Matheus Izvekov 91cdd35008
[clang] Improve nested name specifier AST representation (#147835)
This is a major change on how we represent nested name qualifications in
the AST.

* The nested name specifier itself and how it's stored is changed. The
prefixes for types are handled within the type hierarchy, which makes
canonicalization for them super cheap, no memory allocation required.
Also translating a type into nested name specifier form becomes a no-op.
An identifier is stored as a DependentNameType. The nested name
specifier gains a lightweight handle class, to be used instead of
passing around pointers, which is similar to what is implemented for
TemplateName. There is still one free bit available, and this handle can
be used within a PointerUnion and PointerIntPair, which should keep
bit-packing aficionados happy.
* The ElaboratedType node is removed, all type nodes in which it could
previously apply to can now store the elaborated keyword and name
qualifier, tail allocating when present.
* TagTypes can now point to the exact declaration found when producing
these, as opposed to the previous situation of there only existing one
TagType per entity. This increases the amount of type sugar retained,
and can have several applications, for example in tracking module
ownership, and other tools which care about source file origins, such as
IWYU. These TagTypes are lazily allocated, in order to limit the
increase in AST size.

This patch offers a great performance benefit.

It greatly improves compilation time for
[stdexec](https://github.com/NVIDIA/stdexec). For one datapoint, for
`test_on2.cpp` in that project, which is the slowest compiling test,
this patch improves `-c` compilation time by about 7.2%, with the
`-fsyntax-only` improvement being at ~12%.

This has great results on compile-time-tracker as well:

![image](https://github.com/user-attachments/assets/700dce98-2cab-4aa8-97d1-b038c0bee831)

This patch also further enables other optimziations in the future, and
will reduce the performance impact of template specialization resugaring
when that lands.

It has some other miscelaneous drive-by fixes.

About the review: Yes the patch is huge, sorry about that. Part of the
reason is that I started by the nested name specifier part, before the
ElaboratedType part, but that had a huge performance downside, as
ElaboratedType is a big performance hog. I didn't have the steam to go
back and change the patch after the fact.

There is also a lot of internal API changes, and it made sense to remove
ElaboratedType in one go, versus removing it from one type at a time, as
that would present much more churn to the users. Also, the nested name
specifier having a different API avoids missing changes related to how
prefixes work now, which could make existing code compile but not work.

How to review: The important changes are all in
`clang/include/clang/AST` and `clang/lib/AST`, with also important
changes in `clang/lib/Sema/TreeTransform.h`.

The rest and bulk of the changes are mostly consequences of the changes
in API.

PS: TagType::getDecl is renamed to `getOriginalDecl` in this patch, just
for easier to rebasing. I plan to rename it back after this lands.

Fixes #136624
Fixes https://github.com/llvm/llvm-project/issues/43179
Fixes https://github.com/llvm/llvm-project/issues/68670
Fixes https://github.com/llvm/llvm-project/issues/92757
2025-08-09 05:06:53 -03:00

483 lines
16 KiB
C++

//===--- Program.cpp - Bytecode for the constexpr VM ------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "Program.h"
#include "Context.h"
#include "Function.h"
#include "Integral.h"
#include "PrimType.h"
#include "clang/AST/Decl.h"
#include "clang/AST/DeclCXX.h"
#include "clang/AST/DeclTemplate.h"
using namespace clang;
using namespace clang::interp;
unsigned Program::getOrCreateNativePointer(const void *Ptr) {
auto [It, Inserted] =
NativePointerIndices.try_emplace(Ptr, NativePointers.size());
if (Inserted)
NativePointers.push_back(Ptr);
return It->second;
}
const void *Program::getNativePointer(unsigned Idx) {
return NativePointers[Idx];
}
unsigned Program::createGlobalString(const StringLiteral *S, const Expr *Base) {
const size_t CharWidth = S->getCharByteWidth();
const size_t BitWidth = CharWidth * Ctx.getCharBit();
unsigned StringLength = S->getLength();
PrimType CharType;
switch (CharWidth) {
case 1:
CharType = PT_Sint8;
break;
case 2:
CharType = PT_Uint16;
break;
case 4:
CharType = PT_Uint32;
break;
default:
llvm_unreachable("unsupported character width");
}
if (!Base)
Base = S;
// Create a descriptor for the string.
Descriptor *Desc =
allocateDescriptor(Base, CharType, Descriptor::GlobalMD, StringLength + 1,
/*isConst=*/true,
/*isTemporary=*/false,
/*isMutable=*/false);
// Allocate storage for the string.
// The byte length does not include the null terminator.
unsigned GlobalIndex = Globals.size();
unsigned Sz = Desc->getAllocSize();
auto *G = new (Allocator, Sz) Global(Ctx.getEvalID(), Desc, /*isStatic=*/true,
/*isExtern=*/false);
G->block()->invokeCtor();
new (G->block()->rawData())
GlobalInlineDescriptor{GlobalInitState::Initialized};
Globals.push_back(G);
const Pointer Ptr(G->block());
if (CharWidth == 1) {
std::memcpy(&Ptr.elem<char>(0), S->getString().data(), StringLength);
} else {
// Construct the string in storage.
for (unsigned I = 0; I <= StringLength; ++I) {
const uint32_t CodePoint = I == StringLength ? 0 : S->getCodeUnit(I);
switch (CharType) {
case PT_Sint8: {
using T = PrimConv<PT_Sint8>::T;
Ptr.elem<T>(I) = T::from(CodePoint, BitWidth);
break;
}
case PT_Uint16: {
using T = PrimConv<PT_Uint16>::T;
Ptr.elem<T>(I) = T::from(CodePoint, BitWidth);
break;
}
case PT_Uint32: {
using T = PrimConv<PT_Uint32>::T;
Ptr.elem<T>(I) = T::from(CodePoint, BitWidth);
break;
}
default:
llvm_unreachable("unsupported character type");
}
}
}
Ptr.initialize();
return GlobalIndex;
}
Pointer Program::getPtrGlobal(unsigned Idx) const {
assert(Idx < Globals.size());
return Pointer(Globals[Idx]->block());
}
std::optional<unsigned> Program::getGlobal(const ValueDecl *VD) {
if (auto It = GlobalIndices.find(VD); It != GlobalIndices.end())
return It->second;
// Find any previous declarations which were already evaluated.
std::optional<unsigned> Index;
for (const Decl *P = VD->getPreviousDecl(); P; P = P->getPreviousDecl()) {
if (auto It = GlobalIndices.find(P); It != GlobalIndices.end()) {
Index = It->second;
break;
}
}
// Map the decl to the existing index.
if (Index)
GlobalIndices[VD] = *Index;
return std::nullopt;
}
std::optional<unsigned> Program::getGlobal(const Expr *E) {
if (auto It = GlobalIndices.find(E); It != GlobalIndices.end())
return It->second;
return std::nullopt;
}
std::optional<unsigned> Program::getOrCreateGlobal(const ValueDecl *VD,
const Expr *Init) {
if (auto Idx = getGlobal(VD))
return Idx;
if (auto Idx = createGlobal(VD, Init)) {
GlobalIndices[VD] = *Idx;
return Idx;
}
return std::nullopt;
}
unsigned Program::getOrCreateDummy(const DeclTy &D) {
assert(D);
// Dedup blocks since they are immutable and pointers cannot be compared.
if (auto It = DummyVariables.find(D.getOpaqueValue());
It != DummyVariables.end())
return It->second;
QualType QT;
bool IsWeak = false;
if (const auto *E = dyn_cast<const Expr *>(D)) {
QT = E->getType();
} else {
const auto *VD = cast<ValueDecl>(cast<const Decl *>(D));
IsWeak = VD->isWeak();
QT = VD->getType();
if (const auto *RT = QT->getAs<ReferenceType>())
QT = RT->getPointeeType();
}
assert(!QT.isNull());
Descriptor *Desc;
if (OptPrimType T = Ctx.classify(QT))
Desc = createDescriptor(D, *T, /*SourceTy=*/nullptr, std::nullopt,
/*IsConst=*/QT.isConstQualified());
else
Desc = createDescriptor(D, QT.getTypePtr(), std::nullopt,
/*IsConst=*/QT.isConstQualified());
if (!Desc)
Desc = allocateDescriptor(D);
assert(Desc);
Desc->makeDummy();
assert(Desc->isDummy());
// Allocate a block for storage.
unsigned I = Globals.size();
auto *G = new (Allocator, Desc->getAllocSize())
Global(Ctx.getEvalID(), getCurrentDecl(), Desc, /*IsStatic=*/true,
/*IsExtern=*/false, IsWeak);
G->block()->invokeCtor();
Globals.push_back(G);
DummyVariables[D.getOpaqueValue()] = I;
return I;
}
std::optional<unsigned> Program::createGlobal(const ValueDecl *VD,
const Expr *Init) {
bool IsStatic, IsExtern;
bool IsWeak = VD->isWeak();
if (const auto *Var = dyn_cast<VarDecl>(VD)) {
IsStatic = Context::shouldBeGloballyIndexed(VD);
IsExtern = Var->hasExternalStorage();
} else if (isa<UnnamedGlobalConstantDecl, MSGuidDecl,
TemplateParamObjectDecl>(VD)) {
IsStatic = true;
IsExtern = false;
} else {
IsStatic = false;
IsExtern = true;
}
// Register all previous declarations as well. For extern blocks, just replace
// the index with the new variable.
if (auto Idx =
createGlobal(VD, VD->getType(), IsStatic, IsExtern, IsWeak, Init)) {
for (const Decl *P = VD; P; P = P->getPreviousDecl()) {
unsigned &PIdx = GlobalIndices[P];
if (P != VD) {
if (Globals[PIdx]->block()->isExtern())
Globals[PIdx] = Globals[*Idx];
}
PIdx = *Idx;
}
return *Idx;
}
return std::nullopt;
}
std::optional<unsigned> Program::createGlobal(const Expr *E) {
if (auto Idx = getGlobal(E))
return Idx;
if (auto Idx = createGlobal(E, E->getType(), /*isStatic=*/true,
/*isExtern=*/false, /*IsWeak=*/false)) {
GlobalIndices[E] = *Idx;
return *Idx;
}
return std::nullopt;
}
std::optional<unsigned> Program::createGlobal(const DeclTy &D, QualType Ty,
bool IsStatic, bool IsExtern,
bool IsWeak, const Expr *Init) {
// Create a descriptor for the global.
Descriptor *Desc;
const bool IsConst = Ty.isConstQualified();
const bool IsTemporary = D.dyn_cast<const Expr *>();
const bool IsVolatile = Ty.isVolatileQualified();
if (OptPrimType T = Ctx.classify(Ty))
Desc = createDescriptor(D, *T, nullptr, Descriptor::GlobalMD, IsConst,
IsTemporary, /*IsMutable=*/false, IsVolatile);
else
Desc = createDescriptor(D, Ty.getTypePtr(), Descriptor::GlobalMD, IsConst,
IsTemporary, /*IsMutable=*/false, IsVolatile);
if (!Desc)
return std::nullopt;
// Allocate a block for storage.
unsigned I = Globals.size();
auto *G = new (Allocator, Desc->getAllocSize()) Global(
Ctx.getEvalID(), getCurrentDecl(), Desc, IsStatic, IsExtern, IsWeak);
G->block()->invokeCtor();
// Initialize InlineDescriptor fields.
auto *GD = new (G->block()->rawData()) GlobalInlineDescriptor();
if (!Init)
GD->InitState = GlobalInitState::NoInitializer;
Globals.push_back(G);
return I;
}
Function *Program::getFunction(const FunctionDecl *F) {
F = F->getCanonicalDecl();
assert(F);
auto It = Funcs.find(F);
return It == Funcs.end() ? nullptr : It->second.get();
}
Record *Program::getOrCreateRecord(const RecordDecl *RD) {
// Use the actual definition as a key.
RD = RD->getDefinition();
if (!RD)
return nullptr;
if (!RD->isCompleteDefinition())
return nullptr;
// Return an existing record if available. Otherwise, we insert nullptr now
// and replace that later, so recursive calls to this function with the same
// RecordDecl don't run into infinite recursion.
auto [It, Inserted] = Records.try_emplace(RD);
if (!Inserted)
return It->second;
// Number of bytes required by fields and base classes.
unsigned BaseSize = 0;
// Number of bytes required by virtual base.
unsigned VirtSize = 0;
// Helper to get a base descriptor.
auto GetBaseDesc = [this](const RecordDecl *BD,
const Record *BR) -> const Descriptor * {
if (!BR)
return nullptr;
return allocateDescriptor(BD, BR, std::nullopt, /*isConst=*/false,
/*isTemporary=*/false,
/*isMutable=*/false, /*IsVolatile=*/false);
};
// Reserve space for base classes.
Record::BaseList Bases;
Record::VirtualBaseList VirtBases;
if (const auto *CD = dyn_cast<CXXRecordDecl>(RD)) {
for (const CXXBaseSpecifier &Spec : CD->bases()) {
if (Spec.isVirtual())
continue;
// In error cases, the base might not be a RecordType.
const auto *RT = Spec.getType()->getAs<RecordType>();
if (!RT)
return nullptr;
const RecordDecl *BD = RT->getOriginalDecl()->getDefinitionOrSelf();
const Record *BR = getOrCreateRecord(BD);
const Descriptor *Desc = GetBaseDesc(BD, BR);
if (!Desc)
return nullptr;
BaseSize += align(sizeof(InlineDescriptor));
Bases.push_back({BD, BaseSize, Desc, BR});
BaseSize += align(BR->getSize());
}
for (const CXXBaseSpecifier &Spec : CD->vbases()) {
const auto *RT = Spec.getType()->getAs<RecordType>();
if (!RT)
return nullptr;
const RecordDecl *BD = RT->getOriginalDecl()->getDefinitionOrSelf();
const Record *BR = getOrCreateRecord(BD);
const Descriptor *Desc = GetBaseDesc(BD, BR);
if (!Desc)
return nullptr;
VirtSize += align(sizeof(InlineDescriptor));
VirtBases.push_back({BD, VirtSize, Desc, BR});
VirtSize += align(BR->getSize());
}
}
// Reserve space for fields.
Record::FieldList Fields;
for (const FieldDecl *FD : RD->fields()) {
FD = FD->getFirstDecl();
// Note that we DO create fields and descriptors
// for unnamed bitfields here, even though we later ignore
// them everywhere. That's so the FieldDecl's getFieldIndex() matches.
// Reserve space for the field's descriptor and the offset.
BaseSize += align(sizeof(InlineDescriptor));
// Classify the field and add its metadata.
QualType FT = FD->getType();
const bool IsConst = FT.isConstQualified();
const bool IsMutable = FD->isMutable();
const bool IsVolatile = FT.isVolatileQualified();
const Descriptor *Desc;
if (OptPrimType T = Ctx.classify(FT)) {
Desc = createDescriptor(FD, *T, nullptr, std::nullopt, IsConst,
/*isTemporary=*/false, IsMutable, IsVolatile);
} else {
Desc = createDescriptor(FD, FT.getTypePtr(), std::nullopt, IsConst,
/*isTemporary=*/false, IsMutable, IsVolatile);
}
if (!Desc)
return nullptr;
Fields.push_back({FD, BaseSize, Desc});
BaseSize += align(Desc->getAllocSize());
}
Record *R = new (Allocator) Record(RD, std::move(Bases), std::move(Fields),
std::move(VirtBases), VirtSize, BaseSize);
Records[RD] = R;
return R;
}
Descriptor *Program::createDescriptor(const DeclTy &D, const Type *Ty,
Descriptor::MetadataSize MDSize,
bool IsConst, bool IsTemporary,
bool IsMutable, bool IsVolatile,
const Expr *Init) {
// Classes and structures.
if (const auto *RT = Ty->getAs<RecordType>()) {
if (const auto *Record =
getOrCreateRecord(RT->getOriginalDecl()->getDefinitionOrSelf()))
return allocateDescriptor(D, Record, MDSize, IsConst, IsTemporary,
IsMutable, IsVolatile);
return allocateDescriptor(D, MDSize);
}
// Arrays.
if (const auto *ArrayType = Ty->getAsArrayTypeUnsafe()) {
QualType ElemTy = ArrayType->getElementType();
// Array of well-known bounds.
if (const auto *CAT = dyn_cast<ConstantArrayType>(ArrayType)) {
size_t NumElems = CAT->getZExtSize();
if (OptPrimType T = Ctx.classify(ElemTy)) {
// Arrays of primitives.
unsigned ElemSize = primSize(*T);
if (std::numeric_limits<unsigned>::max() / ElemSize <= NumElems) {
return {};
}
return allocateDescriptor(D, *T, MDSize, NumElems, IsConst, IsTemporary,
IsMutable);
}
// Arrays of composites. In this case, the array is a list of pointers,
// followed by the actual elements.
const Descriptor *ElemDesc = createDescriptor(
D, ElemTy.getTypePtr(), std::nullopt, IsConst, IsTemporary);
if (!ElemDesc)
return nullptr;
unsigned ElemSize = ElemDesc->getAllocSize() + sizeof(InlineDescriptor);
if (std::numeric_limits<unsigned>::max() / ElemSize <= NumElems)
return {};
return allocateDescriptor(D, Ty, ElemDesc, MDSize, NumElems, IsConst,
IsTemporary, IsMutable);
}
// Array of unknown bounds - cannot be accessed and pointer arithmetic
// is forbidden on pointers to such objects.
if (isa<IncompleteArrayType>(ArrayType) ||
isa<VariableArrayType>(ArrayType)) {
if (OptPrimType T = Ctx.classify(ElemTy)) {
return allocateDescriptor(D, *T, MDSize, IsConst, IsTemporary,
Descriptor::UnknownSize{});
}
const Descriptor *Desc = createDescriptor(
D, ElemTy.getTypePtr(), std::nullopt, IsConst, IsTemporary);
if (!Desc)
return nullptr;
return allocateDescriptor(D, Desc, MDSize, IsTemporary,
Descriptor::UnknownSize{});
}
}
// Atomic types.
if (const auto *AT = Ty->getAs<AtomicType>()) {
const Type *InnerTy = AT->getValueType().getTypePtr();
return createDescriptor(D, InnerTy, MDSize, IsConst, IsTemporary,
IsMutable);
}
// Complex types - represented as arrays of elements.
if (const auto *CT = Ty->getAs<ComplexType>()) {
OptPrimType ElemTy = Ctx.classify(CT->getElementType());
if (!ElemTy)
return nullptr;
return allocateDescriptor(D, *ElemTy, MDSize, 2, IsConst, IsTemporary,
IsMutable);
}
// Same with vector types.
if (const auto *VT = Ty->getAs<VectorType>()) {
OptPrimType ElemTy = Ctx.classify(VT->getElementType());
if (!ElemTy)
return nullptr;
return allocateDescriptor(D, *ElemTy, MDSize, VT->getNumElements(), IsConst,
IsTemporary, IsMutable);
}
return nullptr;
}