llvm-project/llvm/lib/ExecutionEngine/Orc/ObjectLinkingLayer.cpp
Lang Hames 91f69b70e0 [ORC] Remove redundant check from ObjectLinkingLayer.
Non-locally scoped symbols must have names.
2024-12-02 17:27:12 +11:00

816 lines
26 KiB
C++

//===------- ObjectLinkingLayer.cpp - JITLink backed ORC ObjectLayer ------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "llvm/ExecutionEngine/Orc/ObjectLinkingLayer.h"
#include "llvm/ExecutionEngine/JITLink/EHFrameSupport.h"
#include "llvm/ExecutionEngine/JITLink/aarch32.h"
#include "llvm/ExecutionEngine/Orc/DebugUtils.h"
#include "llvm/ExecutionEngine/Orc/Shared/ObjectFormats.h"
#include "llvm/Support/MemoryBuffer.h"
#include <string>
#define DEBUG_TYPE "orc"
using namespace llvm;
using namespace llvm::jitlink;
using namespace llvm::orc;
namespace {
bool hasInitializerSection(jitlink::LinkGraph &G) {
bool IsMachO = G.getTargetTriple().isOSBinFormatMachO();
bool IsElf = G.getTargetTriple().isOSBinFormatELF();
if (!IsMachO && !IsElf)
return false;
for (auto &Sec : G.sections()) {
if (IsMachO && isMachOInitializerSection(Sec.getName()))
return true;
if (IsElf && isELFInitializerSection(Sec.getName()))
return true;
}
return false;
}
ExecutorAddr getJITSymbolPtrForSymbol(Symbol &Sym, const Triple &TT) {
switch (TT.getArch()) {
case Triple::arm:
case Triple::armeb:
case Triple::thumb:
case Triple::thumbeb:
if (hasTargetFlags(Sym, aarch32::ThumbSymbol)) {
// Set LSB to indicate thumb target
assert(Sym.isCallable() && "Only callable symbols can have thumb flag");
assert((Sym.getAddress().getValue() & 0x01) == 0 && "LSB is clear");
return Sym.getAddress() + 0x01;
}
return Sym.getAddress();
default:
return Sym.getAddress();
}
}
JITSymbolFlags getJITSymbolFlagsForSymbol(Symbol &Sym) {
JITSymbolFlags Flags;
if (Sym.getLinkage() == Linkage::Weak)
Flags |= JITSymbolFlags::Weak;
if (Sym.getScope() == Scope::Default)
Flags |= JITSymbolFlags::Exported;
if (Sym.isCallable())
Flags |= JITSymbolFlags::Callable;
return Flags;
}
class LinkGraphMaterializationUnit : public MaterializationUnit {
public:
static std::unique_ptr<LinkGraphMaterializationUnit>
Create(ObjectLinkingLayer &ObjLinkingLayer, std::unique_ptr<LinkGraph> G) {
auto LGI = scanLinkGraph(ObjLinkingLayer.getExecutionSession(), *G);
return std::unique_ptr<LinkGraphMaterializationUnit>(
new LinkGraphMaterializationUnit(ObjLinkingLayer, std::move(G),
std::move(LGI)));
}
StringRef getName() const override { return G->getName(); }
void materialize(std::unique_ptr<MaterializationResponsibility> MR) override {
ObjLinkingLayer.emit(std::move(MR), std::move(G));
}
private:
static Interface scanLinkGraph(ExecutionSession &ES, LinkGraph &G) {
Interface LGI;
auto AddSymbol = [&](Symbol *Sym) {
// Skip local symbols.
if (Sym->getScope() == Scope::Local)
return;
assert(Sym->hasName() && "Anonymous non-local symbol?");
LGI.SymbolFlags[ES.intern(Sym->getName())] =
getJITSymbolFlagsForSymbol(*Sym);
};
for (auto *Sym : G.defined_symbols())
AddSymbol(Sym);
for (auto *Sym : G.absolute_symbols())
AddSymbol(Sym);
if (hasInitializerSection(G))
LGI.InitSymbol = makeInitSymbol(ES, G);
return LGI;
}
static SymbolStringPtr makeInitSymbol(ExecutionSession &ES, LinkGraph &G) {
std::string InitSymString;
raw_string_ostream(InitSymString)
<< "$." << G.getName() << ".__inits" << Counter++;
return ES.intern(InitSymString);
}
LinkGraphMaterializationUnit(ObjectLinkingLayer &ObjLinkingLayer,
std::unique_ptr<LinkGraph> G, Interface LGI)
: MaterializationUnit(std::move(LGI)), ObjLinkingLayer(ObjLinkingLayer),
G(std::move(G)) {}
void discard(const JITDylib &JD, const SymbolStringPtr &Name) override {
for (auto *Sym : G->defined_symbols())
if (Sym->getName() == *Name) {
assert(Sym->getLinkage() == Linkage::Weak &&
"Discarding non-weak definition");
G->makeExternal(*Sym);
break;
}
}
ObjectLinkingLayer &ObjLinkingLayer;
std::unique_ptr<LinkGraph> G;
static std::atomic<uint64_t> Counter;
};
std::atomic<uint64_t> LinkGraphMaterializationUnit::Counter{0};
} // end anonymous namespace
namespace llvm {
namespace orc {
class ObjectLinkingLayerJITLinkContext final : public JITLinkContext {
public:
ObjectLinkingLayerJITLinkContext(
ObjectLinkingLayer &Layer,
std::unique_ptr<MaterializationResponsibility> MR,
std::unique_ptr<MemoryBuffer> ObjBuffer)
: JITLinkContext(&MR->getTargetJITDylib()), Layer(Layer),
MR(std::move(MR)), ObjBuffer(std::move(ObjBuffer)) {
std::lock_guard<std::mutex> Lock(Layer.LayerMutex);
Plugins = Layer.Plugins;
}
~ObjectLinkingLayerJITLinkContext() {
// If there is an object buffer return function then use it to
// return ownership of the buffer.
if (Layer.ReturnObjectBuffer && ObjBuffer)
Layer.ReturnObjectBuffer(std::move(ObjBuffer));
}
JITLinkMemoryManager &getMemoryManager() override { return Layer.MemMgr; }
void notifyMaterializing(LinkGraph &G) {
for (auto &P : Plugins)
P->notifyMaterializing(*MR, G, *this,
ObjBuffer ? ObjBuffer->getMemBufferRef()
: MemoryBufferRef());
}
void notifyFailed(Error Err) override {
for (auto &P : Plugins)
Err = joinErrors(std::move(Err), P->notifyFailed(*MR));
Layer.getExecutionSession().reportError(std::move(Err));
MR->failMaterialization();
}
void lookup(const LookupMap &Symbols,
std::unique_ptr<JITLinkAsyncLookupContinuation> LC) override {
JITDylibSearchOrder LinkOrder;
MR->getTargetJITDylib().withLinkOrderDo(
[&](const JITDylibSearchOrder &LO) { LinkOrder = LO; });
auto &ES = Layer.getExecutionSession();
SymbolLookupSet LookupSet;
for (auto &KV : Symbols) {
orc::SymbolLookupFlags LookupFlags;
switch (KV.second) {
case jitlink::SymbolLookupFlags::RequiredSymbol:
LookupFlags = orc::SymbolLookupFlags::RequiredSymbol;
break;
case jitlink::SymbolLookupFlags::WeaklyReferencedSymbol:
LookupFlags = orc::SymbolLookupFlags::WeaklyReferencedSymbol;
break;
}
LookupSet.add(ES.intern(KV.first), LookupFlags);
}
// OnResolve -- De-intern the symbols and pass the result to the linker.
auto OnResolve = [LookupContinuation =
std::move(LC)](Expected<SymbolMap> Result) mutable {
if (!Result)
LookupContinuation->run(Result.takeError());
else {
AsyncLookupResult LR;
for (auto &KV : *Result)
LR[*KV.first] = KV.second;
LookupContinuation->run(std::move(LR));
}
};
ES.lookup(LookupKind::Static, LinkOrder, std::move(LookupSet),
SymbolState::Resolved, std::move(OnResolve),
[this](const SymbolDependenceMap &Deps) {
// Translate LookupDeps map to SymbolSourceJD.
for (auto &[DepJD, Deps] : Deps)
for (auto &DepSym : Deps)
SymbolSourceJDs[NonOwningSymbolStringPtr(DepSym)] = DepJD;
});
}
Error notifyResolved(LinkGraph &G) override {
auto &ES = Layer.getExecutionSession();
SymbolFlagsMap ExtraSymbolsToClaim;
bool AutoClaim = Layer.AutoClaimObjectSymbols;
SymbolMap InternedResult;
for (auto *Sym : G.defined_symbols())
if (Sym->getScope() != Scope::Local) {
auto InternedName = ES.intern(Sym->getName());
auto Ptr = getJITSymbolPtrForSymbol(*Sym, G.getTargetTriple());
auto Flags = getJITSymbolFlagsForSymbol(*Sym);
InternedResult[InternedName] = {Ptr, Flags};
if (AutoClaim && !MR->getSymbols().count(InternedName)) {
assert(!ExtraSymbolsToClaim.count(InternedName) &&
"Duplicate symbol to claim?");
ExtraSymbolsToClaim[InternedName] = Flags;
}
}
for (auto *Sym : G.absolute_symbols())
if (Sym->getScope() != Scope::Local) {
auto InternedName = ES.intern(Sym->getName());
auto Ptr = getJITSymbolPtrForSymbol(*Sym, G.getTargetTriple());
auto Flags = getJITSymbolFlagsForSymbol(*Sym);
InternedResult[InternedName] = {Ptr, Flags};
if (AutoClaim && !MR->getSymbols().count(InternedName)) {
assert(!ExtraSymbolsToClaim.count(InternedName) &&
"Duplicate symbol to claim?");
ExtraSymbolsToClaim[InternedName] = Flags;
}
}
if (!ExtraSymbolsToClaim.empty())
if (auto Err = MR->defineMaterializing(ExtraSymbolsToClaim))
return Err;
{
// Check that InternedResult matches up with MR->getSymbols(), overriding
// flags if requested.
// This guards against faulty transformations / compilers / object caches.
// First check that there aren't any missing symbols.
size_t NumMaterializationSideEffectsOnlySymbols = 0;
SymbolNameVector MissingSymbols;
for (auto &[Sym, Flags] : MR->getSymbols()) {
auto I = InternedResult.find(Sym);
// If this is a materialization-side-effects only symbol then bump
// the counter and remove in from the result, otherwise make sure that
// it's defined.
if (Flags.hasMaterializationSideEffectsOnly()) {
++NumMaterializationSideEffectsOnlySymbols;
InternedResult.erase(Sym);
continue;
} else if (I == InternedResult.end())
MissingSymbols.push_back(Sym);
else if (Layer.OverrideObjectFlags)
I->second.setFlags(Flags);
}
// If there were missing symbols then report the error.
if (!MissingSymbols.empty())
return make_error<MissingSymbolDefinitions>(
Layer.getExecutionSession().getSymbolStringPool(), G.getName(),
std::move(MissingSymbols));
// If there are more definitions than expected, add them to the
// ExtraSymbols vector.
SymbolNameVector ExtraSymbols;
if (InternedResult.size() >
MR->getSymbols().size() - NumMaterializationSideEffectsOnlySymbols) {
for (auto &KV : InternedResult)
if (!MR->getSymbols().count(KV.first))
ExtraSymbols.push_back(KV.first);
}
// If there were extra definitions then report the error.
if (!ExtraSymbols.empty())
return make_error<UnexpectedSymbolDefinitions>(
Layer.getExecutionSession().getSymbolStringPool(), G.getName(),
std::move(ExtraSymbols));
}
if (auto Err = MR->notifyResolved(InternedResult))
return Err;
notifyLoaded();
return Error::success();
}
void notifyFinalized(JITLinkMemoryManager::FinalizedAlloc A) override {
if (auto Err = notifyEmitted(std::move(A))) {
Layer.getExecutionSession().reportError(std::move(Err));
MR->failMaterialization();
return;
}
if (auto Err = MR->notifyEmitted(SymbolDepGroups)) {
Layer.getExecutionSession().reportError(std::move(Err));
MR->failMaterialization();
}
}
LinkGraphPassFunction getMarkLivePass(const Triple &TT) const override {
return [this](LinkGraph &G) { return markResponsibilitySymbolsLive(G); };
}
Error modifyPassConfig(LinkGraph &LG, PassConfiguration &Config) override {
// Add passes to mark duplicate defs as should-discard, and to walk the
// link graph to build the symbol dependence graph.
Config.PrePrunePasses.push_back([this](LinkGraph &G) {
return claimOrExternalizeWeakAndCommonSymbols(G);
});
for (auto &P : Plugins)
P->modifyPassConfig(*MR, LG, Config);
Config.PreFixupPasses.push_back(
[this](LinkGraph &G) { return registerDependencies(G); });
return Error::success();
}
void notifyLoaded() {
for (auto &P : Plugins)
P->notifyLoaded(*MR);
}
Error notifyEmitted(jitlink::JITLinkMemoryManager::FinalizedAlloc FA) {
Error Err = Error::success();
for (auto &P : Plugins)
Err = joinErrors(std::move(Err), P->notifyEmitted(*MR));
if (Err) {
if (FA)
Err =
joinErrors(std::move(Err), Layer.MemMgr.deallocate(std::move(FA)));
return Err;
}
if (FA)
return Layer.recordFinalizedAlloc(*MR, std::move(FA));
return Error::success();
}
private:
Error claimOrExternalizeWeakAndCommonSymbols(LinkGraph &G) {
auto &ES = Layer.getExecutionSession();
SymbolFlagsMap NewSymbolsToClaim;
std::vector<std::pair<SymbolStringPtr, Symbol *>> NameToSym;
auto ProcessSymbol = [&](Symbol *Sym) {
if (Sym->hasName() && Sym->getLinkage() == Linkage::Weak &&
Sym->getScope() != Scope::Local) {
auto Name = ES.intern(Sym->getName());
if (!MR->getSymbols().count(ES.intern(Sym->getName()))) {
NewSymbolsToClaim[Name] =
getJITSymbolFlagsForSymbol(*Sym) | JITSymbolFlags::Weak;
NameToSym.push_back(std::make_pair(std::move(Name), Sym));
}
}
};
for (auto *Sym : G.defined_symbols())
ProcessSymbol(Sym);
for (auto *Sym : G.absolute_symbols())
ProcessSymbol(Sym);
// Attempt to claim all weak defs that we're not already responsible for.
// This may fail if the resource tracker has become defunct, but should
// always succeed otherwise.
if (auto Err = MR->defineMaterializing(std::move(NewSymbolsToClaim)))
return Err;
// Walk the list of symbols that we just tried to claim. Symbols that we're
// responsible for are marked live. Symbols that we're not responsible for
// are turned into external references.
for (auto &KV : NameToSym) {
if (MR->getSymbols().count(KV.first))
KV.second->setLive(true);
else
G.makeExternal(*KV.second);
}
return Error::success();
}
Error markResponsibilitySymbolsLive(LinkGraph &G) const {
auto &ES = Layer.getExecutionSession();
for (auto *Sym : G.defined_symbols())
if (Sym->hasName() && MR->getSymbols().count(ES.intern(Sym->getName())))
Sym->setLive(true);
return Error::success();
}
Error registerDependencies(LinkGraph &G) {
struct BlockInfo {
bool InWorklist = false;
DenseSet<Symbol *> Defs;
DenseSet<Symbol *> SymbolDeps;
DenseSet<Block *> AnonEdges, AnonBackEdges;
};
DenseMap<Block *, BlockInfo> BlockInfos;
// Reserve space so that BlockInfos doesn't need to resize. This is
// essential to avoid invalidating pointers to entries below.
{
size_t NumBlocks = 0;
for (auto &Sec : G.sections())
NumBlocks += Sec.blocks_size();
BlockInfos.reserve(NumBlocks);
}
// Identify non-locally-scoped symbols defined by each block.
for (auto *Sym : G.defined_symbols()) {
if (Sym->getScope() != Scope::Local)
BlockInfos[&Sym->getBlock()].Defs.insert(Sym);
}
// Identify the symbolic and anonymous-block dependencies for each block.
for (auto *B : G.blocks()) {
auto &BI = BlockInfos[B];
for (auto &E : B->edges()) {
// External symbols are trivially depended on.
if (E.getTarget().isExternal()) {
BI.SymbolDeps.insert(&E.getTarget());
continue;
}
// Anonymous symbols aren't depended on at all (they're assumed to be
// already available).
if (E.getTarget().isAbsolute())
continue;
// If we get here then we depend on a symbol defined by some other
// block.
auto &TgtBI = BlockInfos[&E.getTarget().getBlock()];
// If that block has any definitions then use the first one as the
// "effective" dependence here (all symbols in TgtBI will become
// ready at the same time, and chosing a single symbol to represent
// the block keeps the SymbolDepGroup size small).
if (!TgtBI.Defs.empty()) {
BI.SymbolDeps.insert(*TgtBI.Defs.begin());
continue;
}
// Otherwise we've got a dependence on an anonymous block. Record it
// here for back-propagating symbol dependencies below.
BI.AnonEdges.insert(&E.getTarget().getBlock());
TgtBI.AnonBackEdges.insert(B);
}
}
// Prune anonymous blocks.
{
std::vector<Block *> BlocksToRemove;
for (auto &[B, BI] : BlockInfos) {
// Skip blocks with defs. We only care about anonyous blocks.
if (!BI.Defs.empty())
continue;
BlocksToRemove.push_back(B);
for (auto *FB : BI.AnonEdges)
BlockInfos[FB].AnonBackEdges.erase(B);
for (auto *BB : BI.AnonBackEdges)
BlockInfos[BB].AnonEdges.erase(B);
for (auto *FB : BI.AnonEdges) {
auto &FBI = BlockInfos[FB];
for (auto *BB : BI.AnonBackEdges)
FBI.AnonBackEdges.insert(BB);
}
for (auto *BB : BI.AnonBackEdges) {
auto &BBI = BlockInfos[BB];
for (auto *SD : BI.SymbolDeps)
BBI.SymbolDeps.insert(SD);
for (auto *FB : BI.AnonEdges)
BBI.AnonEdges.insert(FB);
}
}
for (auto *B : BlocksToRemove)
BlockInfos.erase(B);
}
// Build the initial dependence propagation worklist.
std::deque<Block *> Worklist;
for (auto &[B, BI] : BlockInfos) {
if (!BI.SymbolDeps.empty() && !BI.AnonBackEdges.empty()) {
Worklist.push_back(B);
BI.InWorklist = true;
}
}
// Propagate symbol deps through the graph.
while (!Worklist.empty()) {
auto *B = Worklist.front();
Worklist.pop_front();
auto &BI = BlockInfos[B];
BI.InWorklist = false;
for (auto *DB : BI.AnonBackEdges) {
auto &DBI = BlockInfos[DB];
for (auto *Sym : BI.SymbolDeps) {
if (DBI.SymbolDeps.insert(Sym).second && !DBI.InWorklist) {
Worklist.push_back(DB);
DBI.InWorklist = true;
}
}
}
}
// Transform our local dependence information into a list of
// SymbolDependenceGroups (in the SymbolDepGroups member), ready for use in
// the upcoming notifyFinalized call.
auto &TargetJD = MR->getTargetJITDylib();
auto &ES = TargetJD.getExecutionSession();
DenseMap<Symbol *, SymbolStringPtr> InternedNames;
auto GetInternedName = [&](Symbol *S) {
auto &Name = InternedNames[S];
if (!Name)
Name = ES.intern(S->getName());
return Name;
};
for (auto &[B, BI] : BlockInfos) {
if (!BI.Defs.empty()) {
SymbolDepGroups.push_back(SymbolDependenceGroup());
auto &SDG = SymbolDepGroups.back();
for (auto *Def : BI.Defs)
SDG.Symbols.insert(GetInternedName(Def));
for (auto *Dep : BI.SymbolDeps) {
auto DepName = GetInternedName(Dep);
if (Dep->isDefined())
SDG.Dependencies[&TargetJD].insert(std::move(DepName));
else {
auto SourceJDItr =
SymbolSourceJDs.find(NonOwningSymbolStringPtr(DepName));
if (SourceJDItr != SymbolSourceJDs.end())
SDG.Dependencies[SourceJDItr->second].insert(std::move(DepName));
}
}
}
}
return Error::success();
}
ObjectLinkingLayer &Layer;
std::vector<std::shared_ptr<ObjectLinkingLayer::Plugin>> Plugins;
std::unique_ptr<MaterializationResponsibility> MR;
std::unique_ptr<MemoryBuffer> ObjBuffer;
DenseMap<NonOwningSymbolStringPtr, JITDylib *> SymbolSourceJDs;
std::vector<SymbolDependenceGroup> SymbolDepGroups;
};
ObjectLinkingLayer::Plugin::~Plugin() = default;
char ObjectLinkingLayer::ID;
using BaseT = RTTIExtends<ObjectLinkingLayer, ObjectLayer>;
ObjectLinkingLayer::ObjectLinkingLayer(ExecutionSession &ES)
: BaseT(ES), MemMgr(ES.getExecutorProcessControl().getMemMgr()) {
ES.registerResourceManager(*this);
}
ObjectLinkingLayer::ObjectLinkingLayer(ExecutionSession &ES,
JITLinkMemoryManager &MemMgr)
: BaseT(ES), MemMgr(MemMgr) {
ES.registerResourceManager(*this);
}
ObjectLinkingLayer::ObjectLinkingLayer(
ExecutionSession &ES, std::unique_ptr<JITLinkMemoryManager> MemMgr)
: BaseT(ES), MemMgr(*MemMgr), MemMgrOwnership(std::move(MemMgr)) {
ES.registerResourceManager(*this);
}
ObjectLinkingLayer::~ObjectLinkingLayer() {
assert(Allocs.empty() && "Layer destroyed with resources still attached");
getExecutionSession().deregisterResourceManager(*this);
}
Error ObjectLinkingLayer::add(ResourceTrackerSP RT,
std::unique_ptr<LinkGraph> G) {
auto &JD = RT->getJITDylib();
return JD.define(LinkGraphMaterializationUnit::Create(*this, std::move(G)),
std::move(RT));
}
void ObjectLinkingLayer::emit(std::unique_ptr<MaterializationResponsibility> R,
std::unique_ptr<MemoryBuffer> O) {
assert(O && "Object must not be null");
MemoryBufferRef ObjBuffer = O->getMemBufferRef();
auto Ctx = std::make_unique<ObjectLinkingLayerJITLinkContext>(
*this, std::move(R), std::move(O));
if (auto G = createLinkGraphFromObject(ObjBuffer)) {
Ctx->notifyMaterializing(**G);
link(std::move(*G), std::move(Ctx));
} else {
Ctx->notifyFailed(G.takeError());
}
}
void ObjectLinkingLayer::emit(std::unique_ptr<MaterializationResponsibility> R,
std::unique_ptr<LinkGraph> G) {
auto Ctx = std::make_unique<ObjectLinkingLayerJITLinkContext>(
*this, std::move(R), nullptr);
Ctx->notifyMaterializing(*G);
link(std::move(G), std::move(Ctx));
}
Error ObjectLinkingLayer::recordFinalizedAlloc(
MaterializationResponsibility &MR, FinalizedAlloc FA) {
auto Err = MR.withResourceKeyDo(
[&](ResourceKey K) { Allocs[K].push_back(std::move(FA)); });
if (Err)
Err = joinErrors(std::move(Err), MemMgr.deallocate(std::move(FA)));
return Err;
}
Error ObjectLinkingLayer::handleRemoveResources(JITDylib &JD, ResourceKey K) {
{
Error Err = Error::success();
for (auto &P : Plugins)
Err = joinErrors(std::move(Err), P->notifyRemovingResources(JD, K));
if (Err)
return Err;
}
std::vector<FinalizedAlloc> AllocsToRemove;
getExecutionSession().runSessionLocked([&] {
auto I = Allocs.find(K);
if (I != Allocs.end()) {
std::swap(AllocsToRemove, I->second);
Allocs.erase(I);
}
});
if (AllocsToRemove.empty())
return Error::success();
return MemMgr.deallocate(std::move(AllocsToRemove));
}
void ObjectLinkingLayer::handleTransferResources(JITDylib &JD,
ResourceKey DstKey,
ResourceKey SrcKey) {
if (Allocs.contains(SrcKey)) {
// DstKey may not be in the DenseMap yet, so the following line may resize
// the container and invalidate iterators and value references.
auto &DstAllocs = Allocs[DstKey];
auto &SrcAllocs = Allocs[SrcKey];
DstAllocs.reserve(DstAllocs.size() + SrcAllocs.size());
for (auto &Alloc : SrcAllocs)
DstAllocs.push_back(std::move(Alloc));
Allocs.erase(SrcKey);
}
for (auto &P : Plugins)
P->notifyTransferringResources(JD, DstKey, SrcKey);
}
EHFrameRegistrationPlugin::EHFrameRegistrationPlugin(
ExecutionSession &ES, std::unique_ptr<EHFrameRegistrar> Registrar)
: ES(ES), Registrar(std::move(Registrar)) {}
void EHFrameRegistrationPlugin::modifyPassConfig(
MaterializationResponsibility &MR, LinkGraph &G,
PassConfiguration &PassConfig) {
PassConfig.PostFixupPasses.push_back(createEHFrameRecorderPass(
G.getTargetTriple(), [this, &MR](ExecutorAddr Addr, size_t Size) {
if (Addr) {
std::lock_guard<std::mutex> Lock(EHFramePluginMutex);
assert(!InProcessLinks.count(&MR) &&
"Link for MR already being tracked?");
InProcessLinks[&MR] = {Addr, Size};
}
}));
}
Error EHFrameRegistrationPlugin::notifyEmitted(
MaterializationResponsibility &MR) {
ExecutorAddrRange EmittedRange;
{
std::lock_guard<std::mutex> Lock(EHFramePluginMutex);
auto EHFrameRangeItr = InProcessLinks.find(&MR);
if (EHFrameRangeItr == InProcessLinks.end())
return Error::success();
EmittedRange = EHFrameRangeItr->second;
assert(EmittedRange.Start && "eh-frame addr to register can not be null");
InProcessLinks.erase(EHFrameRangeItr);
}
if (auto Err = MR.withResourceKeyDo(
[&](ResourceKey K) { EHFrameRanges[K].push_back(EmittedRange); }))
return Err;
return Registrar->registerEHFrames(EmittedRange);
}
Error EHFrameRegistrationPlugin::notifyFailed(
MaterializationResponsibility &MR) {
std::lock_guard<std::mutex> Lock(EHFramePluginMutex);
InProcessLinks.erase(&MR);
return Error::success();
}
Error EHFrameRegistrationPlugin::notifyRemovingResources(JITDylib &JD,
ResourceKey K) {
std::vector<ExecutorAddrRange> RangesToRemove;
ES.runSessionLocked([&] {
auto I = EHFrameRanges.find(K);
if (I != EHFrameRanges.end()) {
RangesToRemove = std::move(I->second);
EHFrameRanges.erase(I);
}
});
Error Err = Error::success();
while (!RangesToRemove.empty()) {
auto RangeToRemove = RangesToRemove.back();
RangesToRemove.pop_back();
assert(RangeToRemove.Start && "Untracked eh-frame range must not be null");
Err = joinErrors(std::move(Err),
Registrar->deregisterEHFrames(RangeToRemove));
}
return Err;
}
void EHFrameRegistrationPlugin::notifyTransferringResources(
JITDylib &JD, ResourceKey DstKey, ResourceKey SrcKey) {
auto SI = EHFrameRanges.find(SrcKey);
if (SI == EHFrameRanges.end())
return;
auto DI = EHFrameRanges.find(DstKey);
if (DI != EHFrameRanges.end()) {
auto &SrcRanges = SI->second;
auto &DstRanges = DI->second;
DstRanges.reserve(DstRanges.size() + SrcRanges.size());
for (auto &SrcRange : SrcRanges)
DstRanges.push_back(std::move(SrcRange));
EHFrameRanges.erase(SI);
} else {
// We need to move SrcKey's ranges over without invalidating the SI
// iterator.
auto Tmp = std::move(SI->second);
EHFrameRanges.erase(SI);
EHFrameRanges[DstKey] = std::move(Tmp);
}
}
} // End namespace orc.
} // End namespace llvm.