
to reflect the new license. We understand that people may be surprised that we're moving the header entirely to discuss the new license. We checked this carefully with the Foundation's lawyer and we believe this is the correct approach. Essentially, all code in the project is now made available by the LLVM project under our new license, so you will see that the license headers include that license only. Some of our contributors have contributed code under our old license, and accordingly, we have retained a copy of our old license notice in the top-level files in each project and repository. llvm-svn: 351636
605 lines
21 KiB
C++
605 lines
21 KiB
C++
//===-- X86FixupLEAs.cpp - use or replace LEA instructions -----------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file defines the pass that finds instructions that can be
|
|
// re-written as LEA instructions in order to reduce pipeline delays.
|
|
// When optimizing for size it replaces suitable LEAs with INC or DEC.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "X86.h"
|
|
#include "X86InstrInfo.h"
|
|
#include "X86Subtarget.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/CodeGen/MachineFunctionPass.h"
|
|
#include "llvm/CodeGen/MachineInstrBuilder.h"
|
|
#include "llvm/CodeGen/Passes.h"
|
|
#include "llvm/CodeGen/TargetSchedule.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
using namespace llvm;
|
|
|
|
#define FIXUPLEA_DESC "X86 LEA Fixup"
|
|
#define FIXUPLEA_NAME "x86-fixup-LEAs"
|
|
|
|
#define DEBUG_TYPE FIXUPLEA_NAME
|
|
|
|
STATISTIC(NumLEAs, "Number of LEA instructions created");
|
|
|
|
namespace {
|
|
class FixupLEAPass : public MachineFunctionPass {
|
|
enum RegUsageState { RU_NotUsed, RU_Write, RU_Read };
|
|
|
|
/// Loop over all of the instructions in the basic block
|
|
/// replacing applicable instructions with LEA instructions,
|
|
/// where appropriate.
|
|
bool processBasicBlock(MachineFunction &MF, MachineFunction::iterator MFI,
|
|
bool IsSlowLEA, bool IsSlow3OpsLEA);
|
|
|
|
/// Given a machine register, look for the instruction
|
|
/// which writes it in the current basic block. If found,
|
|
/// try to replace it with an equivalent LEA instruction.
|
|
/// If replacement succeeds, then also process the newly created
|
|
/// instruction.
|
|
void seekLEAFixup(MachineOperand &p, MachineBasicBlock::iterator &I,
|
|
MachineFunction::iterator MFI);
|
|
|
|
/// Given a memory access or LEA instruction
|
|
/// whose address mode uses a base and/or index register, look for
|
|
/// an opportunity to replace the instruction which sets the base or index
|
|
/// register with an equivalent LEA instruction.
|
|
void processInstruction(MachineBasicBlock::iterator &I,
|
|
MachineFunction::iterator MFI);
|
|
|
|
/// Given a LEA instruction which is unprofitable
|
|
/// on SlowLEA targets try to replace it with an equivalent ADD instruction.
|
|
void processInstructionForSlowLEA(MachineBasicBlock::iterator &I,
|
|
MachineFunction::iterator MFI);
|
|
|
|
/// Given a LEA instruction which is unprofitable
|
|
/// on SNB+ try to replace it with other instructions.
|
|
/// According to Intel's Optimization Reference Manual:
|
|
/// " For LEA instructions with three source operands and some specific
|
|
/// situations, instruction latency has increased to 3 cycles, and must
|
|
/// dispatch via port 1:
|
|
/// - LEA that has all three source operands: base, index, and offset
|
|
/// - LEA that uses base and index registers where the base is EBP, RBP,
|
|
/// or R13
|
|
/// - LEA that uses RIP relative addressing mode
|
|
/// - LEA that uses 16-bit addressing mode "
|
|
/// This function currently handles the first 2 cases only.
|
|
MachineInstr *processInstrForSlow3OpLEA(MachineInstr &MI,
|
|
MachineFunction::iterator MFI);
|
|
|
|
/// Look for LEAs that add 1 to reg or subtract 1 from reg
|
|
/// and convert them to INC or DEC respectively.
|
|
bool fixupIncDec(MachineBasicBlock::iterator &I,
|
|
MachineFunction::iterator MFI) const;
|
|
|
|
/// Determine if an instruction references a machine register
|
|
/// and, if so, whether it reads or writes the register.
|
|
RegUsageState usesRegister(MachineOperand &p, MachineBasicBlock::iterator I);
|
|
|
|
/// Step backwards through a basic block, looking
|
|
/// for an instruction which writes a register within
|
|
/// a maximum of INSTR_DISTANCE_THRESHOLD instruction latency cycles.
|
|
MachineBasicBlock::iterator searchBackwards(MachineOperand &p,
|
|
MachineBasicBlock::iterator &I,
|
|
MachineFunction::iterator MFI);
|
|
|
|
/// if an instruction can be converted to an
|
|
/// equivalent LEA, insert the new instruction into the basic block
|
|
/// and return a pointer to it. Otherwise, return zero.
|
|
MachineInstr *postRAConvertToLEA(MachineFunction::iterator &MFI,
|
|
MachineBasicBlock::iterator &MBBI) const;
|
|
|
|
public:
|
|
static char ID;
|
|
|
|
StringRef getPassName() const override { return FIXUPLEA_DESC; }
|
|
|
|
FixupLEAPass() : MachineFunctionPass(ID) {
|
|
initializeFixupLEAPassPass(*PassRegistry::getPassRegistry());
|
|
}
|
|
|
|
/// Loop over all of the basic blocks,
|
|
/// replacing instructions by equivalent LEA instructions
|
|
/// if needed and when possible.
|
|
bool runOnMachineFunction(MachineFunction &MF) override;
|
|
|
|
// This pass runs after regalloc and doesn't support VReg operands.
|
|
MachineFunctionProperties getRequiredProperties() const override {
|
|
return MachineFunctionProperties().set(
|
|
MachineFunctionProperties::Property::NoVRegs);
|
|
}
|
|
|
|
private:
|
|
TargetSchedModel TSM;
|
|
MachineFunction *MF;
|
|
const X86InstrInfo *TII; // Machine instruction info.
|
|
bool OptIncDec;
|
|
bool OptLEA;
|
|
};
|
|
}
|
|
|
|
char FixupLEAPass::ID = 0;
|
|
|
|
INITIALIZE_PASS(FixupLEAPass, FIXUPLEA_NAME, FIXUPLEA_DESC, false, false)
|
|
|
|
MachineInstr *
|
|
FixupLEAPass::postRAConvertToLEA(MachineFunction::iterator &MFI,
|
|
MachineBasicBlock::iterator &MBBI) const {
|
|
MachineInstr &MI = *MBBI;
|
|
switch (MI.getOpcode()) {
|
|
case X86::MOV32rr:
|
|
case X86::MOV64rr: {
|
|
const MachineOperand &Src = MI.getOperand(1);
|
|
const MachineOperand &Dest = MI.getOperand(0);
|
|
MachineInstr *NewMI =
|
|
BuildMI(*MF, MI.getDebugLoc(),
|
|
TII->get(MI.getOpcode() == X86::MOV32rr ? X86::LEA32r
|
|
: X86::LEA64r))
|
|
.add(Dest)
|
|
.add(Src)
|
|
.addImm(1)
|
|
.addReg(0)
|
|
.addImm(0)
|
|
.addReg(0);
|
|
MFI->insert(MBBI, NewMI); // Insert the new inst
|
|
return NewMI;
|
|
}
|
|
case X86::ADD64ri32:
|
|
case X86::ADD64ri8:
|
|
case X86::ADD64ri32_DB:
|
|
case X86::ADD64ri8_DB:
|
|
case X86::ADD32ri:
|
|
case X86::ADD32ri8:
|
|
case X86::ADD32ri_DB:
|
|
case X86::ADD32ri8_DB:
|
|
case X86::ADD16ri:
|
|
case X86::ADD16ri8:
|
|
case X86::ADD16ri_DB:
|
|
case X86::ADD16ri8_DB:
|
|
if (!MI.getOperand(2).isImm()) {
|
|
// convertToThreeAddress will call getImm()
|
|
// which requires isImm() to be true
|
|
return nullptr;
|
|
}
|
|
break;
|
|
case X86::ADD16rr:
|
|
case X86::ADD16rr_DB:
|
|
if (MI.getOperand(1).getReg() != MI.getOperand(2).getReg()) {
|
|
// if src1 != src2, then convertToThreeAddress will
|
|
// need to create a Virtual register, which we cannot do
|
|
// after register allocation.
|
|
return nullptr;
|
|
}
|
|
}
|
|
return TII->convertToThreeAddress(MFI, MI, nullptr);
|
|
}
|
|
|
|
FunctionPass *llvm::createX86FixupLEAs() { return new FixupLEAPass(); }
|
|
|
|
bool FixupLEAPass::runOnMachineFunction(MachineFunction &Func) {
|
|
if (skipFunction(Func.getFunction()))
|
|
return false;
|
|
|
|
MF = &Func;
|
|
const X86Subtarget &ST = Func.getSubtarget<X86Subtarget>();
|
|
bool IsSlowLEA = ST.slowLEA();
|
|
bool IsSlow3OpsLEA = ST.slow3OpsLEA();
|
|
|
|
OptIncDec = !ST.slowIncDec() || Func.getFunction().optForMinSize();
|
|
OptLEA = ST.LEAusesAG() || IsSlowLEA || IsSlow3OpsLEA;
|
|
|
|
if (!OptLEA && !OptIncDec)
|
|
return false;
|
|
|
|
TSM.init(&Func.getSubtarget());
|
|
TII = ST.getInstrInfo();
|
|
|
|
LLVM_DEBUG(dbgs() << "Start X86FixupLEAs\n";);
|
|
// Process all basic blocks.
|
|
for (MachineFunction::iterator I = Func.begin(), E = Func.end(); I != E; ++I)
|
|
processBasicBlock(Func, I, IsSlowLEA, IsSlow3OpsLEA);
|
|
LLVM_DEBUG(dbgs() << "End X86FixupLEAs\n";);
|
|
|
|
return true;
|
|
}
|
|
|
|
FixupLEAPass::RegUsageState
|
|
FixupLEAPass::usesRegister(MachineOperand &p, MachineBasicBlock::iterator I) {
|
|
RegUsageState RegUsage = RU_NotUsed;
|
|
MachineInstr &MI = *I;
|
|
|
|
for (unsigned int i = 0; i < MI.getNumOperands(); ++i) {
|
|
MachineOperand &opnd = MI.getOperand(i);
|
|
if (opnd.isReg() && opnd.getReg() == p.getReg()) {
|
|
if (opnd.isDef())
|
|
return RU_Write;
|
|
RegUsage = RU_Read;
|
|
}
|
|
}
|
|
return RegUsage;
|
|
}
|
|
|
|
/// getPreviousInstr - Given a reference to an instruction in a basic
|
|
/// block, return a reference to the previous instruction in the block,
|
|
/// wrapping around to the last instruction of the block if the block
|
|
/// branches to itself.
|
|
static inline bool getPreviousInstr(MachineBasicBlock::iterator &I,
|
|
MachineFunction::iterator MFI) {
|
|
if (I == MFI->begin()) {
|
|
if (MFI->isPredecessor(&*MFI)) {
|
|
I = --MFI->end();
|
|
return true;
|
|
} else
|
|
return false;
|
|
}
|
|
--I;
|
|
return true;
|
|
}
|
|
|
|
MachineBasicBlock::iterator
|
|
FixupLEAPass::searchBackwards(MachineOperand &p, MachineBasicBlock::iterator &I,
|
|
MachineFunction::iterator MFI) {
|
|
int InstrDistance = 1;
|
|
MachineBasicBlock::iterator CurInst;
|
|
static const int INSTR_DISTANCE_THRESHOLD = 5;
|
|
|
|
CurInst = I;
|
|
bool Found;
|
|
Found = getPreviousInstr(CurInst, MFI);
|
|
while (Found && I != CurInst) {
|
|
if (CurInst->isCall() || CurInst->isInlineAsm())
|
|
break;
|
|
if (InstrDistance > INSTR_DISTANCE_THRESHOLD)
|
|
break; // too far back to make a difference
|
|
if (usesRegister(p, CurInst) == RU_Write) {
|
|
return CurInst;
|
|
}
|
|
InstrDistance += TSM.computeInstrLatency(&*CurInst);
|
|
Found = getPreviousInstr(CurInst, MFI);
|
|
}
|
|
return MachineBasicBlock::iterator();
|
|
}
|
|
|
|
static inline bool isLEA(const int Opcode) {
|
|
return Opcode == X86::LEA16r || Opcode == X86::LEA32r ||
|
|
Opcode == X86::LEA64r || Opcode == X86::LEA64_32r;
|
|
}
|
|
|
|
static inline bool isInefficientLEAReg(unsigned int Reg) {
|
|
return Reg == X86::EBP || Reg == X86::RBP ||
|
|
Reg == X86::R13D || Reg == X86::R13;
|
|
}
|
|
|
|
static inline bool isRegOperand(const MachineOperand &Op) {
|
|
return Op.isReg() && Op.getReg() != X86::NoRegister;
|
|
}
|
|
|
|
/// Returns true if this LEA uses base an index registers, and the base register
|
|
/// is known to be inefficient for the subtarget.
|
|
// TODO: use a variant scheduling class to model the latency profile
|
|
// of LEA instructions, and implement this logic as a scheduling predicate.
|
|
static inline bool hasInefficientLEABaseReg(const MachineOperand &Base,
|
|
const MachineOperand &Index) {
|
|
return Base.isReg() && isInefficientLEAReg(Base.getReg()) &&
|
|
isRegOperand(Index);
|
|
}
|
|
|
|
static inline bool hasLEAOffset(const MachineOperand &Offset) {
|
|
return (Offset.isImm() && Offset.getImm() != 0) || Offset.isGlobal();
|
|
}
|
|
|
|
static inline int getADDrrFromLEA(int LEAOpcode) {
|
|
switch (LEAOpcode) {
|
|
default:
|
|
llvm_unreachable("Unexpected LEA instruction");
|
|
case X86::LEA16r:
|
|
return X86::ADD16rr;
|
|
case X86::LEA32r:
|
|
return X86::ADD32rr;
|
|
case X86::LEA64_32r:
|
|
case X86::LEA64r:
|
|
return X86::ADD64rr;
|
|
}
|
|
}
|
|
|
|
static inline int getADDriFromLEA(int LEAOpcode, const MachineOperand &Offset) {
|
|
bool IsInt8 = Offset.isImm() && isInt<8>(Offset.getImm());
|
|
switch (LEAOpcode) {
|
|
default:
|
|
llvm_unreachable("Unexpected LEA instruction");
|
|
case X86::LEA16r:
|
|
return IsInt8 ? X86::ADD16ri8 : X86::ADD16ri;
|
|
case X86::LEA32r:
|
|
case X86::LEA64_32r:
|
|
return IsInt8 ? X86::ADD32ri8 : X86::ADD32ri;
|
|
case X86::LEA64r:
|
|
return IsInt8 ? X86::ADD64ri8 : X86::ADD64ri32;
|
|
}
|
|
}
|
|
|
|
/// isLEASimpleIncOrDec - Does this LEA have one these forms:
|
|
/// lea %reg, 1(%reg)
|
|
/// lea %reg, -1(%reg)
|
|
static inline bool isLEASimpleIncOrDec(MachineInstr &LEA) {
|
|
unsigned SrcReg = LEA.getOperand(1 + X86::AddrBaseReg).getReg();
|
|
unsigned DstReg = LEA.getOperand(0).getReg();
|
|
const MachineOperand &AddrDisp = LEA.getOperand(1 + X86::AddrDisp);
|
|
return SrcReg == DstReg &&
|
|
LEA.getOperand(1 + X86::AddrIndexReg).getReg() == 0 &&
|
|
LEA.getOperand(1 + X86::AddrSegmentReg).getReg() == 0 &&
|
|
AddrDisp.isImm() &&
|
|
(AddrDisp.getImm() == 1 || AddrDisp.getImm() == -1);
|
|
}
|
|
|
|
bool FixupLEAPass::fixupIncDec(MachineBasicBlock::iterator &I,
|
|
MachineFunction::iterator MFI) const {
|
|
MachineInstr &MI = *I;
|
|
int Opcode = MI.getOpcode();
|
|
if (!isLEA(Opcode))
|
|
return false;
|
|
|
|
if (isLEASimpleIncOrDec(MI) && TII->isSafeToClobberEFLAGS(*MFI, I)) {
|
|
int NewOpcode;
|
|
bool isINC = MI.getOperand(1 + X86::AddrDisp).getImm() == 1;
|
|
switch (Opcode) {
|
|
case X86::LEA16r:
|
|
NewOpcode = isINC ? X86::INC16r : X86::DEC16r;
|
|
break;
|
|
case X86::LEA32r:
|
|
case X86::LEA64_32r:
|
|
NewOpcode = isINC ? X86::INC32r : X86::DEC32r;
|
|
break;
|
|
case X86::LEA64r:
|
|
NewOpcode = isINC ? X86::INC64r : X86::DEC64r;
|
|
break;
|
|
}
|
|
|
|
MachineInstr *NewMI =
|
|
BuildMI(*MFI, I, MI.getDebugLoc(), TII->get(NewOpcode))
|
|
.add(MI.getOperand(0))
|
|
.add(MI.getOperand(1 + X86::AddrBaseReg));
|
|
MFI->erase(I);
|
|
I = static_cast<MachineBasicBlock::iterator>(NewMI);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void FixupLEAPass::processInstruction(MachineBasicBlock::iterator &I,
|
|
MachineFunction::iterator MFI) {
|
|
// Process a load, store, or LEA instruction.
|
|
MachineInstr &MI = *I;
|
|
const MCInstrDesc &Desc = MI.getDesc();
|
|
int AddrOffset = X86II::getMemoryOperandNo(Desc.TSFlags);
|
|
if (AddrOffset >= 0) {
|
|
AddrOffset += X86II::getOperandBias(Desc);
|
|
MachineOperand &p = MI.getOperand(AddrOffset + X86::AddrBaseReg);
|
|
if (p.isReg() && p.getReg() != X86::ESP) {
|
|
seekLEAFixup(p, I, MFI);
|
|
}
|
|
MachineOperand &q = MI.getOperand(AddrOffset + X86::AddrIndexReg);
|
|
if (q.isReg() && q.getReg() != X86::ESP) {
|
|
seekLEAFixup(q, I, MFI);
|
|
}
|
|
}
|
|
}
|
|
|
|
void FixupLEAPass::seekLEAFixup(MachineOperand &p,
|
|
MachineBasicBlock::iterator &I,
|
|
MachineFunction::iterator MFI) {
|
|
MachineBasicBlock::iterator MBI = searchBackwards(p, I, MFI);
|
|
if (MBI != MachineBasicBlock::iterator()) {
|
|
MachineInstr *NewMI = postRAConvertToLEA(MFI, MBI);
|
|
if (NewMI) {
|
|
++NumLEAs;
|
|
LLVM_DEBUG(dbgs() << "FixLEA: Candidate to replace:"; MBI->dump(););
|
|
// now to replace with an equivalent LEA...
|
|
LLVM_DEBUG(dbgs() << "FixLEA: Replaced by: "; NewMI->dump(););
|
|
MFI->erase(MBI);
|
|
MachineBasicBlock::iterator J =
|
|
static_cast<MachineBasicBlock::iterator>(NewMI);
|
|
processInstruction(J, MFI);
|
|
}
|
|
}
|
|
}
|
|
|
|
void FixupLEAPass::processInstructionForSlowLEA(MachineBasicBlock::iterator &I,
|
|
MachineFunction::iterator MFI) {
|
|
MachineInstr &MI = *I;
|
|
const int Opcode = MI.getOpcode();
|
|
if (!isLEA(Opcode))
|
|
return;
|
|
|
|
const MachineOperand &Dst = MI.getOperand(0);
|
|
const MachineOperand &Base = MI.getOperand(1 + X86::AddrBaseReg);
|
|
const MachineOperand &Scale = MI.getOperand(1 + X86::AddrScaleAmt);
|
|
const MachineOperand &Index = MI.getOperand(1 + X86::AddrIndexReg);
|
|
const MachineOperand &Offset = MI.getOperand(1 + X86::AddrDisp);
|
|
const MachineOperand &Segment = MI.getOperand(1 + X86::AddrSegmentReg);
|
|
|
|
if (Segment.getReg() != 0 || !Offset.isImm() ||
|
|
!TII->isSafeToClobberEFLAGS(*MFI, I))
|
|
return;
|
|
const unsigned DstR = Dst.getReg();
|
|
const unsigned SrcR1 = Base.getReg();
|
|
const unsigned SrcR2 = Index.getReg();
|
|
if ((SrcR1 == 0 || SrcR1 != DstR) && (SrcR2 == 0 || SrcR2 != DstR))
|
|
return;
|
|
if (Scale.getImm() > 1)
|
|
return;
|
|
LLVM_DEBUG(dbgs() << "FixLEA: Candidate to replace:"; I->dump(););
|
|
LLVM_DEBUG(dbgs() << "FixLEA: Replaced by: ";);
|
|
MachineInstr *NewMI = nullptr;
|
|
// Make ADD instruction for two registers writing to LEA's destination
|
|
if (SrcR1 != 0 && SrcR2 != 0) {
|
|
const MCInstrDesc &ADDrr = TII->get(getADDrrFromLEA(Opcode));
|
|
const MachineOperand &Src = SrcR1 == DstR ? Index : Base;
|
|
NewMI =
|
|
BuildMI(*MFI, I, MI.getDebugLoc(), ADDrr, DstR).addReg(DstR).add(Src);
|
|
LLVM_DEBUG(NewMI->dump(););
|
|
}
|
|
// Make ADD instruction for immediate
|
|
if (Offset.getImm() != 0) {
|
|
const MCInstrDesc &ADDri =
|
|
TII->get(getADDriFromLEA(Opcode, Offset));
|
|
const MachineOperand &SrcR = SrcR1 == DstR ? Base : Index;
|
|
NewMI = BuildMI(*MFI, I, MI.getDebugLoc(), ADDri, DstR)
|
|
.add(SrcR)
|
|
.addImm(Offset.getImm());
|
|
LLVM_DEBUG(NewMI->dump(););
|
|
}
|
|
if (NewMI) {
|
|
MFI->erase(I);
|
|
I = NewMI;
|
|
}
|
|
}
|
|
|
|
MachineInstr *
|
|
FixupLEAPass::processInstrForSlow3OpLEA(MachineInstr &MI,
|
|
MachineFunction::iterator MFI) {
|
|
|
|
const int LEAOpcode = MI.getOpcode();
|
|
if (!isLEA(LEAOpcode))
|
|
return nullptr;
|
|
|
|
const MachineOperand &Dst = MI.getOperand(0);
|
|
const MachineOperand &Base = MI.getOperand(1 + X86::AddrBaseReg);
|
|
const MachineOperand &Scale = MI.getOperand(1 + X86::AddrScaleAmt);
|
|
const MachineOperand &Index = MI.getOperand(1 + X86::AddrIndexReg);
|
|
const MachineOperand &Offset = MI.getOperand(1 + X86::AddrDisp);
|
|
const MachineOperand &Segment = MI.getOperand(1 + X86::AddrSegmentReg);
|
|
|
|
if (!(TII->isThreeOperandsLEA(MI) ||
|
|
hasInefficientLEABaseReg(Base, Index)) ||
|
|
!TII->isSafeToClobberEFLAGS(*MFI, MI) ||
|
|
Segment.getReg() != X86::NoRegister)
|
|
return nullptr;
|
|
|
|
unsigned int DstR = Dst.getReg();
|
|
unsigned int BaseR = Base.getReg();
|
|
unsigned int IndexR = Index.getReg();
|
|
unsigned SSDstR =
|
|
(LEAOpcode == X86::LEA64_32r) ? getX86SubSuperRegister(DstR, 64) : DstR;
|
|
bool IsScale1 = Scale.getImm() == 1;
|
|
bool IsInefficientBase = isInefficientLEAReg(BaseR);
|
|
bool IsInefficientIndex = isInefficientLEAReg(IndexR);
|
|
|
|
// Skip these cases since it takes more than 2 instructions
|
|
// to replace the LEA instruction.
|
|
if (IsInefficientBase && SSDstR == BaseR && !IsScale1)
|
|
return nullptr;
|
|
if (LEAOpcode == X86::LEA64_32r && IsInefficientBase &&
|
|
(IsInefficientIndex || !IsScale1))
|
|
return nullptr;
|
|
|
|
const DebugLoc DL = MI.getDebugLoc();
|
|
const MCInstrDesc &ADDrr = TII->get(getADDrrFromLEA(LEAOpcode));
|
|
const MCInstrDesc &ADDri = TII->get(getADDriFromLEA(LEAOpcode, Offset));
|
|
|
|
LLVM_DEBUG(dbgs() << "FixLEA: Candidate to replace:"; MI.dump(););
|
|
LLVM_DEBUG(dbgs() << "FixLEA: Replaced by: ";);
|
|
|
|
// First try to replace LEA with one or two (for the 3-op LEA case)
|
|
// add instructions:
|
|
// 1.lea (%base,%index,1), %base => add %index,%base
|
|
// 2.lea (%base,%index,1), %index => add %base,%index
|
|
if (IsScale1 && (DstR == BaseR || DstR == IndexR)) {
|
|
const MachineOperand &Src = DstR == BaseR ? Index : Base;
|
|
MachineInstr *NewMI =
|
|
BuildMI(*MFI, MI, DL, ADDrr, DstR).addReg(DstR).add(Src);
|
|
LLVM_DEBUG(NewMI->dump(););
|
|
// Create ADD instruction for the Offset in case of 3-Ops LEA.
|
|
if (hasLEAOffset(Offset)) {
|
|
NewMI = BuildMI(*MFI, MI, DL, ADDri, DstR).addReg(DstR).add(Offset);
|
|
LLVM_DEBUG(NewMI->dump(););
|
|
}
|
|
return NewMI;
|
|
}
|
|
// If the base is inefficient try switching the index and base operands,
|
|
// otherwise just break the 3-Ops LEA inst into 2-Ops LEA + ADD instruction:
|
|
// lea offset(%base,%index,scale),%dst =>
|
|
// lea (%base,%index,scale); add offset,%dst
|
|
if (!IsInefficientBase || (!IsInefficientIndex && IsScale1)) {
|
|
MachineInstr *NewMI = BuildMI(*MFI, MI, DL, TII->get(LEAOpcode))
|
|
.add(Dst)
|
|
.add(IsInefficientBase ? Index : Base)
|
|
.add(Scale)
|
|
.add(IsInefficientBase ? Base : Index)
|
|
.addImm(0)
|
|
.add(Segment);
|
|
LLVM_DEBUG(NewMI->dump(););
|
|
// Create ADD instruction for the Offset in case of 3-Ops LEA.
|
|
if (hasLEAOffset(Offset)) {
|
|
NewMI = BuildMI(*MFI, MI, DL, ADDri, DstR).addReg(DstR).add(Offset);
|
|
LLVM_DEBUG(NewMI->dump(););
|
|
}
|
|
return NewMI;
|
|
}
|
|
// Handle the rest of the cases with inefficient base register:
|
|
assert(SSDstR != BaseR && "SSDstR == BaseR should be handled already!");
|
|
assert(IsInefficientBase && "efficient base should be handled already!");
|
|
|
|
// lea (%base,%index,1), %dst => mov %base,%dst; add %index,%dst
|
|
if (IsScale1 && !hasLEAOffset(Offset)) {
|
|
bool BIK = Base.isKill() && BaseR != IndexR;
|
|
TII->copyPhysReg(*MFI, MI, DL, DstR, BaseR, BIK);
|
|
LLVM_DEBUG(MI.getPrevNode()->dump(););
|
|
|
|
MachineInstr *NewMI =
|
|
BuildMI(*MFI, MI, DL, ADDrr, DstR).addReg(DstR).add(Index);
|
|
LLVM_DEBUG(NewMI->dump(););
|
|
return NewMI;
|
|
}
|
|
// lea offset(%base,%index,scale), %dst =>
|
|
// lea offset( ,%index,scale), %dst; add %base,%dst
|
|
MachineInstr *NewMI = BuildMI(*MFI, MI, DL, TII->get(LEAOpcode))
|
|
.add(Dst)
|
|
.addReg(0)
|
|
.add(Scale)
|
|
.add(Index)
|
|
.add(Offset)
|
|
.add(Segment);
|
|
LLVM_DEBUG(NewMI->dump(););
|
|
|
|
NewMI = BuildMI(*MFI, MI, DL, ADDrr, DstR).addReg(DstR).add(Base);
|
|
LLVM_DEBUG(NewMI->dump(););
|
|
return NewMI;
|
|
}
|
|
|
|
bool FixupLEAPass::processBasicBlock(MachineFunction &MF,
|
|
MachineFunction::iterator MFI,
|
|
bool IsSlowLEA, bool IsSlow3OpsLEA) {
|
|
for (MachineBasicBlock::iterator I = MFI->begin(); I != MFI->end(); ++I) {
|
|
if (OptIncDec)
|
|
if (fixupIncDec(I, MFI))
|
|
continue;
|
|
|
|
if (OptLEA) {
|
|
if (IsSlowLEA) {
|
|
processInstructionForSlowLEA(I, MFI);
|
|
continue;
|
|
}
|
|
|
|
if (IsSlow3OpsLEA) {
|
|
if (auto *NewMI = processInstrForSlow3OpLEA(*I, MFI)) {
|
|
MFI->erase(I);
|
|
I = NewMI;
|
|
}
|
|
continue;
|
|
}
|
|
|
|
processInstruction(I, MFI);
|
|
}
|
|
}
|
|
return false;
|
|
}
|