjust the stack pointer before call instruction. After the
// adjustment, we can not use SP to access the stack objects for the
// arguments. Instead, use BP to access these stack objects.
return (MFI.hasVarSizedObjects() ||
(!hasReservedCallFrame(MF) && (!MFI.isMaxCallFrameSizeComputed() ||
MFI.getMaxCallFrameSize() != 0))) &&
TRI->hasStackRealignment(MF);
}
// Determines the size of the frame and maximum call frame size.
void RISCVFrameLowering::determineFrameLayout(MachineFunction &MF) const {
MachineFrameInfo &MFI = MF.getFrameInfo();
auto *RVFI = MF.getInfo<RISCVMachineFunctionInfo>();
// Get the number of bytes to allocate from the FrameInfo.
uint64_t FrameSize = MFI.getStackSize();
// QCI Interrupts use at least 96 bytes of stack space
if (RVFI->useQCIInterrupt(MF))
FrameSize = std::max(FrameSize, QCIInterruptPushAmount);
// Get the alignment.
Align StackAlign = getStackAlign();
// Make sure the frame is aligned.
FrameSize = alignTo(FrameSize, StackAlign);
// Update frame info.
MFI.setStackSize(FrameSize);
// When using SP or BP to access stack objects, we may require extra padding
// to ensure the bottom of the RVV stack is correctly aligned within the main
// stack. We calculate this as the amount required to align the scalar local
// variable section up to the RVV alignment.
const TargetRegisterInfo *TRI = STI.getRegisterInfo();
if (RVFI->getRVVStackSize() && (!hasFP(MF) || TRI->hasStackRealignment(MF))) {
int ScalarLocalVarSize = FrameSize - RVFI->getCalleeSavedStackSize() -
RVFI->getVarArgsSaveSize();
if (auto RVVPadding =
offsetToAlignment(ScalarLocalVarSize, RVFI->getRVVStackAlign()))
RVFI->setRVVPadding(RVVPadding);
}
}
// Returns the stack size including RVV padding (when required), rounded back
// up to the required stack alignment.
uint64_t RISCVFrameLowering::getStackSizeWithRVVPadding(
const MachineFunction &MF) const {
const MachineFrameInfo &MFI = MF.getFrameInfo();
auto *RVFI = MF.getInfo<RISCVMachineFunctionInfo>();
return alignTo(MFI.getStackSize() + RVFI->getRVVPadding(), getStackAlign());
}
static SmallVector<CalleeSavedInfo, 8>
getUnmanagedCSI(const MachineFunction &MF,
const std::vector<CalleeSavedInfo> &CSI) {
const MachineFrameInfo &MFI = MF.getFrameInfo();
SmallVector<CalleeSavedInfo, 8> NonLibcallCSI;
for (auto &CS : CSI) {
int FI = CS.getFrameIdx();
if (FI >= 0 && MFI.getStackID(FI) == TargetStackID::Default)
NonLibcallCSI.push_back(CS);
}
return NonLibcallCSI;
}
static SmallVector<CalleeSavedInfo, 8>
getRVVCalleeSavedInfo(const MachineFunction &MF,
const std::vector<CalleeSavedInfo> &CSI) {
const MachineFrameInfo &MFI = MF.getFrameInfo();
SmallVector<CalleeSavedInfo, 8> RVVCSI;
for (auto &CS : CSI) {
int FI = CS.getFrameIdx();
if (FI >= 0 && MFI.getStackID(FI) == TargetStackID::ScalableVector)
RVVCSI.push_back(CS);
}
return RVVCSI;
}
static SmallVector<CalleeSavedInfo, 8>
getPushOrLibCallsSavedInfo(const MachineFunction &MF,
const std::vector<CalleeSavedInfo> &CSI) {
auto *RVFI = MF.getInfo<RISCVMachineFunctionInfo>();
SmallVector<CalleeSavedInfo, 8> PushOrLibCallsCSI;
if (!RVFI->useSaveRestoreLibCalls(MF) && !RVFI->isPushable(MF))
return PushOrLibCallsCSI;
for (const auto &CS : CSI) {
const auto *FII = llvm::find_if(
FixedCSRFIMap, [&](MCPhysReg P) { return P == CS.getReg(); });
if (FII != std::end(FixedCSRFIMap))
PushOrLibCallsCSI.push_back(CS);
}
return PushOrLibCallsCSI;
}
static SmallVector<CalleeSavedInfo, 8>
getQCISavedInfo(const MachineFunction &MF,
const std::vector<CalleeSavedInfo> &CSI) {
auto *RVFI = MF.getInfo<RISCVMachineFunctionInfo>();
SmallVector<CalleeSavedInfo, 8> QCIInterruptCSI;
if (!RVFI->useQCIInterrupt(MF))
return QCIInterruptCSI;
for (const auto &CS : CSI) {
const auto *FII = llvm::find_if(FixedCSRFIQCIInterruptMap, [&](auto P) {
return P.first == CS.getReg();
});
if (FII != std::end(FixedCSRFIQCIInterruptMap))
QCIInterruptCSI.push_back(CS);
}
return QCIInterruptCSI;
}
void RISCVFrameLowering::allocateAndProbeStackForRVV(
MachineFunction &MF, MachineBasicBlock &MBB,
MachineBasicBlock::iterator MBBI, const DebugLoc &DL, int64_t Amount,
MachineInstr::MIFlag Flag, bool EmitCFI, bool DynAllocation) const {
assert(Amount != 0 && "Did not need to adjust stack pointer for RVV.");
// Emit a variable-length allocation probing loop.
// Get VLEN in TargetReg
const RISCVInstrInfo *TII = STI.getInstrInfo();
Register TargetReg = RISCV::X6;
uint32_t NumOfVReg = Amount / RISCV::RVVBytesPerBlock;
BuildMI(MBB, MBBI, DL, TII->get(RISCV::PseudoReadVLENB), TargetReg)
.setMIFlag(Flag);
TII->mulImm(MF, MBB, MBBI, DL, TargetReg, NumOfVReg, Flag);
if (EmitCFI) {
// Set the CFA register to TargetReg.
unsigned Reg = STI.getRegisterInfo()->getDwarfRegNum(TargetReg, true);
unsigned CFIIndex =
MF.addFrameInst(MCCFIInstruction::cfiDefCfa(nullptr, Reg, -Amount));
BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION))
.addCFIIndex(CFIIndex)
.setMIFlags(MachineInstr::FrameSetup);
}
// It will be expanded to a probe loop in `inlineStackProbe`.
BuildMI(MBB, MBBI, DL, TII->get(RISCV::PROBED_STACKALLOC_RVV))
.addReg(SPReg)
.addReg(TargetReg);
if (EmitCFI) {
// Set the CFA register back to SP.
unsigned Reg = STI.getRegisterInfo()->getDwarfRegNum(SPReg, true);
unsigned CFIIndex =
MF.addFrameInst(MCCFIInstruction::createDefCfaRegister(nullptr, Reg));
BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION))
.addCFIIndex(CFIIndex)
.setMIFlags(MachineInstr::FrameSetup);
}
// SUB SP, SP, T1
BuildMI(MBB, MBBI, DL, TII->get(RISCV::SUB), SPReg)
.addReg(SPReg)
.addReg(TargetReg)
.setMIFlag(Flag);
// If we have a dynamic allocation later we need to probe any residuals.
if (DynAllocation) {
BuildMI(MBB, MBBI, DL, TII->get(STI.is64Bit() ? RISCV::SD : RISCV::SW))
.addReg(RISCV::X0)
.addReg(SPReg)
.addImm(0)
.setMIFlags(MachineInstr::FrameSetup);
}
}
static void appendScalableVectorExpression(const TargetRegisterInfo &TRI,
SmallVectorImpl<char> &Expr,
int FixedOffset, int ScalableOffset,
llvm::raw_string_ostream &Comment) {
unsigned DwarfVLenB = TRI.getDwarfRegNum(RISCV::VLENB, true);
uint8_t Buffer[16];
if (FixedOffset) {
Expr.push_back(dwarf::DW_OP_consts);
Expr.append(Buffer, Buffer + encodeSLEB128(FixedOffset, Buffer));
Expr.push_back((uint8_t)dwarf::DW_OP_plus);
Comment << (FixedOffset < 0 ? " - " : " + ") << std::abs(FixedOffset);
}
Expr.push_back((uint8_t)dwarf::DW_OP_consts);
Expr.append(Buffer, Buffer + encodeSLEB128(ScalableOffset, Buffer));
Expr.push_back((uint8_t)dwarf::DW_OP_bregx);
Expr.append(Buffer, Buffer + encodeULEB128(DwarfVLenB, Buffer));
Expr.push_back(0);
Expr.push_back((uint8_t)dwarf::DW_OP_mul);
Expr.push_back((uint8_t)dwarf::DW_OP_plus);
Comment << (ScalableOffset < 0 ? " - " : " + ") << std::abs(ScalableOffset)
<< " * vlenb";
}
static MCCFIInstruction createDefCFAExpression(const TargetRegisterInfo &TRI,
Register Reg,
uint64_t FixedOffset,
uint64_t ScalableOffset) {
assert(ScalableOffset != 0 && "Did not need to adjust CFA for RVV");
SmallString<64> Expr;
std::string CommentBuffer;
llvm::raw_string_ostream Comment(CommentBuffer);
// Build up the expression (Reg + FixedOffset + ScalableOffset * VLENB).
unsigned DwarfReg = TRI.getDwarfRegNum(Reg, true);
Expr.push_back((uint8_t)(dwarf::DW_OP_breg0 + DwarfReg));
Expr.push_back(0);
if (Reg == SPReg)
Comment << "sp";
else
Comment << printReg(Reg, &TRI);
appendScalableVectorExpression(TRI, Expr, FixedOffset, ScalableOffset,
Comment);
SmallString<64> DefCfaExpr;
uint8_t Buffer[16];
DefCfaExpr.push_back(dwarf::DW_CFA_def_cfa_expression);
DefCfaExpr.append(Buffer, Buffer + encodeULEB128(Expr.size(), Buffer));
DefCfaExpr.append(Expr.str());
return MCCFIInstruction::createEscape(nullptr, DefCfaExpr.str(), SMLoc(),
Comment.str());
}
static MCCFIInstruction createDefCFAOffset(const TargetRegisterInfo &TRI,
Register Reg, uint64_t FixedOffset,
uint64_t ScalableOffset) {
assert(ScalableOffset != 0 && "Did not need to adjust CFA for RVV");
SmallString<64> Expr;
std::string CommentBuffer;
llvm::raw_string_ostream Comment(CommentBuffer);
Comment << printReg(Reg, &TRI) << " @ cfa";
// Build up the expression (FixedOffset + ScalableOffset * VLENB).
appendScalableVectorExpression(TRI, Expr, FixedOffset, ScalableOffset,
Comment);
SmallString<64> DefCfaExpr;
uint8_t Buffer[16];
unsigned DwarfReg = TRI.getDwarfRegNum(Reg, true);
DefCfaExpr.push_back(dwarf::DW_CFA_expression);
DefCfaExpr.append(Buffer, Buffer + encodeULEB128(DwarfReg, Buffer));
DefCfaExpr.append(Buffer, Buffer + encodeULEB128(Expr.size(), Buffer));
DefCfaExpr.append(Expr.str());
return MCCFIInstruction::createEscape(nullptr, DefCfaExpr.str(), SMLoc(),
Comment.str());
}
// Allocate stack space and probe it if necessary.
void RISCVFrameLowering::allocateStack(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MBBI,
MachineFunction &MF, uint64_t Offset,
uint64_t RealStackSize, bool EmitCFI,
bool NeedProbe, uint64_t ProbeSize,
bool DynAllocation) const {
DebugLoc DL;
const RISCVRegisterInfo *RI = STI.getRegisterInfo();
const RISCVInstrInfo *TII = STI.getInstrInfo();
bool IsRV64 = STI.is64Bit();
// Simply allocate the stack if it's not big enough to require a probe.
if (!NeedProbe || Offset <= ProbeSize) {
RI->adjustReg(MBB, MBBI, DL, SPReg, SPReg, StackOffset::getFixed(-Offset),
MachineInstr::FrameSetup, getStackAlign());
if (EmitCFI) {
// Emit ".cfi_def_cfa_offset RealStackSize"
unsigned CFIIndex = MF.addFrameInst(
MCCFIInstruction::cfiDefCfaOffset(nullptr, RealStackSize));
BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION))
.addCFIIndex(CFIIndex)
.setMIFlag(MachineInstr::FrameSetup);
}
if (NeedProbe && DynAllocation) {
// s[d|w] zero, 0(sp)
BuildMI(MBB, MBBI, DL, TII->get(IsRV64 ? RISCV::SD : RISCV::SW))
.addReg(RISCV::X0)
.addReg(SPReg)
.addImm(0)
.setMIFlags(MachineInstr::FrameSetup);
}
return;
}
// Unroll the probe loop depending on the number of iterations.
if (Offset < ProbeSize * 5) {
uint64_t CurrentOffset = 0;
while (CurrentOffset + ProbeSize <= Offset) {
RI->adjustReg(MBB, MBBI, DL, SPReg, SPReg,
StackOffset::getFixed(-ProbeSize), MachineInstr::FrameSetup,
getStackAlign());
// s[d|w] zero, 0(sp)
BuildMI(MBB, MBBI, DL, TII->get(IsRV64 ? RISCV::SD : RISCV::SW))
.addReg(RISCV::X0)
.addReg(SPReg)
.addImm(0)
.setMIFlags(MachineInstr::FrameSetup);
CurrentOffset += ProbeSize;
if (EmitCFI) {
// Emit ".cfi_def_cfa_offset CurrentOffset"
unsigned CFIIndex = MF.addFrameInst(
MCCFIInstruction::cfiDefCfaOffset(nullptr, CurrentOffset));
BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION))
.addCFIIndex(CFIIndex)
.setMIFlag(MachineInstr::FrameSetup);
}
}
uint64_t Residual = Offset - CurrentOffset;
if (Residual) {
RI->adjustReg(MBB, MBBI, DL, SPReg, SPReg,
StackOffset::getFixed(-Residual), MachineInstr::FrameSetup,
getStackAlign());
if (EmitCFI) {
// Emit ".cfi_def_cfa_offset Offset"
unsigned CFIIndex =
MF.addFrameInst(MCCFIInstruction::cfiDefCfaOffset(nullptr, Offset));
BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION))
.addCFIIndex(CFIIndex)
.setMIFlag(MachineInstr::FrameSetup);
}
if (DynAllocation) {
// s[d|w] zero, 0(sp)
BuildMI(MBB, MBBI, DL, TII->get(IsRV64 ? RISCV::SD : RISCV::SW))
.addReg(RISCV::X0)
.addReg(SPReg)
.addImm(0)
.setMIFlags(MachineInstr::FrameSetup);
}
}
return;
}
// Emit a variable-length allocation probing loop.
uint64_t RoundedSize = alignDown(Offset, ProbeSize);
uint64_t Residual = Offset - RoundedSize;
Register TargetReg = RISCV::X6;
// SUB TargetReg, SP, RoundedSize
RI->adjustReg(MBB, MBBI, DL, TargetReg, SPReg,
StackOffset::getFixed(-RoundedSize), MachineInstr::FrameSetup,
getStackAlign());
if (EmitCFI) {
// Set the CFA register to TargetReg.
unsigned Reg = STI.getRegisterInfo()->getDwarfRegNum(TargetReg, true);
unsigned CFIIndex =
MF.addFrameInst(MCCFIInstruction::cfiDefCfa(nullptr, Reg, RoundedSize));
BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION))
.addCFIIndex(CFIIndex)
.setMIFlags(MachineInstr::FrameSetup);
}
// It will be expanded to a probe loop in `inlineStackProbe`.
BuildMI(MBB, MBBI, DL, TII->get(RISCV::PROBED_STACKALLOC))
.addReg(SPReg)
.addReg(TargetReg);
if (EmitCFI) {
// Set the CFA register back to SP.
unsigned Reg = STI.getRegisterInfo()->getDwarfRegNum(SPReg, true);
unsigned CFIIndex =
MF.addFrameInst(MCCFIInstruction::createDefCfaRegister(nullptr, Reg));
BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION))
.addCFIIndex(CFIIndex)
.setMIFlags(MachineInstr::FrameSetup);
}
if (Residual) {
RI->adjustReg(MBB, MBBI, DL, SPReg, SPReg, StackOffset::getFixed(-Residual),
MachineInstr::FrameSetup, getStackAlign());
if (DynAllocation) {
// s[d|w] zero, 0(sp)
BuildMI(MBB, MBBI, DL, TII->get(IsRV64 ? RISCV::SD : RISCV::SW))
.addReg(RISCV::X0)
.addReg(SPReg)
.addImm(0)
.setMIFlags(MachineInstr::FrameSetup);
}
}
if (EmitCFI) {
// Emit ".cfi_def_cfa_offset Offset"
unsigned CFIIndex =
MF.addFrameInst(MCCFIInstruction::cfiDefCfaOffset(nullptr, Offset));
BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION))
.addCFIIndex(CFIIndex)
.setMIFlags(MachineInstr::FrameSetup);
}
}
static bool isPush(unsigned Opcode) {
switch (Opcode) {
case RISCV::CM_PUSH:
case RISCV::QC_CM_PUSH:
case RISCV::QC_CM_PUSHFP:
return true;
default:
return false;
}
}
static bool isPop(unsigned Opcode) {
// There are other pops but these are the only ones introduced during this
// pass.
switch (Opcode) {
case RISCV::CM_POP:
case RISCV::QC_CM_POP:
return true;
default:
return false;
}
}
static unsigned getPushOpcode(RISCVMachineFunctionInfo::PushPopKind Kind,
bool HasFP) {
switch (Kind) {
case RISCVMachineFunctionInfo::PushPopKind::StdExtZcmp:
return RISCV::CM_PUSH;
case RISCVMachineFunctionInfo::PushPopKind::VendorXqccmp:
return HasFP ? RISCV::QC_CM_PUSHFP : RISCV::QC_CM_PUSH;
default:
llvm_unreachable("Unhandled PushPopKind");
}
}
static unsigned getPopOpcode(RISCVMachineFunctionInfo::PushPopKind Kind) {
// There are other pops but they are introduced later by the Push/Pop
// Optimizer.
switch (Kind) {
case RISCVMachineFunctionInfo::PushPopKind::StdExtZcmp:
return RISCV::CM_POP;
case RISCVMachineFunctionInfo::PushPopKind::VendorXqccmp:
return RISCV::QC_CM_POP;
default:
llvm_unreachable("Unhandled PushPopKind");
}
}
void RISCVFrameLowering::emitPrologue(MachineFunction &MF,
MachineBasicBlock &MBB) const {
MachineFrameInfo &MFI = MF.getFrameInfo();
auto *RVFI = MF.getInfo<RISCVMachineFunctionInfo>();
const RISCVRegisterInfo *RI = STI.getRegisterInfo();
const RISCVInstrInfo *TII = STI.getInstrInfo();
MachineBasicBlock::iterator MBBI = MBB.begin();
Register BPReg = RISCVABI::getBPReg();
// Debug location must be unknown since the first debug location is used
// to determine the end of the prologue.
DebugLoc DL;
// All calls are tail calls in GHC calling conv, and functions have no
// prologue/epilogue.
if (MF.getFunction().getCallingConv() == CallingConv::GHC)
return;
// Emit prologue for shadow call stack.
emitSCSPrologue(MF, MBB, MBBI, DL);
auto FirstFrameSetup = MBBI;
// Skip past all callee-saved register spill instructions.
while (MBBI != MBB.end() && MBBI->getFlag(MachineInstr::FrameSetup))
++MBBI;
// Determine the correct frame layout
determineFrameLayout(MF);
const auto &CSI = MFI.getCalleeSavedInfo();
// Skip to before the spills of scalar callee-saved registers
// FIXME: assumes exactly one instruction is used to restore each
// callee-saved register.
MBBI = std::prev(MBBI, getRVVCalleeSavedInfo(MF, CSI).size() +
getUnmanagedCSI(MF, CSI).size());
// If libcalls are used to spill and restore callee-saved registers, the frame
// has two sections; the opaque section managed by the libcalls, and the
// section managed by MachineFrameInfo which can also hold callee saved
// registers in fixed stack slots, both of which have negative frame indices.
// This gets even more complicated when incoming arguments are passed via the
// stack, as these too have negative frame indices. An example is detailed
// below:
//
// | incoming arg | <- FI[-3]
// | libcallspill |
// | calleespill | <- FI[-2]
// | calleespill | <- FI[-1]
// | this_frame | <- FI[0]
//
// For negative frame indices, the offset from the frame pointer will differ
// depending on which of these groups the frame index applies to.
// The following calculates the correct offset knowing the number of callee
// saved registers spilt by the two methods.
if (int LibCallRegs = getLibCallID(MF, MFI.getCalleeSavedInfo()) + 1) {
// Calculate the size of the frame managed by the libcall. The stack
// alignment of these libcalls should be the same as how we set it in
// getABIStackAlignment.
unsigned LibCallFrameSize =
alignTo((STI.getXLen() / 8) * LibCallRegs, getStackAlign());
RVFI->setLibCallStackSize(LibCallFrameSize);
unsigned CFIIndex = MF.addFrameInst(
MCCFIInstruction::cfiDefCfaOffset(nullptr, LibCallFrameSize));
BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION))
.addCFIIndex(CFIIndex)
.setMIFlag(MachineInstr::FrameSetup);
emitCFIForCSI<CFISaveRegisterEmitter>(MBB, MBBI,
getPushOrLibCallsSavedInfo(MF, CSI));
}
// FIXME (note copied from Lanai): This appears to be overallocating. Needs
// investigation. Get the number of bytes to allocate from the FrameInfo.
uint64_t RealStackSize = getStackSizeWithRVVPadding(MF);
uint64_t StackSize = RealStackSize - RVFI->getReservedSpillsSize();
uint64_t RVVStackSize = RVFI->getRVVStackSize();
// Early exit if there is no need to allocate on the stack
if (RealStackSize == 0 && !MFI.adjustsStack() && RVVStackSize == 0)
return;
// If the stack pointer has been marked as reserved, then produce an error if
// the frame requires stack allocation
if (STI.isRegisterReservedByUser(SPReg))
MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{
MF.getFunction(), "Stack pointer required, but has been reserved."});
uint64_t FirstSPAdjustAmount = getFirstSPAdjustAmount(MF);
// Split the SP adjustment to reduce the offsets of callee saved spill.
if (FirstSPAdjustAmount) {
StackSize = FirstSPAdjustAmount;
RealStackSize = FirstSPAdjustAmount;
}
if (RVFI->useQCIInterrupt(MF)) {
unsigned CFIIndex = MF.addFrameInst(
MCCFIInstruction::cfiDefCfaOffset(nullptr, QCIInterruptPushAmount));
BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION))
.addCFIIndex(CFIIndex)
.setMIFlag(MachineInstr::FrameSetup);
emitCFIForCSI<CFISaveRegisterEmitter>(MBB, MBBI, getQCISavedInfo(MF, CSI));
} else if (RVFI->isPushable(MF) && FirstFrameSetup != MBB.end() &&
isPush(FirstFrameSetup->getOpcode())) {
// Use available stack adjustment in push instruction to allocate additional
// stack space. Align the stack size down to a multiple of 16. This is
// needed for RVE.
// FIXME: Can we increase the stack size to a multiple of 16 instead?
uint64_t StackAdj =
std::min(alignDown(StackSize, 16), static_cast<uint64_t>(48));
FirstFrameSetup->getOperand(1).setImm(StackAdj);
StackSize -= StackAdj;
unsigned CFIIndex = MF.addFrameInst(
MCCFIInstruction::cfiDefCfaOffset(nullptr, RealStackSize - StackSize));
BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION))
.addCFIIndex(CFIIndex)
.setMIFlag(MachineInstr::FrameSetup);
emitCFIForCSI<CFISaveRegisterEmitter>(MBB, MBBI,
getPushOrLibCallsSavedInfo(MF, CSI));
}
// Allocate space on the stack if necessary.
auto &Subtarget = MF.getSubtarget<RISCVSubtarget>();
const RISCVTargetLowering *TLI = Subtarget.getTargetLowering();
bool NeedProbe = TLI->hasInlineStackProbe(MF);
uint64_t ProbeSize = TLI->getStackProbeSize(MF, getStackAlign());
bool DynAllocation =
MF.getInfo<RISCVMachineFunctionInfo>()->hasDynamicAllocation();
if (StackSize != 0)
allocateStack(MBB, MBBI, MF, StackSize, RealStackSize, /*EmitCFI=*/true,
NeedProbe, ProbeSize, DynAllocation);
// The frame pointer is callee-saved, and code has been generated for us to
// save it to the stack. We need to skip over the storing of callee-saved
// registers as the frame pointer must be modified after it has been saved
// to the stack, not before.
// FIXME: assumes exactly one instruction is used to save each callee-saved
// register.
std::advance(MBBI, getUnmanagedCSI(MF, CSI).size());
// Iterate over list of callee-saved registers and emit .cfi_offset
// directives.
emitCFIForCSI<CFISaveRegisterEmitter>(MBB, MBBI, getUnmanagedCSI(MF, CSI));
// Generate new FP.
if (hasFP(MF)) {
if (STI.isRegisterReservedByUser(FPReg))
MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{
MF.getFunction(), "Frame pointer required, but has been reserved."});
// The frame pointer does need to be reserved from register allocation.
assert(MF.getRegInfo().isReserved(FPReg) && "FP not reserved");
// Some stack management variants automatically keep FP updated, so we don't
// need an instruction to do so.
if (!RVFI->hasImplicitFPUpdates(MF)) {
RI->adjustReg(
MBB, MBBI, DL, FPReg, SPReg,
StackOffset::getFixed(RealStackSize - RVFI->getVarArgsSaveSize()),
MachineInstr::FrameSetup, getStackAlign());
}
// Emit ".cfi_def_cfa $fp, RVFI->getVarArgsSaveSize()"
unsigned CFIIndex = MF.addFrameInst(MCCFIInstruction::cfiDefCfa(
nullptr, RI->getDwarfRegNum(FPReg, true), RVFI->getVarArgsSaveSize()));
BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION))
.addCFIIndex(CFIIndex)
.setMIFlag(MachineInstr::FrameSetup);
}
uint64_t SecondSPAdjustAmount = 0;
// Emit the second SP adjustment after saving callee saved registers.
if (FirstSPAdjustAmount) {
SecondSPAdjustAmount = getStackSizeWithRVVPadding(MF) - FirstSPAdjustAmount;
assert(SecondSPAdjustAmount > 0 &&
"SecondSPAdjustAmount should be greater than zero");
allocateStack(MBB, MBBI, MF, SecondSPAdjustAmount,
getStackSizeWithRVVPadding(MF), !hasFP(MF), NeedProbe,
ProbeSize, DynAllocation);
}
if (RVVStackSize) {
if (NeedProbe) {
allocateAndProbeStackForRVV(MF, MBB, MBBI, DL, RVVStackSize,
MachineInstr::FrameSetup, !hasFP(MF),
DynAllocation);
} else {
// We must keep the stack pointer aligned through any intermediate
// updates.
RI->adjustReg(MBB, MBBI, DL, SPReg, SPReg,
StackOffset::getScalable(-RVVStackSize),
MachineInstr::FrameSetup, getStackAlign());
}
if (!hasFP(MF)) {
// Emit .cfi_def_cfa_expression "sp + StackSize + RVVStackSize * vlenb".
unsigned CFIIndex = MF.addFrameInst(createDefCFAExpression(
*RI, SPReg, getStackSizeWithRVVPadding(MF), RVVStackSize / 8));
BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION))
.addCFIIndex(CFIIndex)
.setMIFlag(MachineInstr::FrameSetup);
}
std::advance(MBBI, getRVVCalleeSavedInfo(MF, CSI).size());
emitCalleeSavedRVVPrologCFI(MBB, MBBI, hasFP(MF));
}
if (hasFP(MF)) {
// Realign Stack
const RISCVRegisterInfo *RI = STI.getRegisterInfo();
if (RI->hasStackRealignment(MF)) {
Align MaxAlignment = MFI.getMaxAlign();
const RISCVInstrInfo *TII = STI.getInstrInfo();
if (isInt<12>(-(int)MaxAlignment.value())) {
BuildMI(MBB, MBBI, DL, TII->get(RISCV::ANDI), SPReg)
.addReg(SPReg)
.addImm(-(int)MaxAlignment.value())
.setMIFlag(MachineInstr::FrameSetup);
} else {
unsigned ShiftAmount = Log2(MaxAlignment);
Register VR =
MF.getRegInfo().createVirtualRegister(&RISCV::GPRRegClass);
BuildMI(MBB, MBBI, DL, TII->get(RISCV::SRLI), VR)
.addReg(SPReg)
.addImm(ShiftAmount)
.setMIFlag(MachineInstr::FrameSetup);
BuildMI(MBB, MBBI, DL, TII->get(RISCV::SLLI), SPReg)
.addReg(VR)
.addImm(ShiftAmount)
.setMIFlag(MachineInstr::FrameSetup);
}
if (NeedProbe && RVVStackSize == 0) {
// Do a probe if the align + size allocated just passed the probe size
// and was not yet probed.
if (SecondSPAdjustAmount < ProbeSize &&
SecondSPAdjustAmount + MaxAlignment.value() >= ProbeSize) {
bool IsRV64 = STI.is64Bit();
BuildMI(MBB, MBBI, DL, TII->get(IsRV64 ? RISCV::SD : RISCV::SW))
.addReg(RISCV::X0)
.addReg(SPReg)
.addImm(0)
.setMIFlags(MachineInstr::FrameSetup);
}
}
// FP will be used to restore the frame in the epilogue, so we need
// another base register BP to record SP after re-alignment. SP will
// track the current stack after allocating variable sized objects.
if (hasBP(MF)) {
// move BP, SP
BuildMI(MBB, MBBI, DL, TII->get(RISCV::ADDI), BPReg)
.addReg(SPReg)
.addImm(0)
.setMIFlag(MachineInstr::FrameSetup);
}
}
}
}
void RISCVFrameLowering::deallocateStack(MachineFunction &MF,
MachineBasicBlock &MBB,
MachineBasicBlock::iterator MBBI,
const DebugLoc &DL,
uint64_t &StackSize,
int64_t CFAOffset) const {
const RISCVRegisterInfo *RI = STI.getRegisterInfo();
const RISCVInstrInfo *TII = STI.getInstrInfo();
RI->adjustReg(MBB, MBBI, DL, SPReg, SPReg, StackOffset::getFixed(StackSize),
MachineInstr::FrameDestroy, getStackAlign());
StackSize = 0;
unsigned CFIIndex =
MF.addFrameInst(MCCFIInstruction::cfiDefCfaOffset(nullptr, CFAOffset));
BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION))
.addCFIIndex(CFIIndex)
.setMIFlag(MachineInstr::FrameDestroy);
}
void RISCVFrameLowering::emitEpilogue(MachineFunction &MF,
MachineBasicBlock &MBB) const {
const RISCVRegisterInfo *RI = STI.getRegisterInfo();
MachineFrameInfo &MFI = MF.getFrameInfo();
auto *RVFI = MF.getInfo<RISCVMachineFunctionInfo>();
const RISCVInstrInfo *TII = STI.getInstrInfo();
// All calls are tail calls in GHC calling conv, and functions have no
// prologue/epilogue.
if (MF.getFunction().getCallingConv() == CallingConv::GHC)
return;
// Get the insert location for the epilogue. If there were no terminators in
// the block, get the last instruction.
MachineBasicBlock::iterator MBBI = MBB.end();
DebugLoc DL;
if (!MBB.empty()) {
MBBI = MBB.getLastNonDebugInstr();
if (MBBI != MBB.end())
DL = MBBI->getDebugLoc();
MBBI = MBB.getFirstTerminator();
// Skip to before the restores of all callee-saved registers.
while (MBBI != MBB.begin() &&
std::prev(MBBI)->getFlag(MachineInstr::FrameDestroy))
--MBBI;
}
const auto &CSI = MFI.getCalleeSavedInfo();
// Skip to before the restores of scalar callee-saved registers
// FIXME: assumes exactly one instruction is used to restore each
// callee-saved register.
auto FirstScalarCSRRestoreInsn =
std::next(MBBI, getRVVCalleeSavedInfo(MF, CSI).size());
uint64_t FirstSPAdjustAmount = getFirstSPAdjustAmount(MF);
uint64_t RealStackSize = FirstSPAdjustAmount ? FirstSPAdjustAmount
: getStackSizeWithRVVPadding(MF);
uint64_t StackSize = FirstSPAdjustAmount ? FirstSPAdjustAmount
: getStackSizeWithRVVPadding(MF) -
RVFI->getReservedSpillsSize();
uint64_t FPOffset = RealStackSize - RVFI->getVarArgsSaveSize();
uint64_t RVVStackSize = RVFI->getRVVStackSize();
bool RestoreSPFromFP = RI->hasStackRealignment(MF) ||
MFI.hasVarSizedObjects() || !hasReservedCallFrame(MF);
if (RVVStackSize) {
// If RestoreSPFromFP the stack pointer will be restored using the frame
// pointer value.
if (!RestoreSPFromFP)
RI->adjustReg(MBB, FirstScalarCSRRestoreInsn, DL, SPReg, SPReg,
StackOffset::getScalable(RVVStackSize),
MachineInstr::FrameDestroy, getStackAlign());
if (!hasFP(MF)) {
unsigned CFIIndex = MF.addFrameInst(MCCFIInstruction::cfiDefCfa(
nullptr, RI->getDwarfRegNum(SPReg, true), RealStackSize));
BuildMI(MBB, FirstScalarCSRRestoreInsn, DL,
TII->get(TargetOpcode::CFI_INSTRUCTION))
.addCFIIndex(CFIIndex)
.setMIFlag(MachineInstr::FrameDestroy);
}
emitCalleeSavedRVVEpilogCFI(MBB, FirstScalarCSRRestoreInsn);
}
if (FirstSPAdjustAmount) {
uint64_t SecondSPAdjustAmount =
getStackSizeWithRVVPadding(MF) - FirstSPAdjustAmount;
assert(SecondSPAdjustAmount > 0 &&
"SecondSPAdjustAmount should be greater than zero");
// If RestoreSPFromFP the stack pointer will be restored using the frame
// pointer value.
if (!RestoreSPFromFP)
RI->adjustReg(MBB, FirstScalarCSRRestoreInsn, DL, SPReg, SPReg,
StackOffset::getFixed(SecondSPAdjustAmount),
MachineInstr::FrameDestroy, getStackAlign());
if (!hasFP(MF)) {
unsigned CFIIndex = MF.addFrameInst(
MCCFIInstruction::cfiDefCfaOffset(nullptr, FirstSPAdjustAmount));
BuildMI(MBB, FirstScalarCSRRestoreInsn, DL,
TII->get(TargetOpcode::CFI_INSTRUCTION))
.addCFIIndex(CFIIndex)
.setMIFlag(MachineInstr::FrameDestroy);
}
}
// Restore the stack pointer using the value of the frame pointer. Only
// necessary if the stack pointer was modified, meaning the stack size is
// unknown.
//
// In order to make sure the stack point is right through the EH region,
// we also need to restore stack pointer from the frame pointer if we
// don't preserve stack space within prologue/epilogue for outgoing variables,
// normally it's just checking the variable sized object is present or not
// is enough, but we also don't preserve that at prologue/epilogue when
// have vector objects in stack.
if (RestoreSPFromFP) {
assert(hasFP(MF) && "frame pointer should not have been eliminated");
RI->adjustReg(MBB, FirstScalarCSRRestoreInsn, DL, SPReg, FPReg,
StackOffset::getFixed(-FPOffset), MachineInstr::FrameDestroy,
getStackAlign());
}
if (hasFP(MF)) {
unsigned CFIIndex = MF.addFrameInst(MCCFIInstruction::cfiDefCfa(
nullptr, RI->getDwarfRegNum(SPReg, true), RealStackSize));
BuildMI(MBB, FirstScalarCSRRestoreInsn, DL,
TII->get(TargetOpcode::CFI_INSTRUCTION))
.addCFIIndex(CFIIndex)
.setMIFlag(MachineInstr::FrameDestroy);
}
// Skip to after the restores of scalar callee-saved registers
// FIXME: assumes exactly one instruction is used to restore each
// callee-saved register.
MBBI = std::next(FirstScalarCSRRestoreInsn, getUnmanagedCSI(MF, CSI).size());
if (getLibCallID(MF, CSI) != -1) {
// tail __riscv_restore_[0-12] instruction is considered as a terminator,
// therefore it is unnecessary to place any CFI instructions after it. Just
// deallocate stack if needed and return.
if (StackSize != 0)
deallocateStack(MF, MBB, MBBI, DL, StackSize,
RVFI->getLibCallStackSize());
// Emit epilogue for shadow call stack.
emitSCSEpilogue(MF, MBB, MBBI, DL);
return;
}
// Recover callee-saved registers.
emitCFIForCSI<CFIRestoreRegisterEmitter>(MBB, MBBI, getUnmanagedCSI(MF, CSI));
if (RVFI->isPushable(MF) && MBBI != MBB.end() && isPop(MBBI->getOpcode())) {
// Use available stack adjustment in pop instruction to deallocate stack
// space. Align the stack size down to a multiple of 16. This is needed for
// RVE.
// FIXME: Can we increase the stack size to a multiple of 16 instead?
uint64_t StackAdj =
std::min(alignDown(StackSize, 16), static_cast<uint64_t>(48));
MBBI->getOperand(1).setImm(StackAdj);
StackSize -= StackAdj;
if (StackSize != 0)
deallocateStack(MF, MBB, MBBI, DL, StackSize,
/*stack_adj of cm.pop instr*/ RealStackSize - StackSize);
auto NextI = next_nodbg(MBBI, MBB.end());
if (NextI == MBB.end() || NextI->getOpcode() != RISCV::PseudoRET) {
++MBBI;
emitCFIForCSI<CFIRestoreRegisterEmitter>(
MBB, MBBI, getPushOrLibCallsSavedInfo(MF, CSI));
// Update CFA offset. After CM_POP SP should be equal to CFA, so CFA
// offset should be a zero.
unsigned CFIIndex =
MF.addFrameInst(MCCFIInstruction::cfiDefCfaOffset(nullptr, 0));
BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION))
.addCFIIndex(CFIIndex)
.setMIFlag(MachineInstr::FrameDestroy);
}
}
// Deallocate stack if StackSize isn't a zero yet
if (StackSize != 0)
deallocateStack(MF, MBB, MBBI, DL, StackSize, RealStackSize - StackSize);
// Emit epilogue for shadow call stack.
emitSCSEpilogue(MF, MBB, MBBI, DL);
}
StackOffset
RISCVFrameLowering::getFrameIndexReference(const MachineFunction &MF, int FI,
Register &FrameReg) const {
const MachineFrameInfo &MFI = MF.getFrameInfo();
const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo();
const auto *RVFI = MF.getInfo<RISCVMachineFunctionInfo>();
// Callee-saved registers should be referenced relative to the stack
// pointer (positive offset), otherwise use the frame pointer (negative
// offset).
const auto &CSI = getUnmanagedCSI(MF, MFI.getCalleeSavedInfo());
int MinCSFI = 0;
int MaxCSFI = -1;
StackOffset Offset;
auto StackID = MFI.getStackID(FI);
assert((StackID == TargetStackID::Default ||
StackID == TargetStackID::ScalableVector) &&
"Unexpected stack ID for the frame object.");
if (StackID == TargetStackID::Default) {
assert(getOffsetOfLocalArea() == 0 && "LocalAreaOffset is not 0!");
Offset = StackOffset::getFixed(MFI.getObjectOffset(FI) +
MFI.getOffsetAdjustment());
} else if (StackID == TargetStackID::ScalableVector) {
Offset = StackOffset::getScalable(MFI.getObjectOffset(FI));
}
uint64_t FirstSPAdjustAmount = getFirstSPAdjustAmount(MF);
if (CSI.size()) {
MinCSFI = CSI[0].getFrameIdx();
MaxCSFI = CSI[CSI.size() - 1].getFrameIdx();
}
if (FI >= MinCSFI && FI <= MaxCSFI) {
FrameReg = SPReg;
if (FirstSPAdjustAmount)
Offset += StackOffset::getFixed(FirstSPAdjustAmount);
else
Offset += StackOffset::getFixed(getStackSizeWithRVVPadding(MF));
return Offset;
}
if (RI->hasStackRealignment(MF) && !MFI.isFixedObjectIndex(FI)) {
// If the stack was realigned, the frame pointer is set in order to allow
// SP to be restored, so we need another base register to record the stack
// after realignment.
// |--------------------------| -- <-- FP
// | callee-allocated save | | <----|
// | area for register varargs| | |
// |--------------------------| | |
// | callee-saved registers | | |
// |--------------------------| -- |
// | realignment (the size of | | |
// | this area is not counted | | |
// | in MFI.getStackSize()) | | |
// |--------------------------| -- |-- MFI.getStackSize()
// | RVV alignment padding | | |
// | (not counted in | | |
// | MFI.getStackSize() but | | |
// | counted in | | |
// | RVFI.getRVVStackSize()) | | |
// |--------------------------| -- |
// | RVV objects | | |
// | (not counted in | | |
// | MFI.getStackSize()) | | |
// |--------------------------| -- |
// | padding before RVV | | |
// | (not counted in | | |
// | MFI.getStackSize() or in | | |
// | RVFI.getRVVStackSize()) | | |
// |--------------------------| -- |
// | scalar local variables | | <----'
// |--------------------------| -- <-- BP (if var sized objects present)
// | VarSize objects | |
// |--------------------------| -- <-- SP
if (hasBP(MF)) {
FrameReg = RISCVABI::getBPReg();
} else {
// VarSize objects must be empty in this case!
assert(!MFI.hasVarSizedObjects());
FrameReg = SPReg;
}
} else {
FrameReg = RI->getFrameRegister(MF);
}
if (FrameReg == FPReg) {
Offset += StackOffset::getFixed(RVFI->getVarArgsSaveSize());
// When using FP to access scalable vector objects, we need to minus
// the frame size.
//
// |--------------------------| -- <-- FP
// | callee-allocated save | |
// | area for register varargs| |
// |--------------------------| |
// | callee-saved registers | |
// |--------------------------| | MFI.getStackSize()
// | scalar local variables | |
// |--------------------------| -- (Offset of RVV objects is from here.)
// | RVV objects |
// |--------------------------|
// | VarSize objects |
// |--------------------------| <-- SP
if (MFI.getStackID(FI) == TargetStackID::ScalableVector) {
assert(!RI->hasStackRealignment(MF) &&
"Can't index across variable sized realign");
// We don't expect any extra RVV alignment padding, as the stack size
// and RVV object sections should be correct aligned in their own
// right.
assert(MFI.getStackSize() == getStackSizeWithRVVPadding(MF) &&
"Inconsistent stack layout");
Offset -= StackOffset::getFixed(MFI.getStackSize());
}
return Offset;
}
// This case handles indexing off both SP and BP.
// If indexing off SP, there must not be any var sized objects
assert(FrameReg == RISCVABI::getBPReg() || !MFI.hasVarSizedObjects());
// When using SP to access frame objects, we need to add RVV stack size.
//
// |--------------------------| -- <-- FP
// | callee-allocated save | | <----|
// | area for register varargs| | |
// |--------------------------| | |
// | callee-saved registers | | |
// |--------------------------| -- |
// | RVV alignment padding | | |
// | (not counted in | | |
// | MFI.getStackSize() but | | |
// | counted in | | |
// | RVFI.getRVVStackSize()) | | |
// |--------------------------| -- |
// | RVV objects | | |-- MFI.getStackSize()
// | (not counted in | | |
// | MFI.getStackSize()) | | |
// |--------------------------| -- |
// | padding before RVV | | |
// | (not counted in | | |
// | MFI.getStackSize()) | | |
// |--------------------------| -- |
// | scalar local variables | | <----'
// |--------------------------| -- <-- BP (if var sized objects present)
// | VarSize objects | |
// |--------------------------| -- <-- SP
//
// The total amount of padding surrounding RVV objects is described by
// RVV->getRVVPadding() and it can be zero. It allows us to align the RVV
// objects to the required alignment.
if (MFI.getStackID(FI) == TargetStackID::Default) {
if (MFI.isFixedObjectIndex(FI)) {
assert(!RI->hasStackRealignment(MF) &&
"Can't index across variable sized realign");
Offset += StackOffset::get(getStackSizeWithRVVPadding(MF),
RVFI->getRVVStackSize());
} else {
Offset += StackOffset::getFixed(MFI.getStackSize());
}
} else if (MFI.getStackID(FI) == TargetStackID::ScalableVector) {
// Ensure the base of the RVV stack is correctly aligned: add on the
// alignment padding.
int ScalarLocalVarSize = MFI.getStackSize() -
RVFI->getCalleeSavedStackSize() -
RVFI->getVarArgsSaveSize() + RVFI->getRVVPadding();
Offset += StackOffset::get(ScalarLocalVarSize, RVFI->getRVVStackSize());
}
return Offset;
}
void RISCVFrameLowering::determineCalleeSaves(MachineFunction &MF,
BitVector &SavedRegs,
RegScavenger *RS) const {
TargetFrameLowering::determineCalleeSaves(MF, SavedRegs, RS);
// Unconditionally spill RA and FP only if the function uses a frame
// pointer.
if (hasFP(MF)) {
SavedRegs.set(RAReg);
SavedRegs.set(FPReg);
}
// Mark BP as used if function has dedicated base pointer.
if (hasBP(MF))
SavedRegs.set(RISCVABI::getBPReg());
// When using cm.push/pop we must save X27 if we save X26.
auto *RVFI = MF.getInfo<RISCVMachineFunctionInfo>();
if (RVFI->isPushable(MF) && SavedRegs.test(RISCV::X26))
SavedRegs.set(RISCV::X27);
}
std::pair<int64_t, Align>
RISCVFrameLowering::assignRVVStackObjectOffsets(MachineFunction &MF) const {
MachineFrameInfo &MFI = MF.getFrameInfo();
// Create a buffer of RVV objects to allocate.
SmallVector<int, 8> ObjectsToAllocate;
auto pushRVVObjects = [&](int FIBegin, int FIEnd) {
for (int I = FIBegin, E = FIEnd; I != E; ++I) {
unsigned StackID = MFI.getStackID(I);
if (StackID != TargetStackID::ScalableVector)
continue;
if (MFI.isDeadObjectIndex(I))
continue;
ObjectsToAllocate.push_back(I);
}
};
// First push RVV Callee Saved object, then push RVV stack object
std::vector<CalleeSavedInfo> &CSI = MF.getFrameInfo().getCalleeSavedInfo();
const auto &RVVCSI = getRVVCalleeSavedInfo(MF, CSI);
if (!RVVCSI.empty())
pushRVVObjects(RVVCSI[0].getFrameIdx(),
RVVCSI[RVVCSI.size() - 1].getFrameIdx() + 1);
pushRVVObjects(0, MFI.getObjectIndexEnd() - RVVCSI.size());
// The minimum alignment is 16 bytes.
Align RVVStackAlign(16);
const auto &ST = MF.getSubtarget<RISCVSubtarget>();
if (!ST.hasVInstructions()) {
assert(ObjectsToAllocate.empty() &&
"Can't allocate scalable-vector objects without V instructions");
return std::make_pair(0, RVVStackAlign);
}
// Allocate all RVV locals and spills
int64_t Offset = 0;
for (int FI : ObjectsToAllocate) {
// ObjectSize in bytes.
int64_t ObjectSize = MFI.getObjectSize(FI);
auto ObjectAlign =
std::max(Align(RISCV::RVVBytesPerBlock), MFI.getObjectAlign(FI));
// If the data type is the fractional vector type, reserve one vector
// register for it.
if (ObjectSize < RISCV::RVVBytesPerBlock)
ObjectSize = RISCV::RVVBytesPerBlock;
Offset = alignTo(Offset + ObjectSize, ObjectAlign);
MFI.setObjectOffset(FI, -Offset);
// Update the maximum alignment of the RVV stack section
RVVStackAlign = std::max(RVVStackAlign, ObjectAlign);
}
uint64_t StackSize = Offset;
// Ensure the alignment of the RVV stack. Since we want the most-aligned
// object right at the bottom (i.e., any padding at the top of the frame),
// readjust all RVV objects down by the alignment padding.
// Stack size and offsets are multiples of vscale, stack alignment is in
// bytes, we can divide stack alignment by minimum vscale to get a maximum
// stack alignment multiple of vscale.
auto VScale =
std::max<uint64_t>(ST.getRealMinVLen() / RISCV::RVVBitsPerBlock, 1);
if (auto RVVStackAlignVScale = RVVStackAlign.value() / VScale) {
if (auto AlignmentPadding =
offsetToAlignment(StackSize, Align(RVVStackAlignVScale))) {
StackSize += AlignmentPadding;
for (int FI : ObjectsToAllocate)
MFI.setObjectOffset(FI, MFI.getObjectOffset(FI) - AlignmentPadding);
}
}
return std::make_pair(StackSize, RVVStackAlign);
}
static unsigned getScavSlotsNumForRVV(MachineFunction &MF) {
// For RVV spill, scalable stack offsets computing requires up to two scratch
// registers
static constexpr unsigned ScavSlotsNumRVVSpillScalableObject = 2;
// For RVV spill, non-scalable stack offsets computing requires up to one
// scratch register.
static constexpr unsigned ScavSlotsNumRVVSpillNonScalableObject = 1;
// ADDI instruction's destination register can be used for computing
// offsets. So Scalable stack offsets require up to one scratch register.
static constexpr unsigned ScavSlotsADDIScalableObject = 1;
static constexpr unsigned MaxScavSlotsNumKnown =
std::max({ScavSlotsADDIScalableObject, ScavSlotsNumRVVSpillScalableObject,
ScavSlotsNumRVVSpillNonScalableObject});
unsigned MaxScavSlotsNum = 0;
if (!MF.getSubtarget<RISCVSubtarget>().hasVInstructions())
return false;
for (const MachineBasicBlock &MBB : MF)
for (const MachineInstr &MI : MBB) {
bool IsRVVSpill = RISCV::isRVVSpill(MI);
for (auto &MO : MI.operands()) {
if (!MO.isFI())
continue;
bool IsScalableVectorID = MF.getFrameInfo().getStackID(MO.getIndex()) ==
TargetStackID::ScalableVector;
if (IsRVVSpill) {
MaxScavSlotsNum = std::max(
MaxScavSlotsNum, IsScalableVectorID
? ScavSlotsNumRVVSpillScalableObject
: ScavSlotsNumRVVSpillNonScalableObject);
} else if (MI.getOpcode() == RISCV::ADDI && IsScalableVectorID) {
MaxScavSlotsNum =
std::max(MaxScavSlotsNum, ScavSlotsADDIScalableObject);
}
}
if (MaxScavSlotsNum == MaxScavSlotsNumKnown)
return MaxScavSlotsNumKnown;
}
return MaxScavSlotsNum;
}
static bool hasRVVFrameObject(const MachineFunction &MF) {
// Originally, the function will scan all the stack objects to check whether
// if there is any scalable vector object on the stack or not. However, it
// causes errors in the register allocator. In issue 53016, it returns false
// before RA because there is no RVV stack objects. After RA, it returns true
// because there are spilling slots for RVV values during RA. It will not
// reserve BP during register allocation and generate BP access in the PEI
// pass due to the inconsistent behavior of the function.
//
// The function is changed to use hasVInstructions() as the return value. It
// is not precise, but it can make the register allocation correct.
//
// FIXME: Find a better way to make the decision or revisit the solution in
// D103622.
//
// Refer to https://github.com/llvm/llvm-project/issues/53016.
return MF.getSubtarget<RISCVSubtarget>().hasVInstructions();
}
static unsigned estimateFunctionSizeInBytes(const MachineFunction &MF,
const RISCVInstrInfo &TII) {
unsigned FnSize = 0;
for (auto &MBB : MF) {
for (auto &MI : MBB) {
// Far branches over 20-bit offset will be relaxed in branch relaxation
// pass. In the worst case, conditional branches will be relaxed into
// the following instruction sequence. Unconditional branches are
// relaxed in the same way, with the exception that there is no first
// branch instruction.
//
// foo
// bne t5, t6, .rev_cond # `TII->getInstSizeInBytes(MI)` bytes
// sd s11, 0(sp) # 4 bytes, or 2 bytes in RVC
// jump .restore, s11 # 8 bytes
// .rev_cond
// bar
// j .dest_bb # 4 bytes, or 2 bytes in RVC
// .restore:
// ld s11, 0(sp) # 4 bytes, or 2 bytes in RVC
// .dest:
// baz
if (MI.isConditionalBranch())
FnSize += TII.getInstSizeInBytes(MI);
if (MI.isConditionalBranch() || MI.isUnconditionalBranch()) {
if (MF.getSubtarget<RISCVSubtarget>().hasStdExtCOrZca())
FnSize += 2 + 8 + 2 + 2;
else
FnSize += 4 + 8 + 4 + 4;
continue;
}
FnSize += TII.getInstSizeInBytes(MI);
}
}
return FnSize;
}
void RISCVFrameLowering::processFunctionBeforeFrameFinalized(
MachineFunction &MF, RegScavenger *RS) const {
const RISCVRegisterInfo *RegInfo =
MF.getSubtarget<RISCVSubtarget>().getRegisterInfo();
const RISCVInstrInfo *TII = MF.getSubtarget<RISCVSubtarget>().getInstrInfo();
MachineFrameInfo &MFI = MF.getFrameInfo();
const TargetRegisterClass *RC = &RISCV::GPRRegClass;
auto *RVFI = MF.getInfo<RISCVMachineFunctionInfo>();
int64_t RVVStackSize;
Align RVVStackAlign;
std::tie(RVVStackSize, RVVStackAlign) = assignRVVStackObjectOffsets(MF);
RVFI->setRVVStackSize(RVVStackSize);
RVFI->setRVVStackAlign(RVVStackAlign);
if (hasRVVFrameObject(MF)) {
// Ensure the entire stack is aligned to at least the RVV requirement: some
// scalable-vector object alignments are not considered by the
// target-independent code.
MFI.ensureMaxAlignment(RVVStackAlign);
}
unsigned ScavSlotsNum = 0;
// estimateStackSize has been observed to under-estimate the final stack
// size, so give ourselves wiggle-room by checking for stack size
// representable an 11-bit signed field rather than 12-bits.
if (!isInt<11>(MFI.estimateStackSize(MF)))
ScavSlotsNum = 1;
// Far branches over 20-bit offset require a spill slot for scratch register.
bool IsLargeFunction = !isInt<20>(estimateFunctionSizeInBytes(MF, *TII));
if (IsLargeFunction)
ScavSlotsNum = std::max(ScavSlotsNum, 1u);
// RVV loads & stores have no capacity to hold the immediate address offsets
// so we must always reserve an emergency spill slot if the MachineFunction
// contains any RVV spills.
ScavSlotsNum = std::max(ScavSlotsNum, getScavSlotsNumForRVV(MF));
for (unsigned I = 0; I < ScavSlotsNum; I++) {
int FI = MFI.CreateSpillStackObject(RegInfo->getSpillSize(*RC),
RegInfo->getSpillAlign(*RC));
RS->addScavengingFrameIndex(FI);
if (IsLargeFunction && RVFI->getBranchRelaxationScratchFrameIndex() == -1)
RVFI->setBranchRelaxationScratchFrameIndex(FI);
}
unsigned Size = RVFI->getReservedSpillsSize();
for (const auto &Info : MFI.getCalleeSavedInfo()) {
int FrameIdx = Info.getFrameIdx();
if (FrameIdx < 0 || MFI.getStackID(FrameIdx) != TargetStackID::Default)
continue;
Size += MFI.getObjectSize(FrameIdx);
}
RVFI->setCalleeSavedStackSize(Size);
}
// Not preserve stack space within prologue for outgoing variables when the
// function contains variable size objects or there are vector objects accessed
// by the frame pointer.
// Let eliminateCallFramePseudoInstr preserve stack space for it.
bool RISCVFrameLowering::hasReservedCallFrame(const MachineFunction &MF) const {
return !MF.getFrameInfo().hasVarSizedObjects() &&
!(hasFP(MF) && hasRVVFrameObject(MF));
}
// Eliminate ADJCALLSTACKDOWN, ADJCALLSTACKUP pseudo instructions.
MachineBasicBlock::iterator RISCVFrameLowering::eliminateCallFramePseudoInstr(
MachineFunction &MF, MachineBasicBlock &MBB,
MachineBasicBlock::iterator MI) const {
DebugLoc DL = MI->getDebugLoc();
if (!hasReservedCallFrame(MF)) {
// If space has not been reserved for a call frame, ADJCALLSTACKDOWN and
// ADJCALLSTACKUP must be converted to instructions manipulating the stack
// pointer. This is necessary when there is a variable length stack
// allocation (e.g. alloca), which means it's not possible to allocate
// space for outgoing arguments from within the function prologue.
int64_t Amount = MI->getOperand(0).getImm();
if (Amount != 0) {
// Ensure the stack remains aligned after adjustment.
Amount = alignSPAdjust(Amount);
if (MI->getOpcode() == RISCV::ADJCALLSTACKDOWN)
Amount = -Amount;
const RISCVRegisterInfo &RI = *STI.getRegisterInfo();
RI.adjustReg(MBB, MI, DL, SPReg, SPReg, StackOffset::getFixed(Amount),
MachineInstr::NoFlags, getStackAlign());
}
}
return MBB.erase(MI);
}
// We would like to split the SP adjustment to reduce prologue/epilogue
// as following instructions. In this way, the offset of the callee saved
// register could fit in a single store. Supposed that the first sp adjust
// amount is 2032.
// add sp,sp,-2032
// sw ra,2028(sp)
// sw s0,2024(sp)
// sw s1,2020(sp)
// sw s3,2012(sp)
// sw s4,2008(sp)
// add sp,sp,-64
uint64_t
RISCVFrameLowering::getFirstSPAdjustAmount(const MachineFunction &MF) const {
const auto *RVFI = MF.getInfo<RISCVMachineFunctionInfo>();
const MachineFrameInfo &MFI = MF.getFrameInfo();
const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo();
uint64_t StackSize = getStackSizeWithRVVPadding(MF);
// Disable SplitSPAdjust if save-restore libcall, push/pop or QCI interrupts
// are used. The callee-saved registers will be pushed by the save-restore
// libcalls, so we don't have to split the SP adjustment in this case.
if (RVFI->getReservedSpillsSize())
return 0;
// Return the FirstSPAdjustAmount if the StackSize can not fit in a signed
// 12-bit and there exists a callee-saved register needing to be pushed.
if (!isInt<12>(StackSize) && (CSI.size() > 0)) {
// FirstSPAdjustAmount is chosen at most as (2048 - StackAlign) because
// 2048 will cause sp = sp + 2048 in the epilogue to be split into multiple
// instructions. Offsets smaller than 2048 can fit in a single load/store
// instruction, and we have to stick with the stack alignment. 2048 has
// 16-byte alignment. The stack alignment for RV32 and RV64 is 16 and for
// RV32E it is 4. So (2048 - StackAlign) will satisfy the stack alignment.
const uint64_t StackAlign = getStackAlign().value();
// Amount of (2048 - StackAlign) will prevent callee saved and restored
// instructions be compressed, so try to adjust the amount to the largest
// offset that stack compression instructions accept when target supports
// compression instructions.
if (STI.hasStdExtCOrZca()) {
// The compression extensions may support the following instructions:
// riscv32: c.lwsp rd, offset[7:2] => 2^(6 + 2)
// c.swsp rs2, offset[7:2] => 2^(6 + 2)
// c.flwsp rd, offset[7:2] => 2^(6 + 2)
// c.fswsp rs2, offset[7:2] => 2^(6 + 2)
// riscv64: c.ldsp rd, offset[8:3] => 2^(6 + 3)
// c.sdsp rs2, offset[8:3] => 2^(6 + 3)
// c.fldsp rd, offset[8:3] => 2^(6 + 3)
// c.fsdsp rs2, offset[8:3] => 2^(6 + 3)
const uint64_t RVCompressLen = STI.getXLen() * 8;
// Compared with amount (2048 - StackAlign), StackSize needs to
// satisfy the following conditions to avoid using more instructions
// to adjust the sp after adjusting the amount, such as
// StackSize meets the condition (StackSize <= 2048 + RVCompressLen),
// case1: Amount is 2048 - StackAlign: use addi + addi to adjust sp.
// case2: Amount is RVCompressLen: use addi + addi to adjust sp.
auto CanCompress = [&](uint64_t CompressLen) -> bool {
if (StackSize <= 2047 + CompressLen ||
(StackSize > 2048 * 2 - StackAlign &&
StackSize <= 2047 * 2 + CompressLen) ||
StackSize > 2048 * 3 - StackAlign)
return true;
return false;
};
// In the epilogue, addi sp, sp, 496 is used to recover the sp and it
// can be compressed(C.ADDI16SP, offset can be [-512, 496]), but
// addi sp, sp, 512 can not be compressed. So try to use 496 first.
const uint64_t ADDI16SPCompressLen = 496;
if (STI.is64Bit() && CanCompress(ADDI16SPCompressLen))
return ADDI16SPCompressLen;
if (CanCompress(RVCompressLen))
return RVCompressLen;
}
return 2048 - StackAlign;
}
return 0;
}
bool RISCVFrameLowering::assignCalleeSavedSpillSlots(
MachineFunction &MF, const TargetRegisterInfo *TRI,
std::vector<CalleeSavedInfo> &CSI, unsigned &MinCSFrameIndex,
unsigned &MaxCSFrameIndex) const {
// Early exit if no callee saved registers are modified!
if (CSI.empty())
return true;
auto *RVFI = MF.getInfo<RISCVMachineFunctionInfo>();
if (RVFI->useQCIInterrupt(MF)) {
RVFI->setQCIInterruptStackSize(QCIInterruptPushAmount);
} else if (RVFI->isPushable(MF)) {
// Determine how many GPRs we need to push and save it to RVFI.
unsigned PushedRegNum = getNumPushPopRegs(CSI);
if (PushedRegNum) {
RVFI->setRVPushRegs(PushedRegNum);
RVFI->setRVPushStackSize(alignTo((STI.getXLen() / 8) * PushedRegNum, 16));
}
}
MachineFrameInfo &MFI = MF.getFrameInfo();
const TargetRegisterInfo *RegInfo = MF.getSubtarget().getRegisterInfo();
for (auto &CS : CSI) {
MCRegister Reg = CS.getReg();
const TargetRegisterClass *RC = RegInfo->getMinimalPhysRegClass(Reg);
unsigned Size = RegInfo->getSpillSize(*RC);
if (RVFI->useQCIInterrupt(MF)) {
const auto *FFI = llvm::find_if(FixedCSRFIQCIInterruptMap, [&](auto P) {
return P.first == CS.getReg();
});
if (FFI != std::end(FixedCSRFIQCIInterruptMap)) {
int64_t Offset = FFI->second * (int64_t)Size;
int FrameIdx = MFI.CreateFixedSpillStackObject(Size, Offset);
assert(FrameIdx < 0);
CS.setFrameIdx(FrameIdx);
continue;
}
// TODO: QCI Interrupt + Push/Pop
} else if (RVFI->useSaveRestoreLibCalls(MF) || RVFI->isPushable(MF)) {
const auto *FII = llvm::find_if(
FixedCSRFIMap, [&](MCPhysReg P) { return P == CS.getReg(); });
unsigned RegNum = std::distance(std::begin(FixedCSRFIMap), FII);
if (FII != std::end(FixedCSRFIMap)) {
int64_t Offset;
if (RVFI->getPushPopKind(MF) ==
RISCVMachineFunctionInfo::PushPopKind::StdExtZcmp)
Offset = -int64_t(RVFI->getRVPushRegs() - RegNum) * Size;
else
Offset = -int64_t(RegNum + 1) * Size;
int FrameIdx = MFI.CreateFixedSpillStackObject(Size, Offset);
assert(FrameIdx < 0);
CS.setFrameIdx(FrameIdx);
continue;
}
}
// Not a fixed slot.
Align Alignment = RegInfo->getSpillAlign(*RC);
// We may not be able to satisfy the desired alignment specification of
// the TargetRegisterClass if the stack alignment is smaller. Use the
// min.
Alignment = std::min(Alignment, getStackAlign());
int FrameIdx = MFI.CreateStackObject(Size, Alignment, true);
if ((unsigned)FrameIdx < MinCSFrameIndex)
MinCSFrameIndex = FrameIdx;
if ((unsigned)FrameIdx > MaxCSFrameIndex)
MaxCSFrameIndex = FrameIdx;
CS.setFrameIdx(FrameIdx);
if (RISCVRegisterInfo::isRVVRegClass(RC))
MFI.setStackID(FrameIdx, TargetStackID::ScalableVector);
}
if (RVFI->useQCIInterrupt(MF)) {
// Allocate a fixed object that covers the entire QCI stack allocation,
// because there are gaps which are reserved for future use.
MFI.CreateFixedSpillStackObject(
QCIInterruptPushAmount, -static_cast<int64_t>(QCIInterruptPushAmount));
} else if (RVFI->isPushable(MF)) {
// Allocate a fixed object that covers all the registers that are pushed.
if (unsigned PushedRegs = RVFI->getRVPushRegs()) {
int64_t PushedRegsBytes =
static_cast<int64_t>(PushedRegs) * (STI.getXLen() / 8);
MFI.CreateFixedSpillStackObject(PushedRegsBytes, -PushedRegsBytes);
}
} else if (int LibCallRegs = getLibCallID(MF, CSI) + 1) {
// Allocate a fixed object that covers all of the stack allocated by the
// libcall.
int64_t LibCallFrameSize =
alignTo((STI.getXLen() / 8) * LibCallRegs, getStackAlign());
MFI.CreateFixedSpillStackObject(LibCallFrameSize, -LibCallFrameSize);
}
return true;
}
bool RISCVFrameLowering::spillCalleeSavedRegisters(
MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
ArrayRef<CalleeSavedInfo> CSI, const TargetRegisterInfo *TRI) const {
if (CSI.empty())
return true;
MachineFunction *MF = MBB.getParent();
const TargetInstrInfo &TII = *MF->getSubtarget().getInstrInfo();
DebugLoc DL;
if (MI != MBB.end() && !MI->isDebugInstr())
DL = MI->getDebugLoc();
RISCVMachineFunctionInfo *RVFI = MF->getInfo<RISCVMachineFunctionInfo>();
if (RVFI->useQCIInterrupt(*MF)) {
// Emit QC.C.MIENTER(.NEST)
BuildMI(
MBB, MI, DL,
TII.get(RVFI->getInterruptStackKind(*MF) ==
RISCVMachineFunctionInfo::InterruptStackKind::QCINest
? RISCV::QC_C_MIENTER_NEST
: RISCV::QC_C_MIENTER))
.setMIFlag(MachineInstr::FrameSetup);
for (auto [Reg, _Offset] : FixedCSRFIQCIInterruptMap)
MBB.addLiveIn(Reg);
// TODO: Handle QCI Interrupt + Push/Pop
} else if (RVFI->isPushable(*MF)) {
// Emit CM.PUSH with base StackAdj & evaluate Push stack
unsigned PushedRegNum = RVFI->getRVPushRegs();
if (PushedRegNum > 0) {
// Use encoded number to represent registers to spill.
unsigned Opcode = getPushOpcode(RVFI->getPushPopKind(*MF), hasFP(*MF));
unsigned RegEnc = RISCVZC::encodeRegListNumRegs(PushedRegNum);
MachineInstrBuilder PushBuilder =
BuildMI(MBB, MI, DL, TII.get(Opcode))
.setMIFlag(MachineInstr::FrameSetup);
PushBuilder.addImm(RegEnc);
PushBuilder.addImm(0);
for (unsigned i = 0; i < PushedRegNum; i++)
PushBuilder.addUse(FixedCSRFIMap[i], RegState::Implicit);
}
} else if (const char *SpillLibCall = getSpillLibCallName(*MF, CSI)) {
// Add spill libcall via non-callee-saved register t0.
BuildMI(MBB, MI, DL, TII.get(RISCV::PseudoCALLReg), RISCV::X5)
.addExternalSymbol(SpillLibCall, RISCVII::MO_CALL)
.setMIFlag(MachineInstr::FrameSetup);
// Add registers spilled in libcall as liveins.
for (auto &CS : CSI)
MBB.addLiveIn(CS.getReg());
}
// Manually spill values not spilled by libcall & Push/Pop.
const auto &UnmanagedCSI = getUnmanagedCSI(*MF, CSI);
const auto &RVVCSI = getRVVCalleeSavedInfo(*MF, CSI);
auto storeRegsToStackSlots = [&](decltype(UnmanagedCSI) CSInfo) {
for (auto &CS : CSInfo) {
// Insert the spill to the stack frame.
MCRegister Reg = CS.getReg();
const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg);
TII.storeRegToStackSlot(MBB, MI, Reg, !MBB.isLiveIn(Reg),
CS.getFrameIdx(), RC, TRI, Register(),
MachineInstr::FrameSetup);
}
};
storeRegsToStackSlots(UnmanagedCSI);
storeRegsToStackSlots(RVVCSI);
return true;
}
static unsigned getCalleeSavedRVVNumRegs(const Register &BaseReg) {
return RISCV::VRRegClass.contains(BaseReg) ? 1
: RISCV::VRM2RegClass.contains(BaseReg) ? 2
: RISCV::VRM4RegClass.contains(BaseReg) ? 4
: 8;
}
static MCRegister getRVVBaseRegister(const RISCVRegisterInfo &TRI,
const Register &Reg) {
MCRegister BaseReg = TRI.getSubReg(Reg, RISCV::sub_vrm1_0);
// If it's not a grouped vector register, it doesn't have subregister, so
// the base register is just itself.
if (BaseReg == RISCV::NoRegister)
BaseReg = Reg;
return BaseReg;
}
void RISCVFrameLowering::emitCalleeSavedRVVPrologCFI(
MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, bool HasFP) const {
MachineFunction *MF = MBB.getParent();
const MachineFrameInfo &MFI = MF->getFrameInfo();
RISCVMachineFunctionInfo *RVFI = MF->getInfo<RISCVMachineFunctionInfo>();
const TargetInstrInfo &TII = *STI.getInstrInfo();
const RISCVRegisterInfo &TRI = *STI.getRegisterInfo();
DebugLoc DL = MBB.findDebugLoc(MI);
const auto &RVVCSI = getRVVCalleeSavedInfo(*MF, MFI.getCalleeSavedInfo());
if (RVVCSI.empty())
return;
uint64_t FixedSize = getStackSizeWithRVVPadding(*MF);
if (!HasFP) {
uint64_t ScalarLocalVarSize =
MFI.getStackSize() - RVFI->getCalleeSavedStackSize() -
RVFI->getVarArgsSaveSize() + RVFI->getRVVPadding();
FixedSize -= ScalarLocalVarSize;
}
for (auto &CS : RVVCSI) {
// Insert the spill to the stack frame.
int FI = CS.getFrameIdx();
MCRegister BaseReg = getRVVBaseRegister(TRI, CS.getReg());
unsigned NumRegs = getCalleeSavedRVVNumRegs(CS.getReg());
for (unsigned i = 0; i < NumRegs; ++i) {
unsigned CFIIndex = MF->addFrameInst(createDefCFAOffset(
TRI, BaseReg + i, -FixedSize, MFI.getObjectOffset(FI) / 8 + i));
BuildMI(MBB, MI, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
.addCFIIndex(CFIIndex)
.setMIFlag(MachineInstr::FrameSetup);
}
}
}
void RISCVFrameLowering::emitCalleeSavedRVVEpilogCFI(
MachineBasicBlock &MBB, MachineBasicBlock::iterator MI) const {
MachineFunction *MF = MBB.getParent();
const MachineFrameInfo &MFI = MF->getFrameInfo();
const RISCVRegisterInfo *RI = STI.getRegisterInfo();
const TargetInstrInfo &TII = *STI.getInstrInfo();
const RISCVRegisterInfo &TRI = *STI.getRegisterInfo();
DebugLoc DL = MBB.findDebugLoc(MI);
const auto &RVVCSI = getRVVCalleeSavedInfo(*MF, MFI.getCalleeSavedInfo());
for (auto &CS : RVVCSI) {
MCRegister BaseReg = getRVVBaseRegister(TRI, CS.getReg());
unsigned NumRegs = getCalleeSavedRVVNumRegs(CS.getReg());
for (unsigned i = 0; i < NumRegs; ++i) {
unsigned CFIIndex = MF->addFrameInst(MCCFIInstruction::createRestore(
nullptr, RI->getDwarfRegNum(BaseReg + i, true)));
BuildMI(MBB, MI, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
.addCFIIndex(CFIIndex)
.setMIFlag(MachineInstr::FrameDestroy);
}
}
}
bool RISCVFrameLowering::restoreCalleeSavedRegisters(
MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
MutableArrayRef<CalleeSavedInfo> CSI, const TargetRegisterInfo *TRI) const {
if (CSI.empty())
return true;
MachineFunction *MF = MBB.getParent();
const TargetInstrInfo &TII = *MF->getSubtarget().getInstrInfo();
DebugLoc DL;
if (MI != MBB.end() && !MI->isDebugInstr())
DL = MI->getDebugLoc();
// Manually restore values not restored by libcall & Push/Pop.
// Reverse the restore order in epilog. In addition, the return
// address will be restored first in the epilogue. It increases
// the opportunity to avoid the load-to-use data hazard between
// loading RA and return by RA. loadRegFromStackSlot can insert
// multiple instructions.
const auto &UnmanagedCSI = getUnmanagedCSI(*MF, CSI);
const auto &RVVCSI = getRVVCalleeSavedInfo(*MF, CSI);
auto loadRegFromStackSlot = [&](decltype(UnmanagedCSI) CSInfo) {
for (auto &CS : CSInfo) {
MCRegister Reg = CS.getReg();
const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg);
TII.loadRegFromStackSlot(MBB, MI, Reg, CS.getFrameIdx(), RC, TRI,
Register(), MachineInstr::FrameDestroy);
assert(MI != MBB.begin() &&
"loadRegFromStackSlot didn't insert any code!");
}
};
loadRegFromStackSlot(RVVCSI);
loadRegFromStackSlot(UnmanagedCSI);
RISCVMachineFunctionInfo *RVFI = MF->getInfo<RISCVMachineFunctionInfo>();
if (RVFI->useQCIInterrupt(*MF)) {
// Don't emit anything here because restoration is handled by
// QC.C.MILEAVERET which we already inserted to return.
assert(MI->getOpcode() == RISCV::QC_C_MILEAVERET &&
"Unexpected QCI Interrupt Return Instruction");
// TODO: Handle QCI + Push/Pop
} else if (RVFI->isPushable(*MF)) {
unsigned PushedRegNum = RVFI->getRVPushRegs();
if (PushedRegNum > 0) {
unsigned Opcode = getPopOpcode(RVFI->getPushPopKind(*MF));
unsigned RegEnc = RISCVZC::encodeRegListNumRegs(PushedRegNum);
MachineInstrBuilder PopBuilder =
BuildMI(MBB, MI, DL, TII.get(Opcode))
.setMIFlag(MachineInstr::FrameDestroy);
// Use encoded number to represent registers to restore.
PopBuilder.addImm(RegEnc);
PopBuilder.addImm(0);
for (unsigned i = 0; i < RVFI->getRVPushRegs(); i++)
PopBuilder.addDef(FixedCSRFIMap[i], RegState::ImplicitDefine);
}
} else {
const char *RestoreLibCall = getRestoreLibCallName(*MF, CSI);
if (RestoreLibCall) {
// Add restore libcall via tail call.
MachineBasicBlock::iterator NewMI =
BuildMI(MBB, MI, DL, TII.get(RISCV::PseudoTAIL))
.addExternalSymbol(RestoreLibCall, RISCVII::MO_CALL)
.setMIFlag(MachineInstr::FrameDestroy);
// Remove trailing returns, since the terminator is now a tail call to the
// restore function.
if (MI != MBB.end() && MI->getOpcode() == RISCV::PseudoRET) {
NewMI->copyImplicitOps(*MF, *MI);
MI->eraseFromParent();
}
}
}
return true;
}
bool RISCVFrameLowering::enableShrinkWrapping(const MachineFunction &MF) const {
// Keep the conventional code flow when not optimizing.
if (MF.getFunction().hasOptNone())
return false;
return true;
}
bool RISCVFrameLowering::canUseAsPrologue(const MachineBasicBlock &MBB) const {
MachineBasicBlock *TmpMBB = const_cast<MachineBasicBlock *>(&MBB);
const MachineFunction *MF = MBB.getParent();
const auto *RVFI = MF->getInfo<RISCVMachineFunctionInfo>();
// Make sure VTYPE and VL are not live-in since we will use vsetvli in the
// prologue to get the VLEN, and that will clobber these registers.
//
// We may do also check the stack contains objects with scalable vector type,
// but this will require iterating over all the stack objects, but this may
// not worth since the situation is rare, we could do further check in future
// if we find it is necessary.
if (STI.preferVsetvliOverReadVLENB() &&
(MBB.isLiveIn(RISCV::VTYPE) || MBB.isLiveIn(RISCV::VL)))
return false;
if (!RVFI->useSaveRestoreLibCalls(*MF))
return true;
// Inserting a call to a __riscv_save libcall requires the use of the register
// t0 (X5) to hold the return address. Therefore if this register is already
// used we can't insert the call.
RegScavenger RS;
RS.enterBasicBlock(*TmpMBB);
return !RS.isRegUsed(RISCV::X5);
}
bool RISCVFrameLowering::canUseAsEpilogue(const MachineBasicBlock &MBB) const {
const MachineFunction *MF = MBB.getParent();
MachineBasicBlock *TmpMBB = const_cast<MachineBasicBlock *>(&MBB);
const auto *RVFI = MF->getInfo<RISCVMachineFunctionInfo>();
// We do not want QC.C.MILEAVERET to be subject to shrink-wrapping - it must
// come in the final block of its function as it both pops and returns.
if (RVFI->useQCIInterrupt(*MF))
return MBB.succ_empty();
if (!RVFI->useSaveRestoreLibCalls(*MF))
return true;
// Using the __riscv_restore libcalls to restore CSRs requires a tail call.
// This means if we still need to continue executing code within this function
// the restore cannot take place in this basic block.
if (MBB.succ_size() > 1)
return false;
MachineBasicBlock *SuccMBB =
MBB.succ_empty() ? TmpMBB->getFallThrough() : *MBB.succ_begin();
// Doing a tail call should be safe if there are no successors, because either
// we have a returning block or the end of the block is unreachable, so the
// restore will be eliminated regardless.
if (!SuccMBB)
return true;
// The successor can only contain a return, since we would effectively be
// replacing the successor with our own tail return at the end of our block.
return SuccMBB->isReturnBlock() && SuccMBB->size() == 1;
}
bool RISCVFrameLowering::isSupportedStackID(TargetStackID::Value ID) const {
switch (ID) {
case TargetStackID::Default:
case TargetStackID::ScalableVector:
return true;
case TargetStackID::NoAlloc:
case TargetStackID::SGPRSpill:
case TargetStackID::WasmLocal:
return false;
}
llvm_unreachable("Invalid TargetStackID::Value");
}
TargetStackID::Value RISCVFrameLowering::getStackIDForScalableVectors() const {
return TargetStackID::ScalableVector;
}
// Synthesize the probe loop.
static void emitStackProbeInline(MachineFunction &MF, MachineBasicBlock &MBB,
MachineBasicBlock::iterator MBBI, DebugLoc DL,
Register TargetReg, bool IsRVV) {
assert(TargetReg != RISCV::X2 && "New top of stack cannot already be in SP");
auto &Subtarget = MF.getSubtarget<RISCVSubtarget>();
const RISCVInstrInfo *TII = Subtarget.getInstrInfo();
bool IsRV64 = Subtarget.is64Bit();
Align StackAlign = Subtarget.getFrameLowering()->getStackAlign();
const RISCVTargetLowering *TLI = Subtarget.getTargetLowering();
uint64_t ProbeSize = TLI->getStackProbeSize(MF, StackAlign);
MachineFunction::iterator MBBInsertPoint = std::next(MBB.getIterator());
MachineBasicBlock *LoopTestMBB =
MF.CreateMachineBasicBlock(MBB.getBasicBlock());
MF.insert(MBBInsertPoint, LoopTestMBB);
MachineBasicBlock *ExitMBB = MF.CreateMachineBasicBlock(MBB.getBasicBlock());
MF.insert(MBBInsertPoint, ExitMBB);
MachineInstr::MIFlag Flags = MachineInstr::FrameSetup;
Register ScratchReg = RISCV::X7;
// ScratchReg = ProbeSize
TII->movImm(MBB, MBBI, DL, ScratchReg, ProbeSize, Flags);
// LoopTest:
// SUB SP, SP, ProbeSize
BuildMI(*LoopTestMBB, LoopTestMBB->end(), DL, TII->get(RISCV::SUB), SPReg)
.addReg(SPReg)
.addReg(ScratchReg)
.setMIFlags(Flags);
// s[d|w] zero, 0(sp)
BuildMI(*LoopTestMBB, LoopTestMBB->end(), DL,
TII->get(IsRV64 ? RISCV::SD : RISCV::SW))
.addReg(RISCV::X0)
.addReg(SPReg)
.addImm(0)
.setMIFlags(Flags);
if (IsRVV) {
// SUB TargetReg, TargetReg, ProbeSize
BuildMI(*LoopTestMBB, LoopTestMBB->end(), DL, TII->get(RISCV::SUB),
TargetReg)
.addReg(TargetReg)
.addReg(ScratchReg)
.setMIFlags(Flags);
// BGE TargetReg, ProbeSize, LoopTest
BuildMI(*LoopTestMBB, LoopTestMBB->end(), DL, TII->get(RISCV::BGE))
.addReg(TargetReg)
.addReg(ScratchReg)
.addMBB(LoopTestMBB)
.setMIFlags(Flags);
} else {
// BNE SP, TargetReg, LoopTest
BuildMI(*LoopTestMBB, LoopTestMBB->end(), DL, TII->get(RISCV::BNE))
.addReg(SPReg)
.addReg(TargetReg)
.addMBB(LoopTestMBB)
.setMIFlags(Flags);
}
ExitMBB->splice(ExitMBB->end(), &MBB, std::next(MBBI), MBB.end());
ExitMBB->transferSuccessorsAndUpdatePHIs(&MBB);
LoopTestMBB->addSuccessor(ExitMBB);
LoopTestMBB->addSuccessor(LoopTestMBB);
MBB.addSuccessor(LoopTestMBB);
// Update liveins.
fullyRecomputeLiveIns({ExitMBB, LoopTestMBB});
}
void RISCVFrameLowering::inlineStackProbe(MachineFunction &MF,
MachineBasicBlock &MBB) const {
// Get the instructions that need to be replaced. We emit at most two of
// these. Remember them in order to avoid complications coming from the need
// to traverse the block while potentially creating more blocks.
SmallVector<MachineInstr *, 4> ToReplace;
for (MachineInstr &MI : MBB) {
unsigned Opc = MI.getOpcode();
if (Opc == RISCV::PROBED_STACKALLOC ||
Opc == RISCV::PROBED_STACKALLOC_RVV) {
ToReplace.push_back(&MI);
}
}
for (MachineInstr *MI : ToReplace) {
if (MI->getOpcode() == RISCV::PROBED_STACKALLOC ||
MI->getOpcode() == RISCV::PROBED_STACKALLOC_RVV) {
MachineBasicBlock::iterator MBBI = MI->getIterator();
DebugLoc DL = MBB.findDebugLoc(MBBI);
Register TargetReg = MI->getOperand(1).getReg();
emitStackProbeInline(MF, MBB, MBBI, DL, TargetReg,
(MI->getOpcode() == RISCV::PROBED_STACKALLOC_RVV));
MBBI->eraseFromParent();
}
}
}