Matheus Izvekov 91cdd35008
[clang] Improve nested name specifier AST representation (#147835)
This is a major change on how we represent nested name qualifications in
the AST.

* The nested name specifier itself and how it's stored is changed. The
prefixes for types are handled within the type hierarchy, which makes
canonicalization for them super cheap, no memory allocation required.
Also translating a type into nested name specifier form becomes a no-op.
An identifier is stored as a DependentNameType. The nested name
specifier gains a lightweight handle class, to be used instead of
passing around pointers, which is similar to what is implemented for
TemplateName. There is still one free bit available, and this handle can
be used within a PointerUnion and PointerIntPair, which should keep
bit-packing aficionados happy.
* The ElaboratedType node is removed, all type nodes in which it could
previously apply to can now store the elaborated keyword and name
qualifier, tail allocating when present.
* TagTypes can now point to the exact declaration found when producing
these, as opposed to the previous situation of there only existing one
TagType per entity. This increases the amount of type sugar retained,
and can have several applications, for example in tracking module
ownership, and other tools which care about source file origins, such as
IWYU. These TagTypes are lazily allocated, in order to limit the
increase in AST size.

This patch offers a great performance benefit.

It greatly improves compilation time for
[stdexec](https://github.com/NVIDIA/stdexec). For one datapoint, for
`test_on2.cpp` in that project, which is the slowest compiling test,
this patch improves `-c` compilation time by about 7.2%, with the
`-fsyntax-only` improvement being at ~12%.

This has great results on compile-time-tracker as well:

![image](https://github.com/user-attachments/assets/700dce98-2cab-4aa8-97d1-b038c0bee831)

This patch also further enables other optimziations in the future, and
will reduce the performance impact of template specialization resugaring
when that lands.

It has some other miscelaneous drive-by fixes.

About the review: Yes the patch is huge, sorry about that. Part of the
reason is that I started by the nested name specifier part, before the
ElaboratedType part, but that had a huge performance downside, as
ElaboratedType is a big performance hog. I didn't have the steam to go
back and change the patch after the fact.

There is also a lot of internal API changes, and it made sense to remove
ElaboratedType in one go, versus removing it from one type at a time, as
that would present much more churn to the users. Also, the nested name
specifier having a different API avoids missing changes related to how
prefixes work now, which could make existing code compile but not work.

How to review: The important changes are all in
`clang/include/clang/AST` and `clang/lib/AST`, with also important
changes in `clang/lib/Sema/TreeTransform.h`.

The rest and bulk of the changes are mostly consequences of the changes
in API.

PS: TagType::getDecl is renamed to `getOriginalDecl` in this patch, just
for easier to rebasing. I plan to rename it back after this lands.

Fixes #136624
Fixes https://github.com/llvm/llvm-project/issues/43179
Fixes https://github.com/llvm/llvm-project/issues/68670
Fixes https://github.com/llvm/llvm-project/issues/92757
2025-08-09 05:06:53 -03:00

1197 lines
46 KiB
C++

//===--- FindTarget.cpp - What does an AST node refer to? -----------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "FindTarget.h"
#include "AST.h"
#include "support/Logger.h"
#include "clang/AST/ASTConcept.h"
#include "clang/AST/ASTTypeTraits.h"
#include "clang/AST/Decl.h"
#include "clang/AST/DeclBase.h"
#include "clang/AST/DeclCXX.h"
#include "clang/AST/DeclTemplate.h"
#include "clang/AST/DeclVisitor.h"
#include "clang/AST/DeclarationName.h"
#include "clang/AST/Expr.h"
#include "clang/AST/ExprCXX.h"
#include "clang/AST/ExprConcepts.h"
#include "clang/AST/ExprObjC.h"
#include "clang/AST/NestedNameSpecifier.h"
#include "clang/AST/PrettyPrinter.h"
#include "clang/AST/RecursiveASTVisitor.h"
#include "clang/AST/StmtVisitor.h"
#include "clang/AST/TemplateBase.h"
#include "clang/AST/Type.h"
#include "clang/AST/TypeLoc.h"
#include "clang/AST/TypeLocVisitor.h"
#include "clang/AST/TypeVisitor.h"
#include "clang/Basic/LangOptions.h"
#include "clang/Basic/SourceLocation.h"
#include "clang/Basic/SourceManager.h"
#include "clang/Basic/Specifiers.h"
#include "clang/Sema/HeuristicResolver.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/raw_ostream.h"
#include <iterator>
#include <string>
#include <utility>
#include <vector>
namespace clang {
namespace clangd {
namespace {
LLVM_ATTRIBUTE_UNUSED std::string nodeToString(const DynTypedNode &N) {
std::string S = std::string(N.getNodeKind().asStringRef());
{
llvm::raw_string_ostream OS(S);
OS << ": ";
N.print(OS, PrintingPolicy(LangOptions()));
}
llvm::replace(S, '\n', ' ');
return S;
}
const NamedDecl *getTemplatePattern(const NamedDecl *D) {
if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(D)) {
if (const auto *Result = CRD->getTemplateInstantiationPattern())
return Result;
// getTemplateInstantiationPattern returns null if the Specialization is
// incomplete (e.g. the type didn't need to be complete), fall back to the
// primary template.
if (CRD->getTemplateSpecializationKind() == TSK_Undeclared)
if (const auto *Spec = dyn_cast<ClassTemplateSpecializationDecl>(CRD))
return Spec->getSpecializedTemplate()->getTemplatedDecl();
} else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
return FD->getTemplateInstantiationPattern();
} else if (auto *VD = dyn_cast<VarDecl>(D)) {
// Hmm: getTIP returns its arg if it's not an instantiation?!
VarDecl *T = VD->getTemplateInstantiationPattern();
return (T == D) ? nullptr : T;
} else if (const auto *ED = dyn_cast<EnumDecl>(D)) {
return ED->getInstantiatedFromMemberEnum();
} else if (isa<FieldDecl>(D) || isa<TypedefNameDecl>(D)) {
if (const auto *Parent = llvm::dyn_cast<NamedDecl>(D->getDeclContext()))
if (const DeclContext *ParentPat =
dyn_cast_or_null<DeclContext>(getTemplatePattern(Parent)))
for (const NamedDecl *BaseND : ParentPat->lookup(D->getDeclName()))
if (!BaseND->isImplicit() && BaseND->getKind() == D->getKind())
return BaseND;
} else if (const auto *ECD = dyn_cast<EnumConstantDecl>(D)) {
if (const auto *ED = dyn_cast<EnumDecl>(ECD->getDeclContext())) {
if (const EnumDecl *Pattern = ED->getInstantiatedFromMemberEnum()) {
for (const NamedDecl *BaseECD : Pattern->lookup(ECD->getDeclName()))
return BaseECD;
}
}
}
return nullptr;
}
// Returns true if the `TypedefNameDecl` should not be reported.
bool shouldSkipTypedef(const TypedefNameDecl *TD) {
// These should be treated as keywords rather than decls - the typedef is an
// odd implementation detail.
if (TD == TD->getASTContext().getObjCInstanceTypeDecl() ||
TD == TD->getASTContext().getObjCIdDecl())
return true;
return false;
}
// TargetFinder locates the entities that an AST node refers to.
//
// Typically this is (possibly) one declaration and (possibly) one type, but
// may be more:
// - for ambiguous nodes like OverloadExpr
// - if we want to include e.g. both typedefs and the underlying type
//
// This is organized as a set of mutually recursive helpers for particular node
// types, but for most nodes this is a short walk rather than a deep traversal.
//
// It's tempting to do e.g. typedef resolution as a second normalization step,
// after finding the 'primary' decl etc. But we do this monolithically instead
// because:
// - normalization may require these traversals again (e.g. unwrapping a
// typedef reveals a decltype which must be traversed)
// - it doesn't simplify that much, e.g. the first stage must still be able
// to yield multiple decls to handle OverloadExpr
// - there are cases where it's required for correctness. e.g:
// template<class X> using pvec = vector<x*>; pvec<int> x;
// There's no Decl `pvec<int>`, we must choose `pvec<X>` or `vector<int*>`
// and both are lossy. We must know upfront what the caller ultimately wants.
struct TargetFinder {
using RelSet = DeclRelationSet;
using Rel = DeclRelation;
private:
const HeuristicResolver *Resolver;
llvm::SmallDenseMap<const NamedDecl *,
std::pair<RelSet, /*InsertionOrder*/ size_t>>
Decls;
llvm::SmallDenseMap<const Decl *, RelSet> Seen;
RelSet Flags;
template <typename T> void debug(T &Node, RelSet Flags) {
dlog("visit [{0}] {1}", Flags, nodeToString(DynTypedNode::create(Node)));
}
void report(const NamedDecl *D, RelSet Flags) {
dlog("--> [{0}] {1}", Flags, nodeToString(DynTypedNode::create(*D)));
auto It = Decls.try_emplace(D, std::make_pair(Flags, Decls.size()));
// If already exists, update the flags.
if (!It.second)
It.first->second.first |= Flags;
}
public:
TargetFinder(const HeuristicResolver *Resolver) : Resolver(Resolver) {}
llvm::SmallVector<std::pair<const NamedDecl *, RelSet>, 1> takeDecls() const {
using ValTy = std::pair<const NamedDecl *, RelSet>;
llvm::SmallVector<ValTy, 1> Result;
Result.resize(Decls.size());
for (const auto &Elem : Decls)
Result[Elem.second.second] = {Elem.first, Elem.second.first};
return Result;
}
void add(const Decl *Dcl, RelSet Flags) {
const NamedDecl *D = llvm::dyn_cast_or_null<NamedDecl>(Dcl);
if (!D)
return;
debug(*D, Flags);
// Avoid recursion (which can arise in the presence of heuristic
// resolution of dependent names) by exiting early if we have
// already seen this decl with all flags in Flags.
auto Res = Seen.try_emplace(D);
if (!Res.second && Res.first->second.contains(Flags))
return;
Res.first->second |= Flags;
if (const UsingDirectiveDecl *UDD = llvm::dyn_cast<UsingDirectiveDecl>(D))
D = UDD->getNominatedNamespaceAsWritten();
if (const TypedefNameDecl *TND = dyn_cast<TypedefNameDecl>(D)) {
add(TND->getUnderlyingType(), Flags | Rel::Underlying);
Flags |= Rel::Alias; // continue with the alias.
} else if (const UsingDecl *UD = dyn_cast<UsingDecl>(D)) {
// no Underlying as this is a non-renaming alias.
for (const UsingShadowDecl *S : UD->shadows())
add(S->getUnderlyingDecl(), Flags);
Flags |= Rel::Alias; // continue with the alias.
} else if (const UsingEnumDecl *UED = dyn_cast<UsingEnumDecl>(D)) {
// UsingEnumDecl is not an alias at all, just a reference.
D = UED->getEnumDecl();
} else if (const auto *NAD = dyn_cast<NamespaceAliasDecl>(D)) {
add(NAD->getUnderlyingDecl(), Flags | Rel::Underlying);
Flags |= Rel::Alias; // continue with the alias
} else if (const UnresolvedUsingValueDecl *UUVD =
dyn_cast<UnresolvedUsingValueDecl>(D)) {
if (Resolver) {
for (const NamedDecl *Target : Resolver->resolveUsingValueDecl(UUVD)) {
add(Target, Flags); // no Underlying as this is a non-renaming alias
}
}
Flags |= Rel::Alias; // continue with the alias
} else if (isa<UnresolvedUsingTypenameDecl>(D)) {
// FIXME: improve common dependent scope using name lookup in primary
// templates.
Flags |= Rel::Alias;
} else if (const UsingShadowDecl *USD = dyn_cast<UsingShadowDecl>(D)) {
// Include the introducing UsingDecl, but don't traverse it. This may end
// up including *all* shadows, which we don't want.
// Don't apply this logic to UsingEnumDecl, which can't easily be
// conflated with the aliases it introduces.
if (llvm::isa<UsingDecl>(USD->getIntroducer()))
report(USD->getIntroducer(), Flags | Rel::Alias);
// Shadow decls are synthetic and not themselves interesting.
// Record the underlying decl instead, if allowed.
D = USD->getTargetDecl();
} else if (const auto *DG = dyn_cast<CXXDeductionGuideDecl>(D)) {
D = DG->getDeducedTemplate();
} else if (const ObjCImplementationDecl *IID =
dyn_cast<ObjCImplementationDecl>(D)) {
// Treat ObjC{Interface,Implementation}Decl as if they were a decl/def
// pair as long as the interface isn't implicit.
if (const auto *CID = IID->getClassInterface())
if (const auto *DD = CID->getDefinition())
if (!DD->isImplicitInterfaceDecl())
D = DD;
} else if (const ObjCCategoryImplDecl *CID =
dyn_cast<ObjCCategoryImplDecl>(D)) {
// Treat ObjC{Category,CategoryImpl}Decl as if they were a decl/def pair.
D = CID->getCategoryDecl();
}
if (!D)
return;
if (const Decl *Pat = getTemplatePattern(D)) {
assert(Pat != D);
add(Pat, Flags | Rel::TemplatePattern);
// Now continue with the instantiation.
Flags |= Rel::TemplateInstantiation;
}
report(D, Flags);
}
void add(const Stmt *S, RelSet Flags) {
if (!S)
return;
debug(*S, Flags);
struct Visitor : public ConstStmtVisitor<Visitor> {
TargetFinder &Outer;
RelSet Flags;
Visitor(TargetFinder &Outer, RelSet Flags) : Outer(Outer), Flags(Flags) {}
void VisitCallExpr(const CallExpr *CE) {
Outer.add(CE->getCalleeDecl(), Flags);
}
void VisitConceptSpecializationExpr(const ConceptSpecializationExpr *E) {
Outer.add(E->getConceptReference(), Flags);
}
void VisitDeclRefExpr(const DeclRefExpr *DRE) {
const Decl *D = DRE->getDecl();
// UsingShadowDecl allows us to record the UsingDecl.
// getFoundDecl() returns the wrong thing in other cases (templates).
if (auto *USD = llvm::dyn_cast<UsingShadowDecl>(DRE->getFoundDecl()))
D = USD;
Outer.add(D, Flags);
}
void VisitMemberExpr(const MemberExpr *ME) {
const Decl *D = ME->getMemberDecl();
if (auto *USD =
llvm::dyn_cast<UsingShadowDecl>(ME->getFoundDecl().getDecl()))
D = USD;
Outer.add(D, Flags);
}
void VisitOverloadExpr(const OverloadExpr *OE) {
for (auto *D : OE->decls())
Outer.add(D, Flags);
}
void VisitSizeOfPackExpr(const SizeOfPackExpr *SE) {
Outer.add(SE->getPack(), Flags);
}
void VisitCXXConstructExpr(const CXXConstructExpr *CCE) {
Outer.add(CCE->getConstructor(), Flags);
}
void VisitDesignatedInitExpr(const DesignatedInitExpr *DIE) {
for (const DesignatedInitExpr::Designator &D :
llvm::reverse(DIE->designators()))
if (D.isFieldDesignator()) {
Outer.add(D.getFieldDecl(), Flags);
// We don't know which designator was intended, we assume the outer.
break;
}
}
void VisitGotoStmt(const GotoStmt *Goto) {
if (auto *LabelDecl = Goto->getLabel())
Outer.add(LabelDecl, Flags);
}
void VisitLabelStmt(const LabelStmt *Label) {
if (auto *LabelDecl = Label->getDecl())
Outer.add(LabelDecl, Flags);
}
void
VisitCXXDependentScopeMemberExpr(const CXXDependentScopeMemberExpr *E) {
if (Outer.Resolver) {
for (const NamedDecl *D : Outer.Resolver->resolveMemberExpr(E)) {
Outer.add(D, Flags);
}
}
}
void VisitDependentScopeDeclRefExpr(const DependentScopeDeclRefExpr *E) {
if (Outer.Resolver) {
for (const NamedDecl *D : Outer.Resolver->resolveDeclRefExpr(E)) {
Outer.add(D, Flags);
}
}
}
void VisitObjCIvarRefExpr(const ObjCIvarRefExpr *OIRE) {
Outer.add(OIRE->getDecl(), Flags);
}
void VisitObjCMessageExpr(const ObjCMessageExpr *OME) {
Outer.add(OME->getMethodDecl(), Flags);
}
void VisitObjCPropertyRefExpr(const ObjCPropertyRefExpr *OPRE) {
if (OPRE->isExplicitProperty())
Outer.add(OPRE->getExplicitProperty(), Flags);
else {
if (OPRE->isMessagingGetter())
Outer.add(OPRE->getImplicitPropertyGetter(), Flags);
if (OPRE->isMessagingSetter())
Outer.add(OPRE->getImplicitPropertySetter(), Flags);
}
}
void VisitObjCProtocolExpr(const ObjCProtocolExpr *OPE) {
Outer.add(OPE->getProtocol(), Flags);
}
void VisitOpaqueValueExpr(const OpaqueValueExpr *OVE) {
Outer.add(OVE->getSourceExpr(), Flags);
}
void VisitPseudoObjectExpr(const PseudoObjectExpr *POE) {
Outer.add(POE->getSyntacticForm(), Flags);
}
void VisitCXXNewExpr(const CXXNewExpr *CNE) {
Outer.add(CNE->getOperatorNew(), Flags);
}
void VisitCXXDeleteExpr(const CXXDeleteExpr *CDE) {
Outer.add(CDE->getOperatorDelete(), Flags);
}
void
VisitCXXRewrittenBinaryOperator(const CXXRewrittenBinaryOperator *RBO) {
Outer.add(RBO->getDecomposedForm().InnerBinOp, Flags);
}
};
Visitor(*this, Flags).Visit(S);
}
void add(QualType T, RelSet Flags) {
if (T.isNull())
return;
debug(T, Flags);
struct Visitor : public TypeVisitor<Visitor> {
TargetFinder &Outer;
RelSet Flags;
Visitor(TargetFinder &Outer, RelSet Flags) : Outer(Outer), Flags(Flags) {}
void VisitTagType(const TagType *TT) {
Outer.add(cast<TagType>(TT)->getOriginalDecl(), Flags);
}
void VisitUsingType(const UsingType *ET) {
Outer.add(ET->getDecl(), Flags);
}
void VisitDecltypeType(const DecltypeType *DTT) {
Outer.add(DTT->getUnderlyingType(), Flags | Rel::Underlying);
}
void VisitDeducedType(const DeducedType *DT) {
// FIXME: In practice this doesn't work: the AutoType you find inside
// TypeLoc never has a deduced type. https://llvm.org/PR42914
Outer.add(DT->getDeducedType(), Flags);
}
void VisitUnresolvedUsingType(const UnresolvedUsingType *UUT) {
Outer.add(UUT->getDecl(), Flags);
}
void VisitDeducedTemplateSpecializationType(
const DeducedTemplateSpecializationType *DTST) {
if (const auto *USD = DTST->getTemplateName().getAsUsingShadowDecl())
Outer.add(USD, Flags);
// FIXME: This is a workaround for https://llvm.org/PR42914,
// which is causing DTST->getDeducedType() to be empty. We
// fall back to the template pattern and miss the instantiation
// even when it's known in principle. Once that bug is fixed,
// the following code can be removed (the existing handling in
// VisitDeducedType() is sufficient).
if (auto *TD = DTST->getTemplateName().getAsTemplateDecl())
Outer.add(TD->getTemplatedDecl(), Flags | Rel::TemplatePattern);
}
void VisitDependentNameType(const DependentNameType *DNT) {
if (Outer.Resolver) {
for (const NamedDecl *ND :
Outer.Resolver->resolveDependentNameType(DNT)) {
Outer.add(ND, Flags);
}
}
}
void VisitDependentTemplateSpecializationType(
const DependentTemplateSpecializationType *DTST) {
if (Outer.Resolver) {
for (const NamedDecl *ND :
Outer.Resolver->resolveTemplateSpecializationType(DTST)) {
Outer.add(ND, Flags);
}
}
}
void VisitTypedefType(const TypedefType *TT) {
if (shouldSkipTypedef(TT->getDecl()))
return;
Outer.add(TT->getDecl(), Flags);
}
void
VisitTemplateSpecializationType(const TemplateSpecializationType *TST) {
// Have to handle these case-by-case.
if (const auto *UTN = TST->getTemplateName().getAsUsingShadowDecl())
Outer.add(UTN, Flags);
// templated type aliases: there's no specialized/instantiated using
// decl to point to. So try to find a decl for the underlying type
// (after substitution), and failing that point to the (templated) using
// decl.
if (TST->isTypeAlias()) {
Outer.add(TST->getAliasedType(), Flags | Rel::Underlying);
// Don't *traverse* the alias, which would result in traversing the
// template of the underlying type.
TemplateDecl *TD = TST->getTemplateName().getAsTemplateDecl();
// Builtin templates e.g. __make_integer_seq, __type_pack_element
// are such that they don't have alias *decls*. Even then, we still
// traverse their desugared *types* so that instantiated decls are
// collected.
if (llvm::isa<BuiltinTemplateDecl>(TD))
return;
Outer.report(TD->getTemplatedDecl(),
Flags | Rel::Alias | Rel::TemplatePattern);
}
// specializations of template template parameters aren't instantiated
// into decls, so they must refer to the parameter itself.
else if (const auto *Parm =
llvm::dyn_cast_or_null<TemplateTemplateParmDecl>(
TST->getTemplateName().getAsTemplateDecl()))
Outer.add(Parm, Flags);
// class template specializations have a (specialized) CXXRecordDecl.
else if (const CXXRecordDecl *RD = TST->getAsCXXRecordDecl())
Outer.add(RD, Flags); // add(Decl) will despecialize if needed.
else {
// fallback: the (un-specialized) declaration from primary template.
if (auto *TD = TST->getTemplateName().getAsTemplateDecl())
Outer.add(TD->getTemplatedDecl(), Flags | Rel::TemplatePattern);
}
}
void
VisitSubstTemplateTypeParmType(const SubstTemplateTypeParmType *STTPT) {
Outer.add(STTPT->getReplacementType(), Flags);
}
void VisitTemplateTypeParmType(const TemplateTypeParmType *TTPT) {
Outer.add(TTPT->getDecl(), Flags);
}
void VisitObjCInterfaceType(const ObjCInterfaceType *OIT) {
Outer.add(OIT->getDecl(), Flags);
}
};
Visitor(*this, Flags).Visit(T.getTypePtr());
}
void add(NestedNameSpecifier NNS, RelSet Flags) {
if (!NNS)
return;
debug(NNS, Flags);
switch (NNS.getKind()) {
case NestedNameSpecifier::Kind::Namespace:
add(NNS.getAsNamespaceAndPrefix().Namespace, Flags);
return;
case NestedNameSpecifier::Kind::Type:
add(QualType(NNS.getAsType(), 0), Flags);
return;
case NestedNameSpecifier::Kind::Global:
// This should be TUDecl, but we can't get a pointer to it!
return;
case NestedNameSpecifier::Kind::MicrosoftSuper:
add(NNS.getAsMicrosoftSuper(), Flags);
return;
case NestedNameSpecifier::Kind::Null:
llvm_unreachable("unexpected null nested name specifier");
}
llvm_unreachable("unhandled NestedNameSpecifier::Kind");
}
void add(const CXXCtorInitializer *CCI, RelSet Flags) {
if (!CCI)
return;
debug(*CCI, Flags);
if (CCI->isAnyMemberInitializer())
add(CCI->getAnyMember(), Flags);
// Constructor calls contain a TypeLoc node, so we don't handle them here.
}
void add(const TemplateArgument &Arg, RelSet Flags) {
// Only used for template template arguments.
// For type and non-type template arguments, SelectionTree
// will hit a more specific node (e.g. a TypeLoc or a
// DeclRefExpr).
if (Arg.getKind() == TemplateArgument::Template ||
Arg.getKind() == TemplateArgument::TemplateExpansion) {
if (TemplateDecl *TD =
Arg.getAsTemplateOrTemplatePattern().getAsTemplateDecl()) {
report(TD, Flags);
}
if (const auto *USD =
Arg.getAsTemplateOrTemplatePattern().getAsUsingShadowDecl())
add(USD, Flags);
}
}
void add(const ConceptReference *CR, RelSet Flags) {
add(CR->getNamedConcept(), Flags);
}
};
} // namespace
llvm::SmallVector<std::pair<const NamedDecl *, DeclRelationSet>, 1>
allTargetDecls(const DynTypedNode &N, const HeuristicResolver *Resolver) {
dlog("allTargetDecls({0})", nodeToString(N));
TargetFinder Finder(Resolver);
DeclRelationSet Flags;
if (const Decl *D = N.get<Decl>())
Finder.add(D, Flags);
else if (const Stmt *S = N.get<Stmt>())
Finder.add(S, Flags);
else if (const NestedNameSpecifierLoc *NNSL = N.get<NestedNameSpecifierLoc>())
Finder.add(NNSL->getNestedNameSpecifier(), Flags);
else if (const NestedNameSpecifier *NNS = N.get<NestedNameSpecifier>())
Finder.add(*NNS, Flags);
else if (const TypeLoc *TL = N.get<TypeLoc>())
Finder.add(TL->getType(), Flags);
else if (const QualType *QT = N.get<QualType>())
Finder.add(*QT, Flags);
else if (const CXXCtorInitializer *CCI = N.get<CXXCtorInitializer>())
Finder.add(CCI, Flags);
else if (const TemplateArgumentLoc *TAL = N.get<TemplateArgumentLoc>())
Finder.add(TAL->getArgument(), Flags);
else if (const CXXBaseSpecifier *CBS = N.get<CXXBaseSpecifier>())
Finder.add(CBS->getTypeSourceInfo()->getType(), Flags);
else if (const ObjCProtocolLoc *PL = N.get<ObjCProtocolLoc>())
Finder.add(PL->getProtocol(), Flags);
else if (const ConceptReference *CR = N.get<ConceptReference>())
Finder.add(CR, Flags);
return Finder.takeDecls();
}
llvm::SmallVector<const NamedDecl *, 1>
targetDecl(const DynTypedNode &N, DeclRelationSet Mask,
const HeuristicResolver *Resolver) {
llvm::SmallVector<const NamedDecl *, 1> Result;
for (const auto &Entry : allTargetDecls(N, Resolver)) {
if (!(Entry.second & ~Mask))
Result.push_back(Entry.first);
}
return Result;
}
llvm::SmallVector<const NamedDecl *, 1>
explicitReferenceTargets(DynTypedNode N, DeclRelationSet Mask,
const HeuristicResolver *Resolver) {
assert(!(Mask & (DeclRelation::TemplatePattern |
DeclRelation::TemplateInstantiation)) &&
"explicitReferenceTargets handles templates on its own");
auto Decls = allTargetDecls(N, Resolver);
// We prefer to return template instantiation, but fallback to template
// pattern if instantiation is not available.
Mask |= DeclRelation::TemplatePattern | DeclRelation::TemplateInstantiation;
llvm::SmallVector<const NamedDecl *, 1> TemplatePatterns;
llvm::SmallVector<const NamedDecl *, 1> Targets;
bool SeenTemplateInstantiations = false;
for (auto &D : Decls) {
if (D.second & ~Mask)
continue;
if (D.second & DeclRelation::TemplatePattern) {
TemplatePatterns.push_back(D.first);
continue;
}
if (D.second & DeclRelation::TemplateInstantiation)
SeenTemplateInstantiations = true;
Targets.push_back(D.first);
}
if (!SeenTemplateInstantiations)
Targets.insert(Targets.end(), TemplatePatterns.begin(),
TemplatePatterns.end());
return Targets;
}
namespace {
llvm::SmallVector<ReferenceLoc> refInDecl(const Decl *D,
const HeuristicResolver *Resolver) {
struct Visitor : ConstDeclVisitor<Visitor> {
Visitor(const HeuristicResolver *Resolver) : Resolver(Resolver) {}
const HeuristicResolver *Resolver;
llvm::SmallVector<ReferenceLoc> Refs;
void VisitUsingDirectiveDecl(const UsingDirectiveDecl *D) {
// We want to keep it as non-declaration references, as the
// "using namespace" declaration doesn't have a name.
Refs.push_back(ReferenceLoc{D->getQualifierLoc(),
D->getIdentLocation(),
/*IsDecl=*/false,
{D->getNominatedNamespaceAsWritten()}});
}
void VisitUsingDecl(const UsingDecl *D) {
// "using ns::identifier;" is a non-declaration reference.
Refs.push_back(ReferenceLoc{
D->getQualifierLoc(), D->getLocation(), /*IsDecl=*/false,
explicitReferenceTargets(DynTypedNode::create(*D),
DeclRelation::Underlying, Resolver)});
}
void VisitUsingEnumDecl(const UsingEnumDecl *D) {
// "using enum ns::E" is a non-declaration reference.
// The reference is covered by the embedded typeloc.
// Don't use the default VisitNamedDecl, which would report a declaration.
}
void VisitNamespaceAliasDecl(const NamespaceAliasDecl *D) {
// For namespace alias, "namespace Foo = Target;", we add two references.
// Add a declaration reference for Foo.
VisitNamedDecl(D);
// Add a non-declaration reference for Target.
Refs.push_back(ReferenceLoc{D->getQualifierLoc(),
D->getTargetNameLoc(),
/*IsDecl=*/false,
{D->getAliasedNamespace()}});
}
void VisitNamedDecl(const NamedDecl *ND) {
// We choose to ignore {Class, Function, Var, TypeAlias}TemplateDecls. As
// as their underlying decls, covering the same range, will be visited.
if (llvm::isa<ClassTemplateDecl>(ND) ||
llvm::isa<FunctionTemplateDecl>(ND) ||
llvm::isa<VarTemplateDecl>(ND) ||
llvm::isa<TypeAliasTemplateDecl>(ND))
return;
// FIXME: decide on how to surface destructors when we need them.
if (llvm::isa<CXXDestructorDecl>(ND))
return;
// Filter anonymous decls, name location will point outside the name token
// and the clients are not prepared to handle that.
if (ND->getDeclName().isIdentifier() &&
!ND->getDeclName().getAsIdentifierInfo())
return;
Refs.push_back(ReferenceLoc{getQualifierLoc(*ND),
ND->getLocation(),
/*IsDecl=*/true,
{ND}});
}
void VisitCXXDeductionGuideDecl(const CXXDeductionGuideDecl *DG) {
// The class template name in a deduction guide targets the class
// template.
Refs.push_back(ReferenceLoc{DG->getQualifierLoc(),
DG->getNameInfo().getLoc(),
/*IsDecl=*/false,
{DG->getDeducedTemplate()}});
}
void VisitObjCMethodDecl(const ObjCMethodDecl *OMD) {
// The name may have several tokens, we can only report the first.
Refs.push_back(ReferenceLoc{NestedNameSpecifierLoc(),
OMD->getSelectorStartLoc(),
/*IsDecl=*/true,
{OMD}});
}
void VisitObjCCategoryDecl(const ObjCCategoryDecl *OCD) {
// getLocation is the extended class's location, not the category's.
Refs.push_back(ReferenceLoc{NestedNameSpecifierLoc(),
OCD->getLocation(),
/*IsDecl=*/false,
{OCD->getClassInterface()}});
Refs.push_back(ReferenceLoc{NestedNameSpecifierLoc(),
OCD->getCategoryNameLoc(),
/*IsDecl=*/true,
{OCD}});
}
void VisitObjCCategoryImplDecl(const ObjCCategoryImplDecl *OCID) {
Refs.push_back(ReferenceLoc{NestedNameSpecifierLoc(),
OCID->getLocation(),
/*IsDecl=*/false,
{OCID->getClassInterface()}});
Refs.push_back(ReferenceLoc{NestedNameSpecifierLoc(),
OCID->getCategoryNameLoc(),
/*IsDecl=*/false,
{OCID->getCategoryDecl()}});
Refs.push_back(ReferenceLoc{NestedNameSpecifierLoc(),
OCID->getCategoryNameLoc(),
/*IsDecl=*/true,
{OCID}});
}
void VisitObjCImplementationDecl(const ObjCImplementationDecl *OIMD) {
Refs.push_back(ReferenceLoc{NestedNameSpecifierLoc(),
OIMD->getLocation(),
/*IsDecl=*/false,
{OIMD->getClassInterface()}});
Refs.push_back(ReferenceLoc{NestedNameSpecifierLoc(),
OIMD->getLocation(),
/*IsDecl=*/true,
{OIMD}});
}
};
Visitor V{Resolver};
V.Visit(D);
return V.Refs;
}
llvm::SmallVector<ReferenceLoc> refInStmt(const Stmt *S,
const HeuristicResolver *Resolver) {
struct Visitor : ConstStmtVisitor<Visitor> {
Visitor(const HeuristicResolver *Resolver) : Resolver(Resolver) {}
const HeuristicResolver *Resolver;
// FIXME: handle more complicated cases: more ObjC, designated initializers.
llvm::SmallVector<ReferenceLoc> Refs;
void VisitDeclRefExpr(const DeclRefExpr *E) {
Refs.push_back(ReferenceLoc{E->getQualifierLoc(),
E->getNameInfo().getLoc(),
/*IsDecl=*/false,
{E->getFoundDecl()}});
}
void VisitDependentScopeDeclRefExpr(const DependentScopeDeclRefExpr *E) {
Refs.push_back(ReferenceLoc{
E->getQualifierLoc(), E->getNameInfo().getLoc(), /*IsDecl=*/false,
explicitReferenceTargets(DynTypedNode::create(*E), {}, Resolver)});
}
void VisitMemberExpr(const MemberExpr *E) {
// Skip destructor calls to avoid duplication: TypeLoc within will be
// visited separately.
if (llvm::isa<CXXDestructorDecl>(E->getFoundDecl().getDecl()))
return;
Refs.push_back(ReferenceLoc{E->getQualifierLoc(),
E->getMemberNameInfo().getLoc(),
/*IsDecl=*/false,
{E->getFoundDecl()}});
}
void
VisitCXXDependentScopeMemberExpr(const CXXDependentScopeMemberExpr *E) {
Refs.push_back(ReferenceLoc{
E->getQualifierLoc(), E->getMemberNameInfo().getLoc(),
/*IsDecl=*/false,
explicitReferenceTargets(DynTypedNode::create(*E), {}, Resolver)});
}
void VisitOverloadExpr(const OverloadExpr *E) {
Refs.push_back(ReferenceLoc{E->getQualifierLoc(),
E->getNameInfo().getLoc(),
/*IsDecl=*/false,
llvm::SmallVector<const NamedDecl *, 1>(
E->decls().begin(), E->decls().end())});
}
void VisitSizeOfPackExpr(const SizeOfPackExpr *E) {
Refs.push_back(ReferenceLoc{NestedNameSpecifierLoc(),
E->getPackLoc(),
/*IsDecl=*/false,
{E->getPack()}});
}
void VisitObjCPropertyRefExpr(const ObjCPropertyRefExpr *E) {
Refs.push_back(ReferenceLoc{
NestedNameSpecifierLoc(), E->getLocation(),
/*IsDecl=*/false,
// Select the getter, setter, or @property depending on the call.
explicitReferenceTargets(DynTypedNode::create(*E), {}, Resolver)});
}
void VisitObjCIvarRefExpr(const ObjCIvarRefExpr *OIRE) {
Refs.push_back(ReferenceLoc{NestedNameSpecifierLoc(),
OIRE->getLocation(),
/*IsDecl=*/false,
{OIRE->getDecl()}});
}
void VisitObjCMessageExpr(const ObjCMessageExpr *E) {
// The name may have several tokens, we can only report the first.
Refs.push_back(ReferenceLoc{NestedNameSpecifierLoc(),
E->getSelectorStartLoc(),
/*IsDecl=*/false,
{E->getMethodDecl()}});
}
void VisitDesignatedInitExpr(const DesignatedInitExpr *DIE) {
for (const DesignatedInitExpr::Designator &D : DIE->designators()) {
if (!D.isFieldDesignator())
continue;
Refs.push_back(ReferenceLoc{NestedNameSpecifierLoc(),
D.getFieldLoc(),
/*IsDecl=*/false,
{D.getFieldDecl()}});
}
}
void VisitGotoStmt(const GotoStmt *GS) {
Refs.push_back(ReferenceLoc{NestedNameSpecifierLoc(),
GS->getLabelLoc(),
/*IsDecl=*/false,
{GS->getLabel()}});
}
void VisitLabelStmt(const LabelStmt *LS) {
Refs.push_back(ReferenceLoc{NestedNameSpecifierLoc(),
LS->getIdentLoc(),
/*IsDecl=*/true,
{LS->getDecl()}});
}
};
Visitor V{Resolver};
V.Visit(S);
return V.Refs;
}
llvm::SmallVector<ReferenceLoc>
refInTypeLoc(TypeLoc L, const HeuristicResolver *Resolver) {
struct Visitor : TypeLocVisitor<Visitor> {
Visitor(const HeuristicResolver *Resolver) : Resolver(Resolver) {}
const HeuristicResolver *Resolver;
llvm::SmallVector<ReferenceLoc> Refs;
void VisitUnresolvedUsingTypeLoc(UnresolvedUsingTypeLoc L) {
Refs.push_back(ReferenceLoc{L.getQualifierLoc(),
L.getLocalSourceRange().getBegin(),
/*IsDecl=*/false,
{L.getDecl()}});
}
void VisitUsingTypeLoc(UsingTypeLoc L) {
Refs.push_back(ReferenceLoc{L.getQualifierLoc(),
L.getLocalSourceRange().getBegin(),
/*IsDecl=*/false,
{L.getDecl()}});
}
void VisitTagTypeLoc(TagTypeLoc L) {
Refs.push_back(ReferenceLoc{L.getQualifierLoc(),
L.getNameLoc(),
/*IsDecl=*/false,
{L.getOriginalDecl()}});
}
void VisitTemplateTypeParmTypeLoc(TemplateTypeParmTypeLoc L) {
Refs.push_back(ReferenceLoc{NestedNameSpecifierLoc(),
L.getNameLoc(),
/*IsDecl=*/false,
{L.getDecl()}});
}
void VisitTemplateSpecializationTypeLoc(TemplateSpecializationTypeLoc L) {
// We must ensure template type aliases are included in results if they
// were written in the source code, e.g. in
// template <class T> using valias = vector<T>;
// ^valias<int> x;
// 'explicitReferenceTargets' will return:
// 1. valias with mask 'Alias'.
// 2. 'vector<int>' with mask 'Underlying'.
// we want to return only #1 in this case.
Refs.push_back(ReferenceLoc{
L.getQualifierLoc(), L.getTemplateNameLoc(), /*IsDecl=*/false,
explicitReferenceTargets(DynTypedNode::create(L.getType()),
DeclRelation::Alias, Resolver)});
}
void VisitDeducedTemplateSpecializationTypeLoc(
DeducedTemplateSpecializationTypeLoc L) {
Refs.push_back(ReferenceLoc{
L.getQualifierLoc(), L.getNameLoc(), /*IsDecl=*/false,
explicitReferenceTargets(DynTypedNode::create(L.getType()),
DeclRelation::Alias, Resolver)});
}
void VisitDependentTemplateSpecializationTypeLoc(
DependentTemplateSpecializationTypeLoc L) {
Refs.push_back(
ReferenceLoc{L.getQualifierLoc(), L.getTemplateNameLoc(),
/*IsDecl=*/false,
explicitReferenceTargets(
DynTypedNode::create(L.getType()), {}, Resolver)});
}
void VisitDependentNameTypeLoc(DependentNameTypeLoc L) {
Refs.push_back(
ReferenceLoc{L.getQualifierLoc(), L.getNameLoc(),
/*IsDecl=*/false,
explicitReferenceTargets(
DynTypedNode::create(L.getType()), {}, Resolver)});
}
void VisitTypedefTypeLoc(TypedefTypeLoc L) {
if (shouldSkipTypedef(L.getDecl()))
return;
Refs.push_back(ReferenceLoc{L.getQualifierLoc(),
L.getNameLoc(),
/*IsDecl=*/false,
{L.getDecl()}});
}
void VisitObjCInterfaceTypeLoc(ObjCInterfaceTypeLoc L) {
Refs.push_back(ReferenceLoc{NestedNameSpecifierLoc(),
L.getNameLoc(),
/*IsDecl=*/false,
{L.getIFaceDecl()}});
}
};
Visitor V{Resolver};
V.Visit(L.getUnqualifiedLoc());
return V.Refs;
}
class ExplicitReferenceCollector
: public RecursiveASTVisitor<ExplicitReferenceCollector> {
public:
ExplicitReferenceCollector(llvm::function_ref<void(ReferenceLoc)> Out,
const HeuristicResolver *Resolver)
: Out(Out), Resolver(Resolver) {
assert(Out);
}
bool VisitTypeLoc(TypeLoc TTL) {
if (TypeLocsToSkip.count(TTL.getBeginLoc()))
return true;
visitNode(DynTypedNode::create(TTL));
return true;
}
bool VisitStmt(Stmt *S) {
visitNode(DynTypedNode::create(*S));
return true;
}
bool TraverseOpaqueValueExpr(OpaqueValueExpr *OVE) {
visitNode(DynTypedNode::create(*OVE));
// Not clear why the source expression is skipped by default...
// FIXME: can we just make RecursiveASTVisitor do this?
return RecursiveASTVisitor::TraverseStmt(OVE->getSourceExpr());
}
bool TraversePseudoObjectExpr(PseudoObjectExpr *POE) {
visitNode(DynTypedNode::create(*POE));
// Traverse only the syntactic form to find the *written* references.
// (The semantic form also contains lots of duplication)
return RecursiveASTVisitor::TraverseStmt(POE->getSyntacticForm());
}
// We re-define Traverse*, since there's no corresponding Visit*.
// TemplateArgumentLoc is the only way to get locations for references to
// template template parameters.
bool TraverseTemplateArgumentLoc(TemplateArgumentLoc A) {
switch (A.getArgument().getKind()) {
case TemplateArgument::Template:
case TemplateArgument::TemplateExpansion:
reportReference(ReferenceLoc{A.getTemplateQualifierLoc(),
A.getTemplateNameLoc(),
/*IsDecl=*/false,
{A.getArgument()
.getAsTemplateOrTemplatePattern()
.getAsTemplateDecl()}},
DynTypedNode::create(A.getArgument()));
break;
case TemplateArgument::Declaration:
break; // FIXME: can this actually happen in TemplateArgumentLoc?
case TemplateArgument::Integral:
case TemplateArgument::Null:
case TemplateArgument::NullPtr:
break; // no references.
case TemplateArgument::Pack:
case TemplateArgument::Type:
case TemplateArgument::Expression:
case TemplateArgument::StructuralValue:
break; // Handled by VisitType and VisitExpression.
};
return RecursiveASTVisitor::TraverseTemplateArgumentLoc(A);
}
bool VisitDecl(Decl *D) {
visitNode(DynTypedNode::create(*D));
return true;
}
// We have to use Traverse* because there is no corresponding Visit*.
bool TraverseNestedNameSpecifierLoc(NestedNameSpecifierLoc L) {
if (!L.getNestedNameSpecifier())
return true;
visitNode(DynTypedNode::create(L));
// Inner type is missing information about its qualifier, skip it.
if (auto TL = L.getAsTypeLoc())
TypeLocsToSkip.insert(TL.getBeginLoc());
return RecursiveASTVisitor::TraverseNestedNameSpecifierLoc(L);
}
bool TraverseObjCProtocolLoc(ObjCProtocolLoc ProtocolLoc) {
visitNode(DynTypedNode::create(ProtocolLoc));
return true;
}
bool TraverseConstructorInitializer(CXXCtorInitializer *Init) {
visitNode(DynTypedNode::create(*Init));
return RecursiveASTVisitor::TraverseConstructorInitializer(Init);
}
bool VisitConceptReference(const ConceptReference *CR) {
visitNode(DynTypedNode::create(*CR));
return true;
}
private:
/// Obtain information about a reference directly defined in \p N. Does not
/// recurse into child nodes, e.g. do not expect references for constructor
/// initializers
///
/// Any of the fields in the returned structure can be empty, but not all of
/// them, e.g.
/// - for implicitly generated nodes (e.g. MemberExpr from range-based-for),
/// source location information may be missing,
/// - for dependent code, targets may be empty.
///
/// (!) For the purposes of this function declarations are not considered to
/// be references. However, declarations can have references inside them,
/// e.g. 'namespace foo = std' references namespace 'std' and this
/// function will return the corresponding reference.
llvm::SmallVector<ReferenceLoc> explicitReference(DynTypedNode N) {
if (auto *D = N.get<Decl>())
return refInDecl(D, Resolver);
if (auto *S = N.get<Stmt>())
return refInStmt(S, Resolver);
if (auto *NNSL = N.get<NestedNameSpecifierLoc>()) {
// (!) 'DeclRelation::Alias' ensures we do not lose namespace aliases.
NestedNameSpecifierLoc Qualifier;
SourceLocation NameLoc;
if (auto TL = NNSL->getAsTypeLoc()) {
Qualifier = TL.getPrefix();
NameLoc = TL.getNonPrefixBeginLoc();
} else {
Qualifier = NNSL->getAsNamespaceAndPrefix().Prefix;
NameLoc = NNSL->getLocalBeginLoc();
}
return {
ReferenceLoc{Qualifier, NameLoc, false,
explicitReferenceTargets(
DynTypedNode::create(NNSL->getNestedNameSpecifier()),
DeclRelation::Alias, Resolver)}};
}
if (const TypeLoc *TL = N.get<TypeLoc>())
return refInTypeLoc(*TL, Resolver);
if (const CXXCtorInitializer *CCI = N.get<CXXCtorInitializer>()) {
// Other type initializers (e.g. base initializer) are handled by visiting
// the typeLoc.
if (CCI->isAnyMemberInitializer()) {
return {ReferenceLoc{NestedNameSpecifierLoc(),
CCI->getMemberLocation(),
/*IsDecl=*/false,
{CCI->getAnyMember()}}};
}
}
if (const ObjCProtocolLoc *PL = N.get<ObjCProtocolLoc>())
return {ReferenceLoc{NestedNameSpecifierLoc(),
PL->getLocation(),
/*IsDecl=*/false,
{PL->getProtocol()}}};
if (const ConceptReference *CR = N.get<ConceptReference>())
return {ReferenceLoc{CR->getNestedNameSpecifierLoc(),
CR->getConceptNameLoc(),
/*IsDecl=*/false,
{CR->getNamedConcept()}}};
// We do not have location information for other nodes (QualType, etc)
return {};
}
void visitNode(DynTypedNode N) {
for (auto &R : explicitReference(N))
reportReference(std::move(R), N);
}
void reportReference(ReferenceLoc &&Ref, DynTypedNode N) {
// Strip null targets that can arise from invalid code.
// (This avoids having to check for null everywhere we insert)
llvm::erase(Ref.Targets, nullptr);
// Our promise is to return only references from the source code. If we lack
// location information, skip these nodes.
// Normally this should not happen in practice, unless there are bugs in the
// traversals or users started the traversal at an implicit node.
if (Ref.NameLoc.isInvalid()) {
dlog("invalid location at node {0}", nodeToString(N));
return;
}
Out(Ref);
}
llvm::function_ref<void(ReferenceLoc)> Out;
const HeuristicResolver *Resolver;
/// TypeLocs starting at these locations must be skipped, see
/// TraverseElaboratedTypeSpecifierLoc for details.
llvm::DenseSet<SourceLocation> TypeLocsToSkip;
};
} // namespace
void findExplicitReferences(const Stmt *S,
llvm::function_ref<void(ReferenceLoc)> Out,
const HeuristicResolver *Resolver) {
assert(S);
ExplicitReferenceCollector(Out, Resolver).TraverseStmt(const_cast<Stmt *>(S));
}
void findExplicitReferences(const Decl *D,
llvm::function_ref<void(ReferenceLoc)> Out,
const HeuristicResolver *Resolver) {
assert(D);
ExplicitReferenceCollector(Out, Resolver).TraverseDecl(const_cast<Decl *>(D));
}
void findExplicitReferences(const ASTContext &AST,
llvm::function_ref<void(ReferenceLoc)> Out,
const HeuristicResolver *Resolver) {
ExplicitReferenceCollector(Out, Resolver)
.TraverseAST(const_cast<ASTContext &>(AST));
}
llvm::raw_ostream &operator<<(llvm::raw_ostream &OS, DeclRelation R) {
switch (R) {
#define REL_CASE(X) \
case DeclRelation::X: \
return OS << #X;
REL_CASE(Alias);
REL_CASE(Underlying);
REL_CASE(TemplateInstantiation);
REL_CASE(TemplatePattern);
#undef REL_CASE
}
llvm_unreachable("Unhandled DeclRelation enum");
}
llvm::raw_ostream &operator<<(llvm::raw_ostream &OS, DeclRelationSet RS) {
const char *Sep = "";
for (unsigned I = 0; I < RS.S.size(); ++I) {
if (RS.S.test(I)) {
OS << Sep << static_cast<DeclRelation>(I);
Sep = "|";
}
}
return OS;
}
llvm::raw_ostream &operator<<(llvm::raw_ostream &OS, ReferenceLoc R) {
// note we cannot print R.NameLoc without a source manager.
OS << "targets = {";
llvm::SmallVector<std::string> Targets;
for (const NamedDecl *T : R.Targets) {
llvm::raw_string_ostream Target(Targets.emplace_back());
Target << printQualifiedName(*T) << printTemplateSpecializationArgs(*T);
}
llvm::sort(Targets);
OS << llvm::join(Targets, ", ");
OS << "}";
if (R.Qualifier) {
OS << ", qualifier = '";
R.Qualifier.getNestedNameSpecifier().print(OS,
PrintingPolicy(LangOptions()));
OS << "'";
}
if (R.IsDecl)
OS << ", decl";
return OS;
}
} // namespace clangd
} // namespace clang