
This reverts commit 46080abe9b136821eda2a1a27d8a13ceac349f8c. Extra tests have been added in 52d29eb287. Original message: This adds a new interface to compute the cost of recipes, VPBasicBlocks, VPRegionBlocks and VPlan, initially falling back to the legacy cost model for all recipes. Follow-up patches will gradually migrate recipes to compute their own costs step-by-step. It also adds getBestPlan function to LVP which computes the cost of all VPlans and picks the most profitable one together with the most profitable VF. The VPlan selected by the VPlan cost model is executed and there is an assert to catch cases where the VPlan cost model and the legacy cost model disagree. Even though I checked a number of different build configurations on AArch64 and X86, there may be some differences that have been missed. Additional discussions and context can be found in @arcbbb's https://github.com/llvm/llvm-project/pull/67647 and https://github.com/llvm/llvm-project/pull/67934 which is an earlier version of the current PR. PR: https://github.com/llvm/llvm-project/pull/92555
1580 lines
63 KiB
C++
1580 lines
63 KiB
C++
//===-- VPlanTransforms.cpp - Utility VPlan to VPlan transforms -----------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
///
|
|
/// \file
|
|
/// This file implements a set of utility VPlan to VPlan transformations.
|
|
///
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "VPlanTransforms.h"
|
|
#include "VPRecipeBuilder.h"
|
|
#include "VPlanAnalysis.h"
|
|
#include "VPlanCFG.h"
|
|
#include "VPlanDominatorTree.h"
|
|
#include "VPlanPatternMatch.h"
|
|
#include "llvm/ADT/PostOrderIterator.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/SetVector.h"
|
|
#include "llvm/Analysis/IVDescriptors.h"
|
|
#include "llvm/Analysis/VectorUtils.h"
|
|
#include "llvm/IR/Intrinsics.h"
|
|
#include "llvm/IR/PatternMatch.h"
|
|
|
|
using namespace llvm;
|
|
|
|
void VPlanTransforms::VPInstructionsToVPRecipes(
|
|
VPlanPtr &Plan,
|
|
function_ref<const InductionDescriptor *(PHINode *)>
|
|
GetIntOrFpInductionDescriptor,
|
|
ScalarEvolution &SE, const TargetLibraryInfo &TLI) {
|
|
|
|
ReversePostOrderTraversal<VPBlockDeepTraversalWrapper<VPBlockBase *>> RPOT(
|
|
Plan->getEntry());
|
|
for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(RPOT)) {
|
|
VPRecipeBase *Term = VPBB->getTerminator();
|
|
auto EndIter = Term ? Term->getIterator() : VPBB->end();
|
|
// Introduce each ingredient into VPlan.
|
|
for (VPRecipeBase &Ingredient :
|
|
make_early_inc_range(make_range(VPBB->begin(), EndIter))) {
|
|
|
|
VPValue *VPV = Ingredient.getVPSingleValue();
|
|
Instruction *Inst = cast<Instruction>(VPV->getUnderlyingValue());
|
|
|
|
VPRecipeBase *NewRecipe = nullptr;
|
|
if (auto *VPPhi = dyn_cast<VPWidenPHIRecipe>(&Ingredient)) {
|
|
auto *Phi = cast<PHINode>(VPPhi->getUnderlyingValue());
|
|
const auto *II = GetIntOrFpInductionDescriptor(Phi);
|
|
if (!II)
|
|
continue;
|
|
|
|
VPValue *Start = Plan->getOrAddLiveIn(II->getStartValue());
|
|
VPValue *Step =
|
|
vputils::getOrCreateVPValueForSCEVExpr(*Plan, II->getStep(), SE);
|
|
NewRecipe = new VPWidenIntOrFpInductionRecipe(Phi, Start, Step, *II);
|
|
} else {
|
|
assert(isa<VPInstruction>(&Ingredient) &&
|
|
"only VPInstructions expected here");
|
|
assert(!isa<PHINode>(Inst) && "phis should be handled above");
|
|
// Create VPWidenMemoryRecipe for loads and stores.
|
|
if (LoadInst *Load = dyn_cast<LoadInst>(Inst)) {
|
|
NewRecipe = new VPWidenLoadRecipe(
|
|
*Load, Ingredient.getOperand(0), nullptr /*Mask*/,
|
|
false /*Consecutive*/, false /*Reverse*/,
|
|
Ingredient.getDebugLoc());
|
|
} else if (StoreInst *Store = dyn_cast<StoreInst>(Inst)) {
|
|
NewRecipe = new VPWidenStoreRecipe(
|
|
*Store, Ingredient.getOperand(1), Ingredient.getOperand(0),
|
|
nullptr /*Mask*/, false /*Consecutive*/, false /*Reverse*/,
|
|
Ingredient.getDebugLoc());
|
|
} else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Inst)) {
|
|
NewRecipe = new VPWidenGEPRecipe(GEP, Ingredient.operands());
|
|
} else if (CallInst *CI = dyn_cast<CallInst>(Inst)) {
|
|
NewRecipe = new VPWidenCallRecipe(
|
|
CI, Ingredient.operands(), getVectorIntrinsicIDForCall(CI, &TLI),
|
|
CI->getDebugLoc());
|
|
} else if (SelectInst *SI = dyn_cast<SelectInst>(Inst)) {
|
|
NewRecipe = new VPWidenSelectRecipe(*SI, Ingredient.operands());
|
|
} else if (auto *CI = dyn_cast<CastInst>(Inst)) {
|
|
NewRecipe = new VPWidenCastRecipe(
|
|
CI->getOpcode(), Ingredient.getOperand(0), CI->getType(), *CI);
|
|
} else {
|
|
NewRecipe = new VPWidenRecipe(*Inst, Ingredient.operands());
|
|
}
|
|
}
|
|
|
|
NewRecipe->insertBefore(&Ingredient);
|
|
if (NewRecipe->getNumDefinedValues() == 1)
|
|
VPV->replaceAllUsesWith(NewRecipe->getVPSingleValue());
|
|
else
|
|
assert(NewRecipe->getNumDefinedValues() == 0 &&
|
|
"Only recpies with zero or one defined values expected");
|
|
Ingredient.eraseFromParent();
|
|
}
|
|
}
|
|
}
|
|
|
|
static bool sinkScalarOperands(VPlan &Plan) {
|
|
auto Iter = vp_depth_first_deep(Plan.getEntry());
|
|
bool Changed = false;
|
|
// First, collect the operands of all recipes in replicate blocks as seeds for
|
|
// sinking.
|
|
SetVector<std::pair<VPBasicBlock *, VPSingleDefRecipe *>> WorkList;
|
|
for (VPRegionBlock *VPR : VPBlockUtils::blocksOnly<VPRegionBlock>(Iter)) {
|
|
VPBasicBlock *EntryVPBB = VPR->getEntryBasicBlock();
|
|
if (!VPR->isReplicator() || EntryVPBB->getSuccessors().size() != 2)
|
|
continue;
|
|
VPBasicBlock *VPBB = dyn_cast<VPBasicBlock>(EntryVPBB->getSuccessors()[0]);
|
|
if (!VPBB || VPBB->getSingleSuccessor() != VPR->getExitingBasicBlock())
|
|
continue;
|
|
for (auto &Recipe : *VPBB) {
|
|
for (VPValue *Op : Recipe.operands())
|
|
if (auto *Def =
|
|
dyn_cast_or_null<VPSingleDefRecipe>(Op->getDefiningRecipe()))
|
|
WorkList.insert(std::make_pair(VPBB, Def));
|
|
}
|
|
}
|
|
|
|
bool ScalarVFOnly = Plan.hasScalarVFOnly();
|
|
// Try to sink each replicate or scalar IV steps recipe in the worklist.
|
|
for (unsigned I = 0; I != WorkList.size(); ++I) {
|
|
VPBasicBlock *SinkTo;
|
|
VPSingleDefRecipe *SinkCandidate;
|
|
std::tie(SinkTo, SinkCandidate) = WorkList[I];
|
|
if (SinkCandidate->getParent() == SinkTo ||
|
|
SinkCandidate->mayHaveSideEffects() ||
|
|
SinkCandidate->mayReadOrWriteMemory())
|
|
continue;
|
|
if (auto *RepR = dyn_cast<VPReplicateRecipe>(SinkCandidate)) {
|
|
if (!ScalarVFOnly && RepR->isUniform())
|
|
continue;
|
|
} else if (!isa<VPScalarIVStepsRecipe>(SinkCandidate))
|
|
continue;
|
|
|
|
bool NeedsDuplicating = false;
|
|
// All recipe users of the sink candidate must be in the same block SinkTo
|
|
// or all users outside of SinkTo must be uniform-after-vectorization (
|
|
// i.e., only first lane is used) . In the latter case, we need to duplicate
|
|
// SinkCandidate.
|
|
auto CanSinkWithUser = [SinkTo, &NeedsDuplicating,
|
|
SinkCandidate](VPUser *U) {
|
|
auto *UI = dyn_cast<VPRecipeBase>(U);
|
|
if (!UI)
|
|
return false;
|
|
if (UI->getParent() == SinkTo)
|
|
return true;
|
|
NeedsDuplicating = UI->onlyFirstLaneUsed(SinkCandidate);
|
|
// We only know how to duplicate VPRecipeRecipes for now.
|
|
return NeedsDuplicating && isa<VPReplicateRecipe>(SinkCandidate);
|
|
};
|
|
if (!all_of(SinkCandidate->users(), CanSinkWithUser))
|
|
continue;
|
|
|
|
if (NeedsDuplicating) {
|
|
if (ScalarVFOnly)
|
|
continue;
|
|
Instruction *I = SinkCandidate->getUnderlyingInstr();
|
|
auto *Clone = new VPReplicateRecipe(I, SinkCandidate->operands(), true);
|
|
// TODO: add ".cloned" suffix to name of Clone's VPValue.
|
|
|
|
Clone->insertBefore(SinkCandidate);
|
|
SinkCandidate->replaceUsesWithIf(Clone, [SinkTo](VPUser &U, unsigned) {
|
|
return cast<VPRecipeBase>(&U)->getParent() != SinkTo;
|
|
});
|
|
}
|
|
SinkCandidate->moveBefore(*SinkTo, SinkTo->getFirstNonPhi());
|
|
for (VPValue *Op : SinkCandidate->operands())
|
|
if (auto *Def =
|
|
dyn_cast_or_null<VPSingleDefRecipe>(Op->getDefiningRecipe()))
|
|
WorkList.insert(std::make_pair(SinkTo, Def));
|
|
Changed = true;
|
|
}
|
|
return Changed;
|
|
}
|
|
|
|
/// If \p R is a region with a VPBranchOnMaskRecipe in the entry block, return
|
|
/// the mask.
|
|
VPValue *getPredicatedMask(VPRegionBlock *R) {
|
|
auto *EntryBB = dyn_cast<VPBasicBlock>(R->getEntry());
|
|
if (!EntryBB || EntryBB->size() != 1 ||
|
|
!isa<VPBranchOnMaskRecipe>(EntryBB->begin()))
|
|
return nullptr;
|
|
|
|
return cast<VPBranchOnMaskRecipe>(&*EntryBB->begin())->getOperand(0);
|
|
}
|
|
|
|
/// If \p R is a triangle region, return the 'then' block of the triangle.
|
|
static VPBasicBlock *getPredicatedThenBlock(VPRegionBlock *R) {
|
|
auto *EntryBB = cast<VPBasicBlock>(R->getEntry());
|
|
if (EntryBB->getNumSuccessors() != 2)
|
|
return nullptr;
|
|
|
|
auto *Succ0 = dyn_cast<VPBasicBlock>(EntryBB->getSuccessors()[0]);
|
|
auto *Succ1 = dyn_cast<VPBasicBlock>(EntryBB->getSuccessors()[1]);
|
|
if (!Succ0 || !Succ1)
|
|
return nullptr;
|
|
|
|
if (Succ0->getNumSuccessors() + Succ1->getNumSuccessors() != 1)
|
|
return nullptr;
|
|
if (Succ0->getSingleSuccessor() == Succ1)
|
|
return Succ0;
|
|
if (Succ1->getSingleSuccessor() == Succ0)
|
|
return Succ1;
|
|
return nullptr;
|
|
}
|
|
|
|
// Merge replicate regions in their successor region, if a replicate region
|
|
// is connected to a successor replicate region with the same predicate by a
|
|
// single, empty VPBasicBlock.
|
|
static bool mergeReplicateRegionsIntoSuccessors(VPlan &Plan) {
|
|
SetVector<VPRegionBlock *> DeletedRegions;
|
|
|
|
// Collect replicate regions followed by an empty block, followed by another
|
|
// replicate region with matching masks to process front. This is to avoid
|
|
// iterator invalidation issues while merging regions.
|
|
SmallVector<VPRegionBlock *, 8> WorkList;
|
|
for (VPRegionBlock *Region1 : VPBlockUtils::blocksOnly<VPRegionBlock>(
|
|
vp_depth_first_deep(Plan.getEntry()))) {
|
|
if (!Region1->isReplicator())
|
|
continue;
|
|
auto *MiddleBasicBlock =
|
|
dyn_cast_or_null<VPBasicBlock>(Region1->getSingleSuccessor());
|
|
if (!MiddleBasicBlock || !MiddleBasicBlock->empty())
|
|
continue;
|
|
|
|
auto *Region2 =
|
|
dyn_cast_or_null<VPRegionBlock>(MiddleBasicBlock->getSingleSuccessor());
|
|
if (!Region2 || !Region2->isReplicator())
|
|
continue;
|
|
|
|
VPValue *Mask1 = getPredicatedMask(Region1);
|
|
VPValue *Mask2 = getPredicatedMask(Region2);
|
|
if (!Mask1 || Mask1 != Mask2)
|
|
continue;
|
|
|
|
assert(Mask1 && Mask2 && "both region must have conditions");
|
|
WorkList.push_back(Region1);
|
|
}
|
|
|
|
// Move recipes from Region1 to its successor region, if both are triangles.
|
|
for (VPRegionBlock *Region1 : WorkList) {
|
|
if (DeletedRegions.contains(Region1))
|
|
continue;
|
|
auto *MiddleBasicBlock = cast<VPBasicBlock>(Region1->getSingleSuccessor());
|
|
auto *Region2 = cast<VPRegionBlock>(MiddleBasicBlock->getSingleSuccessor());
|
|
|
|
VPBasicBlock *Then1 = getPredicatedThenBlock(Region1);
|
|
VPBasicBlock *Then2 = getPredicatedThenBlock(Region2);
|
|
if (!Then1 || !Then2)
|
|
continue;
|
|
|
|
// Note: No fusion-preventing memory dependencies are expected in either
|
|
// region. Such dependencies should be rejected during earlier dependence
|
|
// checks, which guarantee accesses can be re-ordered for vectorization.
|
|
//
|
|
// Move recipes to the successor region.
|
|
for (VPRecipeBase &ToMove : make_early_inc_range(reverse(*Then1)))
|
|
ToMove.moveBefore(*Then2, Then2->getFirstNonPhi());
|
|
|
|
auto *Merge1 = cast<VPBasicBlock>(Then1->getSingleSuccessor());
|
|
auto *Merge2 = cast<VPBasicBlock>(Then2->getSingleSuccessor());
|
|
|
|
// Move VPPredInstPHIRecipes from the merge block to the successor region's
|
|
// merge block. Update all users inside the successor region to use the
|
|
// original values.
|
|
for (VPRecipeBase &Phi1ToMove : make_early_inc_range(reverse(*Merge1))) {
|
|
VPValue *PredInst1 =
|
|
cast<VPPredInstPHIRecipe>(&Phi1ToMove)->getOperand(0);
|
|
VPValue *Phi1ToMoveV = Phi1ToMove.getVPSingleValue();
|
|
Phi1ToMoveV->replaceUsesWithIf(PredInst1, [Then2](VPUser &U, unsigned) {
|
|
auto *UI = dyn_cast<VPRecipeBase>(&U);
|
|
return UI && UI->getParent() == Then2;
|
|
});
|
|
|
|
Phi1ToMove.moveBefore(*Merge2, Merge2->begin());
|
|
}
|
|
|
|
// Finally, remove the first region.
|
|
for (VPBlockBase *Pred : make_early_inc_range(Region1->getPredecessors())) {
|
|
VPBlockUtils::disconnectBlocks(Pred, Region1);
|
|
VPBlockUtils::connectBlocks(Pred, MiddleBasicBlock);
|
|
}
|
|
VPBlockUtils::disconnectBlocks(Region1, MiddleBasicBlock);
|
|
DeletedRegions.insert(Region1);
|
|
}
|
|
|
|
for (VPRegionBlock *ToDelete : DeletedRegions)
|
|
delete ToDelete;
|
|
return !DeletedRegions.empty();
|
|
}
|
|
|
|
static VPRegionBlock *createReplicateRegion(VPReplicateRecipe *PredRecipe,
|
|
VPlan &Plan) {
|
|
Instruction *Instr = PredRecipe->getUnderlyingInstr();
|
|
// Build the triangular if-then region.
|
|
std::string RegionName = (Twine("pred.") + Instr->getOpcodeName()).str();
|
|
assert(Instr->getParent() && "Predicated instruction not in any basic block");
|
|
auto *BlockInMask = PredRecipe->getMask();
|
|
auto *BOMRecipe = new VPBranchOnMaskRecipe(BlockInMask);
|
|
auto *Entry = new VPBasicBlock(Twine(RegionName) + ".entry", BOMRecipe);
|
|
|
|
// Replace predicated replicate recipe with a replicate recipe without a
|
|
// mask but in the replicate region.
|
|
auto *RecipeWithoutMask = new VPReplicateRecipe(
|
|
PredRecipe->getUnderlyingInstr(),
|
|
make_range(PredRecipe->op_begin(), std::prev(PredRecipe->op_end())),
|
|
PredRecipe->isUniform());
|
|
auto *Pred = new VPBasicBlock(Twine(RegionName) + ".if", RecipeWithoutMask);
|
|
|
|
VPPredInstPHIRecipe *PHIRecipe = nullptr;
|
|
if (PredRecipe->getNumUsers() != 0) {
|
|
PHIRecipe = new VPPredInstPHIRecipe(RecipeWithoutMask);
|
|
PredRecipe->replaceAllUsesWith(PHIRecipe);
|
|
PHIRecipe->setOperand(0, RecipeWithoutMask);
|
|
}
|
|
PredRecipe->eraseFromParent();
|
|
auto *Exiting = new VPBasicBlock(Twine(RegionName) + ".continue", PHIRecipe);
|
|
VPRegionBlock *Region = new VPRegionBlock(Entry, Exiting, RegionName, true);
|
|
|
|
// Note: first set Entry as region entry and then connect successors starting
|
|
// from it in order, to propagate the "parent" of each VPBasicBlock.
|
|
VPBlockUtils::insertTwoBlocksAfter(Pred, Exiting, Entry);
|
|
VPBlockUtils::connectBlocks(Pred, Exiting);
|
|
|
|
return Region;
|
|
}
|
|
|
|
static void addReplicateRegions(VPlan &Plan) {
|
|
SmallVector<VPReplicateRecipe *> WorkList;
|
|
for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(
|
|
vp_depth_first_deep(Plan.getEntry()))) {
|
|
for (VPRecipeBase &R : *VPBB)
|
|
if (auto *RepR = dyn_cast<VPReplicateRecipe>(&R)) {
|
|
if (RepR->isPredicated())
|
|
WorkList.push_back(RepR);
|
|
}
|
|
}
|
|
|
|
unsigned BBNum = 0;
|
|
for (VPReplicateRecipe *RepR : WorkList) {
|
|
VPBasicBlock *CurrentBlock = RepR->getParent();
|
|
VPBasicBlock *SplitBlock = CurrentBlock->splitAt(RepR->getIterator());
|
|
|
|
BasicBlock *OrigBB = RepR->getUnderlyingInstr()->getParent();
|
|
SplitBlock->setName(
|
|
OrigBB->hasName() ? OrigBB->getName() + "." + Twine(BBNum++) : "");
|
|
// Record predicated instructions for above packing optimizations.
|
|
VPBlockBase *Region = createReplicateRegion(RepR, Plan);
|
|
Region->setParent(CurrentBlock->getParent());
|
|
VPBlockUtils::disconnectBlocks(CurrentBlock, SplitBlock);
|
|
VPBlockUtils::connectBlocks(CurrentBlock, Region);
|
|
VPBlockUtils::connectBlocks(Region, SplitBlock);
|
|
}
|
|
}
|
|
|
|
/// Remove redundant VPBasicBlocks by merging them into their predecessor if
|
|
/// the predecessor has a single successor.
|
|
static bool mergeBlocksIntoPredecessors(VPlan &Plan) {
|
|
SmallVector<VPBasicBlock *> WorkList;
|
|
for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(
|
|
vp_depth_first_deep(Plan.getEntry()))) {
|
|
auto *PredVPBB =
|
|
dyn_cast_or_null<VPBasicBlock>(VPBB->getSinglePredecessor());
|
|
if (PredVPBB && PredVPBB->getNumSuccessors() == 1)
|
|
WorkList.push_back(VPBB);
|
|
}
|
|
|
|
for (VPBasicBlock *VPBB : WorkList) {
|
|
VPBasicBlock *PredVPBB = cast<VPBasicBlock>(VPBB->getSinglePredecessor());
|
|
for (VPRecipeBase &R : make_early_inc_range(*VPBB))
|
|
R.moveBefore(*PredVPBB, PredVPBB->end());
|
|
VPBlockUtils::disconnectBlocks(PredVPBB, VPBB);
|
|
auto *ParentRegion = cast_or_null<VPRegionBlock>(VPBB->getParent());
|
|
if (ParentRegion && ParentRegion->getExiting() == VPBB)
|
|
ParentRegion->setExiting(PredVPBB);
|
|
for (auto *Succ : to_vector(VPBB->successors())) {
|
|
VPBlockUtils::disconnectBlocks(VPBB, Succ);
|
|
VPBlockUtils::connectBlocks(PredVPBB, Succ);
|
|
}
|
|
delete VPBB;
|
|
}
|
|
return !WorkList.empty();
|
|
}
|
|
|
|
void VPlanTransforms::createAndOptimizeReplicateRegions(VPlan &Plan) {
|
|
// Convert masked VPReplicateRecipes to if-then region blocks.
|
|
addReplicateRegions(Plan);
|
|
|
|
bool ShouldSimplify = true;
|
|
while (ShouldSimplify) {
|
|
ShouldSimplify = sinkScalarOperands(Plan);
|
|
ShouldSimplify |= mergeReplicateRegionsIntoSuccessors(Plan);
|
|
ShouldSimplify |= mergeBlocksIntoPredecessors(Plan);
|
|
}
|
|
}
|
|
|
|
/// Remove redundant casts of inductions.
|
|
///
|
|
/// Such redundant casts are casts of induction variables that can be ignored,
|
|
/// because we already proved that the casted phi is equal to the uncasted phi
|
|
/// in the vectorized loop. There is no need to vectorize the cast - the same
|
|
/// value can be used for both the phi and casts in the vector loop.
|
|
static void removeRedundantInductionCasts(VPlan &Plan) {
|
|
for (auto &Phi : Plan.getVectorLoopRegion()->getEntryBasicBlock()->phis()) {
|
|
auto *IV = dyn_cast<VPWidenIntOrFpInductionRecipe>(&Phi);
|
|
if (!IV || IV->getTruncInst())
|
|
continue;
|
|
|
|
// A sequence of IR Casts has potentially been recorded for IV, which
|
|
// *must be bypassed* when the IV is vectorized, because the vectorized IV
|
|
// will produce the desired casted value. This sequence forms a def-use
|
|
// chain and is provided in reverse order, ending with the cast that uses
|
|
// the IV phi. Search for the recipe of the last cast in the chain and
|
|
// replace it with the original IV. Note that only the final cast is
|
|
// expected to have users outside the cast-chain and the dead casts left
|
|
// over will be cleaned up later.
|
|
auto &Casts = IV->getInductionDescriptor().getCastInsts();
|
|
VPValue *FindMyCast = IV;
|
|
for (Instruction *IRCast : reverse(Casts)) {
|
|
VPSingleDefRecipe *FoundUserCast = nullptr;
|
|
for (auto *U : FindMyCast->users()) {
|
|
auto *UserCast = dyn_cast<VPSingleDefRecipe>(U);
|
|
if (UserCast && UserCast->getUnderlyingValue() == IRCast) {
|
|
FoundUserCast = UserCast;
|
|
break;
|
|
}
|
|
}
|
|
FindMyCast = FoundUserCast;
|
|
}
|
|
FindMyCast->replaceAllUsesWith(IV);
|
|
}
|
|
}
|
|
|
|
/// Try to replace VPWidenCanonicalIVRecipes with a widened canonical IV
|
|
/// recipe, if it exists.
|
|
static void removeRedundantCanonicalIVs(VPlan &Plan) {
|
|
VPCanonicalIVPHIRecipe *CanonicalIV = Plan.getCanonicalIV();
|
|
VPWidenCanonicalIVRecipe *WidenNewIV = nullptr;
|
|
for (VPUser *U : CanonicalIV->users()) {
|
|
WidenNewIV = dyn_cast<VPWidenCanonicalIVRecipe>(U);
|
|
if (WidenNewIV)
|
|
break;
|
|
}
|
|
|
|
if (!WidenNewIV)
|
|
return;
|
|
|
|
VPBasicBlock *HeaderVPBB = Plan.getVectorLoopRegion()->getEntryBasicBlock();
|
|
for (VPRecipeBase &Phi : HeaderVPBB->phis()) {
|
|
auto *WidenOriginalIV = dyn_cast<VPWidenIntOrFpInductionRecipe>(&Phi);
|
|
|
|
if (!WidenOriginalIV || !WidenOriginalIV->isCanonical())
|
|
continue;
|
|
|
|
// Replace WidenNewIV with WidenOriginalIV if WidenOriginalIV provides
|
|
// everything WidenNewIV's users need. That is, WidenOriginalIV will
|
|
// generate a vector phi or all users of WidenNewIV demand the first lane
|
|
// only.
|
|
if (any_of(WidenOriginalIV->users(),
|
|
[WidenOriginalIV](VPUser *U) {
|
|
return !U->usesScalars(WidenOriginalIV);
|
|
}) ||
|
|
vputils::onlyFirstLaneUsed(WidenNewIV)) {
|
|
WidenNewIV->replaceAllUsesWith(WidenOriginalIV);
|
|
WidenNewIV->eraseFromParent();
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Returns true if \p R is dead and can be removed.
|
|
static bool isDeadRecipe(VPRecipeBase &R) {
|
|
using namespace llvm::PatternMatch;
|
|
// Do remove conditional assume instructions as their conditions may be
|
|
// flattened.
|
|
auto *RepR = dyn_cast<VPReplicateRecipe>(&R);
|
|
bool IsConditionalAssume =
|
|
RepR && RepR->isPredicated() &&
|
|
match(RepR->getUnderlyingInstr(), m_Intrinsic<Intrinsic::assume>());
|
|
if (IsConditionalAssume)
|
|
return true;
|
|
|
|
if (R.mayHaveSideEffects())
|
|
return false;
|
|
|
|
// Recipe is dead if no user keeps the recipe alive.
|
|
return all_of(R.definedValues(),
|
|
[](VPValue *V) { return V->getNumUsers() == 0; });
|
|
}
|
|
|
|
static void removeDeadRecipes(VPlan &Plan) {
|
|
ReversePostOrderTraversal<VPBlockDeepTraversalWrapper<VPBlockBase *>> RPOT(
|
|
Plan.getEntry());
|
|
|
|
for (VPBasicBlock *VPBB : reverse(VPBlockUtils::blocksOnly<VPBasicBlock>(RPOT))) {
|
|
// The recipes in the block are processed in reverse order, to catch chains
|
|
// of dead recipes.
|
|
for (VPRecipeBase &R : make_early_inc_range(reverse(*VPBB))) {
|
|
if (isDeadRecipe(R))
|
|
R.eraseFromParent();
|
|
}
|
|
}
|
|
}
|
|
|
|
static VPScalarIVStepsRecipe *
|
|
createScalarIVSteps(VPlan &Plan, InductionDescriptor::InductionKind Kind,
|
|
Instruction::BinaryOps InductionOpcode,
|
|
FPMathOperator *FPBinOp, ScalarEvolution &SE,
|
|
Instruction *TruncI, VPValue *StartV, VPValue *Step,
|
|
VPBasicBlock::iterator IP) {
|
|
VPBasicBlock *HeaderVPBB = Plan.getVectorLoopRegion()->getEntryBasicBlock();
|
|
VPCanonicalIVPHIRecipe *CanonicalIV = Plan.getCanonicalIV();
|
|
VPSingleDefRecipe *BaseIV = CanonicalIV;
|
|
if (!CanonicalIV->isCanonical(Kind, StartV, Step)) {
|
|
BaseIV = new VPDerivedIVRecipe(Kind, FPBinOp, StartV, CanonicalIV, Step);
|
|
HeaderVPBB->insert(BaseIV, IP);
|
|
}
|
|
|
|
// Truncate base induction if needed.
|
|
VPTypeAnalysis TypeInfo(Plan.getCanonicalIV()->getScalarType(),
|
|
SE.getContext());
|
|
Type *ResultTy = TypeInfo.inferScalarType(BaseIV);
|
|
if (TruncI) {
|
|
Type *TruncTy = TruncI->getType();
|
|
assert(ResultTy->getScalarSizeInBits() > TruncTy->getScalarSizeInBits() &&
|
|
"Not truncating.");
|
|
assert(ResultTy->isIntegerTy() && "Truncation requires an integer type");
|
|
BaseIV = new VPScalarCastRecipe(Instruction::Trunc, BaseIV, TruncTy);
|
|
HeaderVPBB->insert(BaseIV, IP);
|
|
ResultTy = TruncTy;
|
|
}
|
|
|
|
// Truncate step if needed.
|
|
Type *StepTy = TypeInfo.inferScalarType(Step);
|
|
if (ResultTy != StepTy) {
|
|
assert(StepTy->getScalarSizeInBits() > ResultTy->getScalarSizeInBits() &&
|
|
"Not truncating.");
|
|
assert(StepTy->isIntegerTy() && "Truncation requires an integer type");
|
|
Step = new VPScalarCastRecipe(Instruction::Trunc, Step, ResultTy);
|
|
auto *VecPreheader =
|
|
cast<VPBasicBlock>(HeaderVPBB->getSingleHierarchicalPredecessor());
|
|
VecPreheader->appendRecipe(Step->getDefiningRecipe());
|
|
}
|
|
|
|
VPScalarIVStepsRecipe *Steps = new VPScalarIVStepsRecipe(
|
|
BaseIV, Step, InductionOpcode,
|
|
FPBinOp ? FPBinOp->getFastMathFlags() : FastMathFlags());
|
|
HeaderVPBB->insert(Steps, IP);
|
|
return Steps;
|
|
}
|
|
|
|
/// Legalize VPWidenPointerInductionRecipe, by replacing it with a PtrAdd
|
|
/// (IndStart, ScalarIVSteps (0, Step)) if only its scalar values are used, as
|
|
/// VPWidenPointerInductionRecipe will generate vectors only. If some users
|
|
/// require vectors while other require scalars, the scalar uses need to extract
|
|
/// the scalars from the generated vectors (Note that this is different to how
|
|
/// int/fp inductions are handled). Also optimize VPWidenIntOrFpInductionRecipe,
|
|
/// if any of its users needs scalar values, by providing them scalar steps
|
|
/// built on the canonical scalar IV and update the original IV's users. This is
|
|
/// an optional optimization to reduce the needs of vector extracts.
|
|
static void legalizeAndOptimizeInductions(VPlan &Plan, ScalarEvolution &SE) {
|
|
SmallVector<VPRecipeBase *> ToRemove;
|
|
VPBasicBlock *HeaderVPBB = Plan.getVectorLoopRegion()->getEntryBasicBlock();
|
|
bool HasOnlyVectorVFs = !Plan.hasVF(ElementCount::getFixed(1));
|
|
VPBasicBlock::iterator InsertPt = HeaderVPBB->getFirstNonPhi();
|
|
for (VPRecipeBase &Phi : HeaderVPBB->phis()) {
|
|
// Replace wide pointer inductions which have only their scalars used by
|
|
// PtrAdd(IndStart, ScalarIVSteps (0, Step)).
|
|
if (auto *PtrIV = dyn_cast<VPWidenPointerInductionRecipe>(&Phi)) {
|
|
if (!PtrIV->onlyScalarsGenerated(Plan.hasScalableVF()))
|
|
continue;
|
|
|
|
const InductionDescriptor &ID = PtrIV->getInductionDescriptor();
|
|
VPValue *StartV =
|
|
Plan.getOrAddLiveIn(ConstantInt::get(ID.getStep()->getType(), 0));
|
|
VPValue *StepV = PtrIV->getOperand(1);
|
|
VPScalarIVStepsRecipe *Steps = createScalarIVSteps(
|
|
Plan, InductionDescriptor::IK_IntInduction, Instruction::Add, nullptr,
|
|
SE, nullptr, StartV, StepV, InsertPt);
|
|
|
|
auto *Recipe = new VPInstruction(VPInstruction::PtrAdd,
|
|
{PtrIV->getStartValue(), Steps},
|
|
PtrIV->getDebugLoc(), "next.gep");
|
|
|
|
Recipe->insertAfter(Steps);
|
|
PtrIV->replaceAllUsesWith(Recipe);
|
|
continue;
|
|
}
|
|
|
|
// Replace widened induction with scalar steps for users that only use
|
|
// scalars.
|
|
auto *WideIV = dyn_cast<VPWidenIntOrFpInductionRecipe>(&Phi);
|
|
if (!WideIV)
|
|
continue;
|
|
if (HasOnlyVectorVFs && none_of(WideIV->users(), [WideIV](VPUser *U) {
|
|
return U->usesScalars(WideIV);
|
|
}))
|
|
continue;
|
|
|
|
const InductionDescriptor &ID = WideIV->getInductionDescriptor();
|
|
VPScalarIVStepsRecipe *Steps = createScalarIVSteps(
|
|
Plan, ID.getKind(), ID.getInductionOpcode(),
|
|
dyn_cast_or_null<FPMathOperator>(ID.getInductionBinOp()), SE,
|
|
WideIV->getTruncInst(), WideIV->getStartValue(), WideIV->getStepValue(),
|
|
InsertPt);
|
|
|
|
// Update scalar users of IV to use Step instead.
|
|
if (!HasOnlyVectorVFs)
|
|
WideIV->replaceAllUsesWith(Steps);
|
|
else
|
|
WideIV->replaceUsesWithIf(Steps, [WideIV](VPUser &U, unsigned) {
|
|
return U.usesScalars(WideIV);
|
|
});
|
|
}
|
|
}
|
|
|
|
/// Remove redundant EpxandSCEVRecipes in \p Plan's entry block by replacing
|
|
/// them with already existing recipes expanding the same SCEV expression.
|
|
static void removeRedundantExpandSCEVRecipes(VPlan &Plan) {
|
|
DenseMap<const SCEV *, VPValue *> SCEV2VPV;
|
|
|
|
for (VPRecipeBase &R :
|
|
make_early_inc_range(*Plan.getEntry()->getEntryBasicBlock())) {
|
|
auto *ExpR = dyn_cast<VPExpandSCEVRecipe>(&R);
|
|
if (!ExpR)
|
|
continue;
|
|
|
|
auto I = SCEV2VPV.insert({ExpR->getSCEV(), ExpR});
|
|
if (I.second)
|
|
continue;
|
|
ExpR->replaceAllUsesWith(I.first->second);
|
|
ExpR->eraseFromParent();
|
|
}
|
|
}
|
|
|
|
static void recursivelyDeleteDeadRecipes(VPValue *V) {
|
|
SmallVector<VPValue *> WorkList;
|
|
SmallPtrSet<VPValue *, 8> Seen;
|
|
WorkList.push_back(V);
|
|
|
|
while (!WorkList.empty()) {
|
|
VPValue *Cur = WorkList.pop_back_val();
|
|
if (!Seen.insert(Cur).second)
|
|
continue;
|
|
VPRecipeBase *R = Cur->getDefiningRecipe();
|
|
if (!R)
|
|
continue;
|
|
if (!isDeadRecipe(*R))
|
|
continue;
|
|
WorkList.append(R->op_begin(), R->op_end());
|
|
R->eraseFromParent();
|
|
}
|
|
}
|
|
|
|
void VPlanTransforms::optimizeForVFAndUF(VPlan &Plan, ElementCount BestVF,
|
|
unsigned BestUF,
|
|
PredicatedScalarEvolution &PSE) {
|
|
assert(Plan.hasVF(BestVF) && "BestVF is not available in Plan");
|
|
assert(Plan.hasUF(BestUF) && "BestUF is not available in Plan");
|
|
VPBasicBlock *ExitingVPBB =
|
|
Plan.getVectorLoopRegion()->getExitingBasicBlock();
|
|
auto *Term = &ExitingVPBB->back();
|
|
// Try to simplify the branch condition if TC <= VF * UF when preparing to
|
|
// execute the plan for the main vector loop. We only do this if the
|
|
// terminator is:
|
|
// 1. BranchOnCount, or
|
|
// 2. BranchOnCond where the input is Not(ActiveLaneMask).
|
|
using namespace llvm::VPlanPatternMatch;
|
|
if (!match(Term, m_BranchOnCount(m_VPValue(), m_VPValue())) &&
|
|
!match(Term,
|
|
m_BranchOnCond(m_Not(m_ActiveLaneMask(m_VPValue(), m_VPValue())))))
|
|
return;
|
|
|
|
Type *IdxTy =
|
|
Plan.getCanonicalIV()->getStartValue()->getLiveInIRValue()->getType();
|
|
const SCEV *TripCount = createTripCountSCEV(IdxTy, PSE);
|
|
ScalarEvolution &SE = *PSE.getSE();
|
|
ElementCount NumElements = BestVF.multiplyCoefficientBy(BestUF);
|
|
const SCEV *C = SE.getElementCount(TripCount->getType(), NumElements);
|
|
if (TripCount->isZero() ||
|
|
!SE.isKnownPredicate(CmpInst::ICMP_ULE, TripCount, C))
|
|
return;
|
|
|
|
LLVMContext &Ctx = SE.getContext();
|
|
auto *BOC =
|
|
new VPInstruction(VPInstruction::BranchOnCond,
|
|
{Plan.getOrAddLiveIn(ConstantInt::getTrue(Ctx))});
|
|
|
|
SmallVector<VPValue *> PossiblyDead(Term->operands());
|
|
Term->eraseFromParent();
|
|
for (VPValue *Op : PossiblyDead)
|
|
recursivelyDeleteDeadRecipes(Op);
|
|
ExitingVPBB->appendRecipe(BOC);
|
|
Plan.setVF(BestVF);
|
|
Plan.setUF(BestUF);
|
|
// TODO: Further simplifications are possible
|
|
// 1. Replace inductions with constants.
|
|
// 2. Replace vector loop region with VPBasicBlock.
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
static VPRegionBlock *GetReplicateRegion(VPRecipeBase *R) {
|
|
auto *Region = dyn_cast_or_null<VPRegionBlock>(R->getParent()->getParent());
|
|
if (Region && Region->isReplicator()) {
|
|
assert(Region->getNumSuccessors() == 1 &&
|
|
Region->getNumPredecessors() == 1 && "Expected SESE region!");
|
|
assert(R->getParent()->size() == 1 &&
|
|
"A recipe in an original replicator region must be the only "
|
|
"recipe in its block");
|
|
return Region;
|
|
}
|
|
return nullptr;
|
|
}
|
|
#endif
|
|
|
|
static bool properlyDominates(const VPRecipeBase *A, const VPRecipeBase *B,
|
|
VPDominatorTree &VPDT) {
|
|
if (A == B)
|
|
return false;
|
|
|
|
auto LocalComesBefore = [](const VPRecipeBase *A, const VPRecipeBase *B) {
|
|
for (auto &R : *A->getParent()) {
|
|
if (&R == A)
|
|
return true;
|
|
if (&R == B)
|
|
return false;
|
|
}
|
|
llvm_unreachable("recipe not found");
|
|
};
|
|
const VPBlockBase *ParentA = A->getParent();
|
|
const VPBlockBase *ParentB = B->getParent();
|
|
if (ParentA == ParentB)
|
|
return LocalComesBefore(A, B);
|
|
|
|
assert(!GetReplicateRegion(const_cast<VPRecipeBase *>(A)) &&
|
|
"No replicate regions expected at this point");
|
|
assert(!GetReplicateRegion(const_cast<VPRecipeBase *>(B)) &&
|
|
"No replicate regions expected at this point");
|
|
return VPDT.properlyDominates(ParentA, ParentB);
|
|
}
|
|
|
|
/// Sink users of \p FOR after the recipe defining the previous value \p
|
|
/// Previous of the recurrence. \returns true if all users of \p FOR could be
|
|
/// re-arranged as needed or false if it is not possible.
|
|
static bool
|
|
sinkRecurrenceUsersAfterPrevious(VPFirstOrderRecurrencePHIRecipe *FOR,
|
|
VPRecipeBase *Previous,
|
|
VPDominatorTree &VPDT) {
|
|
// Collect recipes that need sinking.
|
|
SmallVector<VPRecipeBase *> WorkList;
|
|
SmallPtrSet<VPRecipeBase *, 8> Seen;
|
|
Seen.insert(Previous);
|
|
auto TryToPushSinkCandidate = [&](VPRecipeBase *SinkCandidate) {
|
|
// The previous value must not depend on the users of the recurrence phi. In
|
|
// that case, FOR is not a fixed order recurrence.
|
|
if (SinkCandidate == Previous)
|
|
return false;
|
|
|
|
if (isa<VPHeaderPHIRecipe>(SinkCandidate) ||
|
|
!Seen.insert(SinkCandidate).second ||
|
|
properlyDominates(Previous, SinkCandidate, VPDT))
|
|
return true;
|
|
|
|
if (SinkCandidate->mayHaveSideEffects())
|
|
return false;
|
|
|
|
WorkList.push_back(SinkCandidate);
|
|
return true;
|
|
};
|
|
|
|
// Recursively sink users of FOR after Previous.
|
|
WorkList.push_back(FOR);
|
|
for (unsigned I = 0; I != WorkList.size(); ++I) {
|
|
VPRecipeBase *Current = WorkList[I];
|
|
assert(Current->getNumDefinedValues() == 1 &&
|
|
"only recipes with a single defined value expected");
|
|
|
|
for (VPUser *User : Current->getVPSingleValue()->users()) {
|
|
if (auto *R = dyn_cast<VPRecipeBase>(User))
|
|
if (!TryToPushSinkCandidate(R))
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// Keep recipes to sink ordered by dominance so earlier instructions are
|
|
// processed first.
|
|
sort(WorkList, [&VPDT](const VPRecipeBase *A, const VPRecipeBase *B) {
|
|
return properlyDominates(A, B, VPDT);
|
|
});
|
|
|
|
for (VPRecipeBase *SinkCandidate : WorkList) {
|
|
if (SinkCandidate == FOR)
|
|
continue;
|
|
|
|
SinkCandidate->moveAfter(Previous);
|
|
Previous = SinkCandidate;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool VPlanTransforms::adjustFixedOrderRecurrences(VPlan &Plan,
|
|
VPBuilder &LoopBuilder) {
|
|
VPDominatorTree VPDT;
|
|
VPDT.recalculate(Plan);
|
|
|
|
SmallVector<VPFirstOrderRecurrencePHIRecipe *> RecurrencePhis;
|
|
for (VPRecipeBase &R :
|
|
Plan.getVectorLoopRegion()->getEntry()->getEntryBasicBlock()->phis())
|
|
if (auto *FOR = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(&R))
|
|
RecurrencePhis.push_back(FOR);
|
|
|
|
VPBuilder MiddleBuilder(
|
|
cast<VPBasicBlock>(Plan.getVectorLoopRegion()->getSingleSuccessor()));
|
|
for (VPFirstOrderRecurrencePHIRecipe *FOR : RecurrencePhis) {
|
|
SmallPtrSet<VPFirstOrderRecurrencePHIRecipe *, 4> SeenPhis;
|
|
VPRecipeBase *Previous = FOR->getBackedgeValue()->getDefiningRecipe();
|
|
// Fixed-order recurrences do not contain cycles, so this loop is guaranteed
|
|
// to terminate.
|
|
while (auto *PrevPhi =
|
|
dyn_cast_or_null<VPFirstOrderRecurrencePHIRecipe>(Previous)) {
|
|
assert(PrevPhi->getParent() == FOR->getParent());
|
|
assert(SeenPhis.insert(PrevPhi).second);
|
|
Previous = PrevPhi->getBackedgeValue()->getDefiningRecipe();
|
|
}
|
|
|
|
if (!sinkRecurrenceUsersAfterPrevious(FOR, Previous, VPDT))
|
|
return false;
|
|
|
|
// Introduce a recipe to combine the incoming and previous values of a
|
|
// fixed-order recurrence.
|
|
VPBasicBlock *InsertBlock = Previous->getParent();
|
|
if (isa<VPHeaderPHIRecipe>(Previous))
|
|
LoopBuilder.setInsertPoint(InsertBlock, InsertBlock->getFirstNonPhi());
|
|
else
|
|
LoopBuilder.setInsertPoint(InsertBlock,
|
|
std::next(Previous->getIterator()));
|
|
|
|
auto *RecurSplice = cast<VPInstruction>(
|
|
LoopBuilder.createNaryOp(VPInstruction::FirstOrderRecurrenceSplice,
|
|
{FOR, FOR->getBackedgeValue()}));
|
|
|
|
FOR->replaceAllUsesWith(RecurSplice);
|
|
// Set the first operand of RecurSplice to FOR again, after replacing
|
|
// all users.
|
|
RecurSplice->setOperand(0, FOR);
|
|
|
|
// This is the second phase of vectorizing first-order recurrences. An
|
|
// overview of the transformation is described below. Suppose we have the
|
|
// following loop with some use after the loop of the last a[i-1],
|
|
//
|
|
// for (int i = 0; i < n; ++i) {
|
|
// t = a[i - 1];
|
|
// b[i] = a[i] - t;
|
|
// }
|
|
// use t;
|
|
//
|
|
// There is a first-order recurrence on "a". For this loop, the shorthand
|
|
// scalar IR looks like:
|
|
//
|
|
// scalar.ph:
|
|
// s_init = a[-1]
|
|
// br scalar.body
|
|
//
|
|
// scalar.body:
|
|
// i = phi [0, scalar.ph], [i+1, scalar.body]
|
|
// s1 = phi [s_init, scalar.ph], [s2, scalar.body]
|
|
// s2 = a[i]
|
|
// b[i] = s2 - s1
|
|
// br cond, scalar.body, exit.block
|
|
//
|
|
// exit.block:
|
|
// use = lcssa.phi [s1, scalar.body]
|
|
//
|
|
// In this example, s1 is a recurrence because it's value depends on the
|
|
// previous iteration. In the first phase of vectorization, we created a
|
|
// vector phi v1 for s1. We now complete the vectorization and produce the
|
|
// shorthand vector IR shown below (for VF = 4, UF = 1).
|
|
//
|
|
// vector.ph:
|
|
// v_init = vector(..., ..., ..., a[-1])
|
|
// br vector.body
|
|
//
|
|
// vector.body
|
|
// i = phi [0, vector.ph], [i+4, vector.body]
|
|
// v1 = phi [v_init, vector.ph], [v2, vector.body]
|
|
// v2 = a[i, i+1, i+2, i+3];
|
|
// v3 = vector(v1(3), v2(0, 1, 2))
|
|
// b[i, i+1, i+2, i+3] = v2 - v3
|
|
// br cond, vector.body, middle.block
|
|
//
|
|
// middle.block:
|
|
// s_penultimate = v2(2) = v3(3)
|
|
// s_resume = v2(3)
|
|
// br cond, scalar.ph, exit.block
|
|
//
|
|
// scalar.ph:
|
|
// s_init' = phi [s_resume, middle.block], [s_init, otherwise]
|
|
// br scalar.body
|
|
//
|
|
// scalar.body:
|
|
// i = phi [0, scalar.ph], [i+1, scalar.body]
|
|
// s1 = phi [s_init', scalar.ph], [s2, scalar.body]
|
|
// s2 = a[i]
|
|
// b[i] = s2 - s1
|
|
// br cond, scalar.body, exit.block
|
|
//
|
|
// exit.block:
|
|
// lo = lcssa.phi [s1, scalar.body], [s.penultimate, middle.block]
|
|
//
|
|
// After execution completes the vector loop, we extract the next value of
|
|
// the recurrence (x) to use as the initial value in the scalar loop. This
|
|
// is modeled by ExtractFromEnd.
|
|
Type *IntTy = Plan.getCanonicalIV()->getScalarType();
|
|
|
|
// Extract the penultimate value of the recurrence and update VPLiveOut
|
|
// users of the recurrence splice.
|
|
auto *Penultimate = cast<VPInstruction>(MiddleBuilder.createNaryOp(
|
|
VPInstruction::ExtractFromEnd,
|
|
{FOR->getBackedgeValue(),
|
|
Plan.getOrAddLiveIn(ConstantInt::get(IntTy, 2))},
|
|
{}, "vector.recur.extract.for.phi"));
|
|
RecurSplice->replaceUsesWithIf(
|
|
Penultimate, [](VPUser &U, unsigned) { return isa<VPLiveOut>(&U); });
|
|
|
|
// Extract the resume value and create a new VPLiveOut for it.
|
|
auto *Resume = MiddleBuilder.createNaryOp(
|
|
VPInstruction::ExtractFromEnd,
|
|
{FOR->getBackedgeValue(),
|
|
Plan.getOrAddLiveIn(ConstantInt::get(IntTy, 1))},
|
|
{}, "vector.recur.extract");
|
|
Plan.addLiveOut(cast<PHINode>(FOR->getUnderlyingInstr()), Resume);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static SmallVector<VPUser *> collectUsersRecursively(VPValue *V) {
|
|
SetVector<VPUser *> Users(V->user_begin(), V->user_end());
|
|
for (unsigned I = 0; I != Users.size(); ++I) {
|
|
VPRecipeBase *Cur = dyn_cast<VPRecipeBase>(Users[I]);
|
|
if (!Cur || isa<VPHeaderPHIRecipe>(Cur))
|
|
continue;
|
|
for (VPValue *V : Cur->definedValues())
|
|
Users.insert(V->user_begin(), V->user_end());
|
|
}
|
|
return Users.takeVector();
|
|
}
|
|
|
|
void VPlanTransforms::clearReductionWrapFlags(VPlan &Plan) {
|
|
for (VPRecipeBase &R :
|
|
Plan.getVectorLoopRegion()->getEntryBasicBlock()->phis()) {
|
|
auto *PhiR = dyn_cast<VPReductionPHIRecipe>(&R);
|
|
if (!PhiR)
|
|
continue;
|
|
const RecurrenceDescriptor &RdxDesc = PhiR->getRecurrenceDescriptor();
|
|
RecurKind RK = RdxDesc.getRecurrenceKind();
|
|
if (RK != RecurKind::Add && RK != RecurKind::Mul)
|
|
continue;
|
|
|
|
for (VPUser *U : collectUsersRecursively(PhiR))
|
|
if (auto *RecWithFlags = dyn_cast<VPRecipeWithIRFlags>(U)) {
|
|
RecWithFlags->dropPoisonGeneratingFlags();
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Try to simplify recipe \p R.
|
|
static void simplifyRecipe(VPRecipeBase &R, VPTypeAnalysis &TypeInfo) {
|
|
using namespace llvm::VPlanPatternMatch;
|
|
// Try to remove redundant blend recipes.
|
|
if (auto *Blend = dyn_cast<VPBlendRecipe>(&R)) {
|
|
VPValue *Inc0 = Blend->getIncomingValue(0);
|
|
for (unsigned I = 1; I != Blend->getNumIncomingValues(); ++I)
|
|
if (Inc0 != Blend->getIncomingValue(I) &&
|
|
!match(Blend->getMask(I), m_False()))
|
|
return;
|
|
Blend->replaceAllUsesWith(Inc0);
|
|
Blend->eraseFromParent();
|
|
return;
|
|
}
|
|
|
|
VPValue *A;
|
|
if (match(&R, m_Trunc(m_ZExtOrSExt(m_VPValue(A))))) {
|
|
VPValue *Trunc = R.getVPSingleValue();
|
|
Type *TruncTy = TypeInfo.inferScalarType(Trunc);
|
|
Type *ATy = TypeInfo.inferScalarType(A);
|
|
if (TruncTy == ATy) {
|
|
Trunc->replaceAllUsesWith(A);
|
|
} else {
|
|
// Don't replace a scalarizing recipe with a widened cast.
|
|
if (isa<VPReplicateRecipe>(&R))
|
|
return;
|
|
if (ATy->getScalarSizeInBits() < TruncTy->getScalarSizeInBits()) {
|
|
|
|
unsigned ExtOpcode = match(R.getOperand(0), m_SExt(m_VPValue()))
|
|
? Instruction::SExt
|
|
: Instruction::ZExt;
|
|
auto *VPC =
|
|
new VPWidenCastRecipe(Instruction::CastOps(ExtOpcode), A, TruncTy);
|
|
if (auto *UnderlyingExt = R.getOperand(0)->getUnderlyingValue()) {
|
|
// UnderlyingExt has distinct return type, used to retain legacy cost.
|
|
VPC->setUnderlyingValue(UnderlyingExt);
|
|
}
|
|
VPC->insertBefore(&R);
|
|
Trunc->replaceAllUsesWith(VPC);
|
|
} else if (ATy->getScalarSizeInBits() > TruncTy->getScalarSizeInBits()) {
|
|
auto *VPC = new VPWidenCastRecipe(Instruction::Trunc, A, TruncTy);
|
|
VPC->insertBefore(&R);
|
|
Trunc->replaceAllUsesWith(VPC);
|
|
}
|
|
}
|
|
#ifndef NDEBUG
|
|
// Verify that the cached type info is for both A and its users is still
|
|
// accurate by comparing it to freshly computed types.
|
|
VPTypeAnalysis TypeInfo2(
|
|
R.getParent()->getPlan()->getCanonicalIV()->getScalarType(),
|
|
TypeInfo.getContext());
|
|
assert(TypeInfo.inferScalarType(A) == TypeInfo2.inferScalarType(A));
|
|
for (VPUser *U : A->users()) {
|
|
auto *R = dyn_cast<VPRecipeBase>(U);
|
|
if (!R)
|
|
continue;
|
|
for (VPValue *VPV : R->definedValues())
|
|
assert(TypeInfo.inferScalarType(VPV) == TypeInfo2.inferScalarType(VPV));
|
|
}
|
|
#endif
|
|
}
|
|
|
|
// Simplify (X && Y) || (X && !Y) -> X.
|
|
// TODO: Split up into simpler, modular combines: (X && Y) || (X && Z) into X
|
|
// && (Y || Z) and (X || !X) into true. This requires queuing newly created
|
|
// recipes to be visited during simplification.
|
|
VPValue *X, *Y, *X1, *Y1;
|
|
if (match(&R,
|
|
m_c_BinaryOr(m_LogicalAnd(m_VPValue(X), m_VPValue(Y)),
|
|
m_LogicalAnd(m_VPValue(X1), m_Not(m_VPValue(Y1))))) &&
|
|
X == X1 && Y == Y1) {
|
|
R.getVPSingleValue()->replaceAllUsesWith(X);
|
|
return;
|
|
}
|
|
|
|
if (match(&R, m_c_Mul(m_VPValue(A), m_SpecificInt(1))))
|
|
return R.getVPSingleValue()->replaceAllUsesWith(A);
|
|
}
|
|
|
|
/// Try to simplify the recipes in \p Plan.
|
|
static void simplifyRecipes(VPlan &Plan, LLVMContext &Ctx) {
|
|
ReversePostOrderTraversal<VPBlockDeepTraversalWrapper<VPBlockBase *>> RPOT(
|
|
Plan.getEntry());
|
|
VPTypeAnalysis TypeInfo(Plan.getCanonicalIV()->getScalarType(), Ctx);
|
|
for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(RPOT)) {
|
|
for (VPRecipeBase &R : make_early_inc_range(*VPBB)) {
|
|
simplifyRecipe(R, TypeInfo);
|
|
}
|
|
}
|
|
}
|
|
|
|
void VPlanTransforms::truncateToMinimalBitwidths(
|
|
VPlan &Plan, const MapVector<Instruction *, uint64_t> &MinBWs,
|
|
LLVMContext &Ctx) {
|
|
#ifndef NDEBUG
|
|
// Count the processed recipes and cross check the count later with MinBWs
|
|
// size, to make sure all entries in MinBWs have been handled.
|
|
unsigned NumProcessedRecipes = 0;
|
|
#endif
|
|
// Keep track of created truncates, so they can be re-used. Note that we
|
|
// cannot use RAUW after creating a new truncate, as this would could make
|
|
// other uses have different types for their operands, making them invalidly
|
|
// typed.
|
|
DenseMap<VPValue *, VPWidenCastRecipe *> ProcessedTruncs;
|
|
VPTypeAnalysis TypeInfo(Plan.getCanonicalIV()->getScalarType(), Ctx);
|
|
VPBasicBlock *PH = Plan.getEntry();
|
|
for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(
|
|
vp_depth_first_deep(Plan.getVectorLoopRegion()))) {
|
|
for (VPRecipeBase &R : make_early_inc_range(*VPBB)) {
|
|
if (!isa<VPWidenRecipe, VPWidenCastRecipe, VPReplicateRecipe,
|
|
VPWidenSelectRecipe, VPWidenLoadRecipe>(&R))
|
|
continue;
|
|
|
|
VPValue *ResultVPV = R.getVPSingleValue();
|
|
auto *UI = cast_or_null<Instruction>(ResultVPV->getUnderlyingValue());
|
|
unsigned NewResSizeInBits = MinBWs.lookup(UI);
|
|
if (!NewResSizeInBits)
|
|
continue;
|
|
|
|
#ifndef NDEBUG
|
|
NumProcessedRecipes++;
|
|
#endif
|
|
// If the value wasn't vectorized, we must maintain the original scalar
|
|
// type. Skip those here, after incrementing NumProcessedRecipes. Also
|
|
// skip casts which do not need to be handled explicitly here, as
|
|
// redundant casts will be removed during recipe simplification.
|
|
if (isa<VPReplicateRecipe, VPWidenCastRecipe>(&R)) {
|
|
#ifndef NDEBUG
|
|
// If any of the operands is a live-in and not used by VPWidenRecipe or
|
|
// VPWidenSelectRecipe, but in MinBWs, make sure it is counted as
|
|
// processed as well. When MinBWs is currently constructed, there is no
|
|
// information about whether recipes are widened or replicated and in
|
|
// case they are reciplicated the operands are not truncated. Counting
|
|
// them them here ensures we do not miss any recipes in MinBWs.
|
|
// TODO: Remove once the analysis is done on VPlan.
|
|
for (VPValue *Op : R.operands()) {
|
|
if (!Op->isLiveIn())
|
|
continue;
|
|
auto *UV = dyn_cast_or_null<Instruction>(Op->getUnderlyingValue());
|
|
if (UV && MinBWs.contains(UV) && !ProcessedTruncs.contains(Op) &&
|
|
all_of(Op->users(), [](VPUser *U) {
|
|
return !isa<VPWidenRecipe, VPWidenSelectRecipe>(U);
|
|
})) {
|
|
// Add an entry to ProcessedTruncs to avoid counting the same
|
|
// operand multiple times.
|
|
ProcessedTruncs[Op] = nullptr;
|
|
NumProcessedRecipes += 1;
|
|
}
|
|
}
|
|
#endif
|
|
continue;
|
|
}
|
|
|
|
Type *OldResTy = TypeInfo.inferScalarType(ResultVPV);
|
|
unsigned OldResSizeInBits = OldResTy->getScalarSizeInBits();
|
|
assert(OldResTy->isIntegerTy() && "only integer types supported");
|
|
(void)OldResSizeInBits;
|
|
|
|
auto *NewResTy = IntegerType::get(Ctx, NewResSizeInBits);
|
|
|
|
// Any wrapping introduced by shrinking this operation shouldn't be
|
|
// considered undefined behavior. So, we can't unconditionally copy
|
|
// arithmetic wrapping flags to VPW.
|
|
if (auto *VPW = dyn_cast<VPRecipeWithIRFlags>(&R))
|
|
VPW->dropPoisonGeneratingFlags();
|
|
|
|
using namespace llvm::VPlanPatternMatch;
|
|
if (OldResSizeInBits != NewResSizeInBits &&
|
|
!match(&R, m_Binary<Instruction::ICmp>(m_VPValue(), m_VPValue()))) {
|
|
// Extend result to original width.
|
|
auto *Ext =
|
|
new VPWidenCastRecipe(Instruction::ZExt, ResultVPV, OldResTy);
|
|
Ext->insertAfter(&R);
|
|
ResultVPV->replaceAllUsesWith(Ext);
|
|
Ext->setOperand(0, ResultVPV);
|
|
assert(OldResSizeInBits > NewResSizeInBits && "Nothing to shrink?");
|
|
} else
|
|
assert(
|
|
match(&R, m_Binary<Instruction::ICmp>(m_VPValue(), m_VPValue())) &&
|
|
"Only ICmps should not need extending the result.");
|
|
|
|
assert(!isa<VPWidenStoreRecipe>(&R) && "stores cannot be narrowed");
|
|
if (isa<VPWidenLoadRecipe>(&R))
|
|
continue;
|
|
|
|
// Shrink operands by introducing truncates as needed.
|
|
unsigned StartIdx = isa<VPWidenSelectRecipe>(&R) ? 1 : 0;
|
|
for (unsigned Idx = StartIdx; Idx != R.getNumOperands(); ++Idx) {
|
|
auto *Op = R.getOperand(Idx);
|
|
unsigned OpSizeInBits =
|
|
TypeInfo.inferScalarType(Op)->getScalarSizeInBits();
|
|
if (OpSizeInBits == NewResSizeInBits)
|
|
continue;
|
|
assert(OpSizeInBits > NewResSizeInBits && "nothing to truncate");
|
|
auto [ProcessedIter, IterIsEmpty] =
|
|
ProcessedTruncs.insert({Op, nullptr});
|
|
VPWidenCastRecipe *NewOp =
|
|
IterIsEmpty
|
|
? new VPWidenCastRecipe(Instruction::Trunc, Op, NewResTy)
|
|
: ProcessedIter->second;
|
|
R.setOperand(Idx, NewOp);
|
|
if (!IterIsEmpty)
|
|
continue;
|
|
ProcessedIter->second = NewOp;
|
|
if (!Op->isLiveIn()) {
|
|
NewOp->insertBefore(&R);
|
|
} else {
|
|
PH->appendRecipe(NewOp);
|
|
#ifndef NDEBUG
|
|
auto *OpInst = dyn_cast<Instruction>(Op->getLiveInIRValue());
|
|
bool IsContained = MinBWs.contains(OpInst);
|
|
NumProcessedRecipes += IsContained;
|
|
#endif
|
|
}
|
|
}
|
|
|
|
}
|
|
}
|
|
|
|
assert(MinBWs.size() == NumProcessedRecipes &&
|
|
"some entries in MinBWs haven't been processed");
|
|
}
|
|
|
|
void VPlanTransforms::optimize(VPlan &Plan, ScalarEvolution &SE) {
|
|
removeRedundantCanonicalIVs(Plan);
|
|
removeRedundantInductionCasts(Plan);
|
|
|
|
simplifyRecipes(Plan, SE.getContext());
|
|
legalizeAndOptimizeInductions(Plan, SE);
|
|
removeDeadRecipes(Plan);
|
|
|
|
createAndOptimizeReplicateRegions(Plan);
|
|
|
|
removeRedundantExpandSCEVRecipes(Plan);
|
|
mergeBlocksIntoPredecessors(Plan);
|
|
}
|
|
|
|
// Add a VPActiveLaneMaskPHIRecipe and related recipes to \p Plan and replace
|
|
// the loop terminator with a branch-on-cond recipe with the negated
|
|
// active-lane-mask as operand. Note that this turns the loop into an
|
|
// uncountable one. Only the existing terminator is replaced, all other existing
|
|
// recipes/users remain unchanged, except for poison-generating flags being
|
|
// dropped from the canonical IV increment. Return the created
|
|
// VPActiveLaneMaskPHIRecipe.
|
|
//
|
|
// The function uses the following definitions:
|
|
//
|
|
// %TripCount = DataWithControlFlowWithoutRuntimeCheck ?
|
|
// calculate-trip-count-minus-VF (original TC) : original TC
|
|
// %IncrementValue = DataWithControlFlowWithoutRuntimeCheck ?
|
|
// CanonicalIVPhi : CanonicalIVIncrement
|
|
// %StartV is the canonical induction start value.
|
|
//
|
|
// The function adds the following recipes:
|
|
//
|
|
// vector.ph:
|
|
// %TripCount = calculate-trip-count-minus-VF (original TC)
|
|
// [if DataWithControlFlowWithoutRuntimeCheck]
|
|
// %EntryInc = canonical-iv-increment-for-part %StartV
|
|
// %EntryALM = active-lane-mask %EntryInc, %TripCount
|
|
//
|
|
// vector.body:
|
|
// ...
|
|
// %P = active-lane-mask-phi [ %EntryALM, %vector.ph ], [ %ALM, %vector.body ]
|
|
// ...
|
|
// %InLoopInc = canonical-iv-increment-for-part %IncrementValue
|
|
// %ALM = active-lane-mask %InLoopInc, TripCount
|
|
// %Negated = Not %ALM
|
|
// branch-on-cond %Negated
|
|
//
|
|
static VPActiveLaneMaskPHIRecipe *addVPLaneMaskPhiAndUpdateExitBranch(
|
|
VPlan &Plan, bool DataAndControlFlowWithoutRuntimeCheck) {
|
|
VPRegionBlock *TopRegion = Plan.getVectorLoopRegion();
|
|
VPBasicBlock *EB = TopRegion->getExitingBasicBlock();
|
|
auto *CanonicalIVPHI = Plan.getCanonicalIV();
|
|
VPValue *StartV = CanonicalIVPHI->getStartValue();
|
|
|
|
auto *CanonicalIVIncrement =
|
|
cast<VPInstruction>(CanonicalIVPHI->getBackedgeValue());
|
|
// TODO: Check if dropping the flags is needed if
|
|
// !DataAndControlFlowWithoutRuntimeCheck.
|
|
CanonicalIVIncrement->dropPoisonGeneratingFlags();
|
|
DebugLoc DL = CanonicalIVIncrement->getDebugLoc();
|
|
// We can't use StartV directly in the ActiveLaneMask VPInstruction, since
|
|
// we have to take unrolling into account. Each part needs to start at
|
|
// Part * VF
|
|
auto *VecPreheader = cast<VPBasicBlock>(TopRegion->getSinglePredecessor());
|
|
VPBuilder Builder(VecPreheader);
|
|
|
|
// Create the ActiveLaneMask instruction using the correct start values.
|
|
VPValue *TC = Plan.getTripCount();
|
|
|
|
VPValue *TripCount, *IncrementValue;
|
|
if (!DataAndControlFlowWithoutRuntimeCheck) {
|
|
// When the loop is guarded by a runtime overflow check for the loop
|
|
// induction variable increment by VF, we can increment the value before
|
|
// the get.active.lane mask and use the unmodified tripcount.
|
|
IncrementValue = CanonicalIVIncrement;
|
|
TripCount = TC;
|
|
} else {
|
|
// When avoiding a runtime check, the active.lane.mask inside the loop
|
|
// uses a modified trip count and the induction variable increment is
|
|
// done after the active.lane.mask intrinsic is called.
|
|
IncrementValue = CanonicalIVPHI;
|
|
TripCount = Builder.createNaryOp(VPInstruction::CalculateTripCountMinusVF,
|
|
{TC}, DL);
|
|
}
|
|
auto *EntryIncrement = Builder.createOverflowingOp(
|
|
VPInstruction::CanonicalIVIncrementForPart, {StartV}, {false, false}, DL,
|
|
"index.part.next");
|
|
|
|
// Create the active lane mask instruction in the VPlan preheader.
|
|
auto *EntryALM =
|
|
Builder.createNaryOp(VPInstruction::ActiveLaneMask, {EntryIncrement, TC},
|
|
DL, "active.lane.mask.entry");
|
|
|
|
// Now create the ActiveLaneMaskPhi recipe in the main loop using the
|
|
// preheader ActiveLaneMask instruction.
|
|
auto LaneMaskPhi = new VPActiveLaneMaskPHIRecipe(EntryALM, DebugLoc());
|
|
LaneMaskPhi->insertAfter(CanonicalIVPHI);
|
|
|
|
// Create the active lane mask for the next iteration of the loop before the
|
|
// original terminator.
|
|
VPRecipeBase *OriginalTerminator = EB->getTerminator();
|
|
Builder.setInsertPoint(OriginalTerminator);
|
|
auto *InLoopIncrement =
|
|
Builder.createOverflowingOp(VPInstruction::CanonicalIVIncrementForPart,
|
|
{IncrementValue}, {false, false}, DL);
|
|
auto *ALM = Builder.createNaryOp(VPInstruction::ActiveLaneMask,
|
|
{InLoopIncrement, TripCount}, DL,
|
|
"active.lane.mask.next");
|
|
LaneMaskPhi->addOperand(ALM);
|
|
|
|
// Replace the original terminator with BranchOnCond. We have to invert the
|
|
// mask here because a true condition means jumping to the exit block.
|
|
auto *NotMask = Builder.createNot(ALM, DL);
|
|
Builder.createNaryOp(VPInstruction::BranchOnCond, {NotMask}, DL);
|
|
OriginalTerminator->eraseFromParent();
|
|
return LaneMaskPhi;
|
|
}
|
|
|
|
/// Collect all VPValues representing a header mask through the (ICMP_ULE,
|
|
/// WideCanonicalIV, backedge-taken-count) pattern.
|
|
/// TODO: Introduce explicit recipe for header-mask instead of searching
|
|
/// for the header-mask pattern manually.
|
|
static SmallVector<VPValue *> collectAllHeaderMasks(VPlan &Plan) {
|
|
SmallVector<VPValue *> WideCanonicalIVs;
|
|
auto *FoundWidenCanonicalIVUser =
|
|
find_if(Plan.getCanonicalIV()->users(),
|
|
[](VPUser *U) { return isa<VPWidenCanonicalIVRecipe>(U); });
|
|
assert(count_if(Plan.getCanonicalIV()->users(),
|
|
[](VPUser *U) { return isa<VPWidenCanonicalIVRecipe>(U); }) <=
|
|
1 &&
|
|
"Must have at most one VPWideCanonicalIVRecipe");
|
|
if (FoundWidenCanonicalIVUser != Plan.getCanonicalIV()->users().end()) {
|
|
auto *WideCanonicalIV =
|
|
cast<VPWidenCanonicalIVRecipe>(*FoundWidenCanonicalIVUser);
|
|
WideCanonicalIVs.push_back(WideCanonicalIV);
|
|
}
|
|
|
|
// Also include VPWidenIntOrFpInductionRecipes that represent a widened
|
|
// version of the canonical induction.
|
|
VPBasicBlock *HeaderVPBB = Plan.getVectorLoopRegion()->getEntryBasicBlock();
|
|
for (VPRecipeBase &Phi : HeaderVPBB->phis()) {
|
|
auto *WidenOriginalIV = dyn_cast<VPWidenIntOrFpInductionRecipe>(&Phi);
|
|
if (WidenOriginalIV && WidenOriginalIV->isCanonical())
|
|
WideCanonicalIVs.push_back(WidenOriginalIV);
|
|
}
|
|
|
|
// Walk users of wide canonical IVs and collect to all compares of the form
|
|
// (ICMP_ULE, WideCanonicalIV, backedge-taken-count).
|
|
SmallVector<VPValue *> HeaderMasks;
|
|
VPValue *BTC = Plan.getOrCreateBackedgeTakenCount();
|
|
for (auto *Wide : WideCanonicalIVs) {
|
|
for (VPUser *U : SmallVector<VPUser *>(Wide->users())) {
|
|
auto *HeaderMask = dyn_cast<VPInstruction>(U);
|
|
if (!HeaderMask || HeaderMask->getOpcode() != Instruction::ICmp ||
|
|
HeaderMask->getPredicate() != CmpInst::ICMP_ULE ||
|
|
HeaderMask->getOperand(1) != BTC)
|
|
continue;
|
|
|
|
assert(HeaderMask->getOperand(0) == Wide &&
|
|
"WidenCanonicalIV must be the first operand of the compare");
|
|
HeaderMasks.push_back(HeaderMask);
|
|
}
|
|
}
|
|
return HeaderMasks;
|
|
}
|
|
|
|
void VPlanTransforms::addActiveLaneMask(
|
|
VPlan &Plan, bool UseActiveLaneMaskForControlFlow,
|
|
bool DataAndControlFlowWithoutRuntimeCheck) {
|
|
assert((!DataAndControlFlowWithoutRuntimeCheck ||
|
|
UseActiveLaneMaskForControlFlow) &&
|
|
"DataAndControlFlowWithoutRuntimeCheck implies "
|
|
"UseActiveLaneMaskForControlFlow");
|
|
|
|
auto FoundWidenCanonicalIVUser =
|
|
find_if(Plan.getCanonicalIV()->users(),
|
|
[](VPUser *U) { return isa<VPWidenCanonicalIVRecipe>(U); });
|
|
assert(FoundWidenCanonicalIVUser &&
|
|
"Must have widened canonical IV when tail folding!");
|
|
auto *WideCanonicalIV =
|
|
cast<VPWidenCanonicalIVRecipe>(*FoundWidenCanonicalIVUser);
|
|
VPSingleDefRecipe *LaneMask;
|
|
if (UseActiveLaneMaskForControlFlow) {
|
|
LaneMask = addVPLaneMaskPhiAndUpdateExitBranch(
|
|
Plan, DataAndControlFlowWithoutRuntimeCheck);
|
|
} else {
|
|
VPBuilder B = VPBuilder::getToInsertAfter(WideCanonicalIV);
|
|
LaneMask = B.createNaryOp(VPInstruction::ActiveLaneMask,
|
|
{WideCanonicalIV, Plan.getTripCount()}, nullptr,
|
|
"active.lane.mask");
|
|
}
|
|
|
|
// Walk users of WideCanonicalIV and replace all compares of the form
|
|
// (ICMP_ULE, WideCanonicalIV, backedge-taken-count) with an
|
|
// active-lane-mask.
|
|
for (VPValue *HeaderMask : collectAllHeaderMasks(Plan))
|
|
HeaderMask->replaceAllUsesWith(LaneMask);
|
|
}
|
|
|
|
/// Add a VPEVLBasedIVPHIRecipe and related recipes to \p Plan and
|
|
/// replaces all uses except the canonical IV increment of
|
|
/// VPCanonicalIVPHIRecipe with a VPEVLBasedIVPHIRecipe. VPCanonicalIVPHIRecipe
|
|
/// is used only for loop iterations counting after this transformation.
|
|
///
|
|
/// The function uses the following definitions:
|
|
/// %StartV is the canonical induction start value.
|
|
///
|
|
/// The function adds the following recipes:
|
|
///
|
|
/// vector.ph:
|
|
/// ...
|
|
///
|
|
/// vector.body:
|
|
/// ...
|
|
/// %EVLPhi = EXPLICIT-VECTOR-LENGTH-BASED-IV-PHI [ %StartV, %vector.ph ],
|
|
/// [ %NextEVLIV, %vector.body ]
|
|
/// %VPEVL = EXPLICIT-VECTOR-LENGTH %EVLPhi, original TC
|
|
/// ...
|
|
/// %NextEVLIV = add IVSize (cast i32 %VPEVVL to IVSize), %EVLPhi
|
|
/// ...
|
|
///
|
|
bool VPlanTransforms::tryAddExplicitVectorLength(VPlan &Plan) {
|
|
VPBasicBlock *Header = Plan.getVectorLoopRegion()->getEntryBasicBlock();
|
|
// The transform updates all users of inductions to work based on EVL, instead
|
|
// of the VF directly. At the moment, widened inductions cannot be updated, so
|
|
// bail out if the plan contains any.
|
|
if (any_of(Header->phis(), [](VPRecipeBase &Phi) {
|
|
return (isa<VPWidenIntOrFpInductionRecipe>(&Phi) ||
|
|
isa<VPWidenPointerInductionRecipe>(&Phi));
|
|
}))
|
|
return false;
|
|
auto *CanonicalIVPHI = Plan.getCanonicalIV();
|
|
VPValue *StartV = CanonicalIVPHI->getStartValue();
|
|
|
|
// Create the ExplicitVectorLengthPhi recipe in the main loop.
|
|
auto *EVLPhi = new VPEVLBasedIVPHIRecipe(StartV, DebugLoc());
|
|
EVLPhi->insertAfter(CanonicalIVPHI);
|
|
auto *VPEVL = new VPInstruction(VPInstruction::ExplicitVectorLength,
|
|
{EVLPhi, Plan.getTripCount()});
|
|
VPEVL->insertBefore(*Header, Header->getFirstNonPhi());
|
|
|
|
auto *CanonicalIVIncrement =
|
|
cast<VPInstruction>(CanonicalIVPHI->getBackedgeValue());
|
|
VPSingleDefRecipe *OpVPEVL = VPEVL;
|
|
if (unsigned IVSize = CanonicalIVPHI->getScalarType()->getScalarSizeInBits();
|
|
IVSize != 32) {
|
|
OpVPEVL = new VPScalarCastRecipe(IVSize < 32 ? Instruction::Trunc
|
|
: Instruction::ZExt,
|
|
OpVPEVL, CanonicalIVPHI->getScalarType());
|
|
OpVPEVL->insertBefore(CanonicalIVIncrement);
|
|
}
|
|
auto *NextEVLIV =
|
|
new VPInstruction(Instruction::Add, {OpVPEVL, EVLPhi},
|
|
{CanonicalIVIncrement->hasNoUnsignedWrap(),
|
|
CanonicalIVIncrement->hasNoSignedWrap()},
|
|
CanonicalIVIncrement->getDebugLoc(), "index.evl.next");
|
|
NextEVLIV->insertBefore(CanonicalIVIncrement);
|
|
EVLPhi->addOperand(NextEVLIV);
|
|
|
|
for (VPValue *HeaderMask : collectAllHeaderMasks(Plan)) {
|
|
for (VPUser *U : collectUsersRecursively(HeaderMask)) {
|
|
auto *MemR = dyn_cast<VPWidenMemoryRecipe>(U);
|
|
if (!MemR)
|
|
continue;
|
|
VPValue *OrigMask = MemR->getMask();
|
|
assert(OrigMask && "Unmasked widen memory recipe when folding tail");
|
|
VPValue *NewMask = HeaderMask == OrigMask ? nullptr : OrigMask;
|
|
if (auto *L = dyn_cast<VPWidenLoadRecipe>(MemR)) {
|
|
auto *N = new VPWidenLoadEVLRecipe(L, VPEVL, NewMask);
|
|
N->insertBefore(L);
|
|
L->replaceAllUsesWith(N);
|
|
L->eraseFromParent();
|
|
} else if (auto *S = dyn_cast<VPWidenStoreRecipe>(MemR)) {
|
|
auto *N = new VPWidenStoreEVLRecipe(S, VPEVL, NewMask);
|
|
N->insertBefore(S);
|
|
S->eraseFromParent();
|
|
} else {
|
|
llvm_unreachable("unsupported recipe");
|
|
}
|
|
}
|
|
recursivelyDeleteDeadRecipes(HeaderMask);
|
|
}
|
|
// Replace all uses of VPCanonicalIVPHIRecipe by
|
|
// VPEVLBasedIVPHIRecipe except for the canonical IV increment.
|
|
CanonicalIVPHI->replaceAllUsesWith(EVLPhi);
|
|
CanonicalIVIncrement->setOperand(0, CanonicalIVPHI);
|
|
// TODO: support unroll factor > 1.
|
|
Plan.setUF(1);
|
|
return true;
|
|
}
|
|
|
|
void VPlanTransforms::dropPoisonGeneratingRecipes(
|
|
VPlan &Plan, function_ref<bool(BasicBlock *)> BlockNeedsPredication) {
|
|
// Collect recipes in the backward slice of `Root` that may generate a poison
|
|
// value that is used after vectorization.
|
|
SmallPtrSet<VPRecipeBase *, 16> Visited;
|
|
auto collectPoisonGeneratingInstrsInBackwardSlice([&](VPRecipeBase *Root) {
|
|
SmallVector<VPRecipeBase *, 16> Worklist;
|
|
Worklist.push_back(Root);
|
|
|
|
// Traverse the backward slice of Root through its use-def chain.
|
|
while (!Worklist.empty()) {
|
|
VPRecipeBase *CurRec = Worklist.back();
|
|
Worklist.pop_back();
|
|
|
|
if (!Visited.insert(CurRec).second)
|
|
continue;
|
|
|
|
// Prune search if we find another recipe generating a widen memory
|
|
// instruction. Widen memory instructions involved in address computation
|
|
// will lead to gather/scatter instructions, which don't need to be
|
|
// handled.
|
|
if (isa<VPWidenMemoryRecipe>(CurRec) || isa<VPInterleaveRecipe>(CurRec) ||
|
|
isa<VPScalarIVStepsRecipe>(CurRec) || isa<VPHeaderPHIRecipe>(CurRec))
|
|
continue;
|
|
|
|
// This recipe contributes to the address computation of a widen
|
|
// load/store. If the underlying instruction has poison-generating flags,
|
|
// drop them directly.
|
|
if (auto *RecWithFlags = dyn_cast<VPRecipeWithIRFlags>(CurRec)) {
|
|
VPValue *A, *B;
|
|
using namespace llvm::VPlanPatternMatch;
|
|
// Dropping disjoint from an OR may yield incorrect results, as some
|
|
// analysis may have converted it to an Add implicitly (e.g. SCEV used
|
|
// for dependence analysis). Instead, replace it with an equivalent Add.
|
|
// This is possible as all users of the disjoint OR only access lanes
|
|
// where the operands are disjoint or poison otherwise.
|
|
if (match(RecWithFlags, m_BinaryOr(m_VPValue(A), m_VPValue(B))) &&
|
|
RecWithFlags->isDisjoint()) {
|
|
VPBuilder Builder(RecWithFlags);
|
|
VPInstruction *New = Builder.createOverflowingOp(
|
|
Instruction::Add, {A, B}, {false, false},
|
|
RecWithFlags->getDebugLoc());
|
|
New->setUnderlyingValue(RecWithFlags->getUnderlyingValue());
|
|
RecWithFlags->replaceAllUsesWith(New);
|
|
RecWithFlags->eraseFromParent();
|
|
CurRec = New;
|
|
} else
|
|
RecWithFlags->dropPoisonGeneratingFlags();
|
|
} else {
|
|
Instruction *Instr = dyn_cast_or_null<Instruction>(
|
|
CurRec->getVPSingleValue()->getUnderlyingValue());
|
|
(void)Instr;
|
|
assert((!Instr || !Instr->hasPoisonGeneratingFlags()) &&
|
|
"found instruction with poison generating flags not covered by "
|
|
"VPRecipeWithIRFlags");
|
|
}
|
|
|
|
// Add new definitions to the worklist.
|
|
for (VPValue *operand : CurRec->operands())
|
|
if (VPRecipeBase *OpDef = operand->getDefiningRecipe())
|
|
Worklist.push_back(OpDef);
|
|
}
|
|
});
|
|
|
|
// Traverse all the recipes in the VPlan and collect the poison-generating
|
|
// recipes in the backward slice starting at the address of a VPWidenRecipe or
|
|
// VPInterleaveRecipe.
|
|
auto Iter = vp_depth_first_deep(Plan.getEntry());
|
|
for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(Iter)) {
|
|
for (VPRecipeBase &Recipe : *VPBB) {
|
|
if (auto *WidenRec = dyn_cast<VPWidenMemoryRecipe>(&Recipe)) {
|
|
Instruction &UnderlyingInstr = WidenRec->getIngredient();
|
|
VPRecipeBase *AddrDef = WidenRec->getAddr()->getDefiningRecipe();
|
|
if (AddrDef && WidenRec->isConsecutive() &&
|
|
BlockNeedsPredication(UnderlyingInstr.getParent()))
|
|
collectPoisonGeneratingInstrsInBackwardSlice(AddrDef);
|
|
} else if (auto *InterleaveRec = dyn_cast<VPInterleaveRecipe>(&Recipe)) {
|
|
VPRecipeBase *AddrDef = InterleaveRec->getAddr()->getDefiningRecipe();
|
|
if (AddrDef) {
|
|
// Check if any member of the interleave group needs predication.
|
|
const InterleaveGroup<Instruction> *InterGroup =
|
|
InterleaveRec->getInterleaveGroup();
|
|
bool NeedPredication = false;
|
|
for (int I = 0, NumMembers = InterGroup->getNumMembers();
|
|
I < NumMembers; ++I) {
|
|
Instruction *Member = InterGroup->getMember(I);
|
|
if (Member)
|
|
NeedPredication |= BlockNeedsPredication(Member->getParent());
|
|
}
|
|
|
|
if (NeedPredication)
|
|
collectPoisonGeneratingInstrsInBackwardSlice(AddrDef);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|