
lifetime.start and lifetime.end are primarily intended for use on allocas, to enable stack coloring and other liveness optimizations. This is necessary because all (static) allocas are hoisted into the entry block, so lifetime markers are the only way to convey the actual lifetimes. However, lifetime.start and lifetime.end are currently *allowed* to be used on non-alloca pointers. We don't actually do this in practice, but just the mere fact that this is possible breaks the core purpose of the lifetime markers, which is stack coloring of allocas. Stack coloring can only work correctly if all lifetime markers for an alloca are analyzable. * If a lifetime marker may operate on multiple allocas via a select/phi, we don't know which lifetime actually starts/ends and handle it incorrectly (https://github.com/llvm/llvm-project/issues/104776). * Stack coloring operates on the assumption that all lifetime markers are visible, and not, for example, hidden behind a function call or escaped pointer. It's not possible to change this, as part of the purpose of lifetime markers is that they work even in the presence of escaped pointers, where simple use analysis is insufficient. I don't think there is any way to have coherent semantics for lifetime markers on allocas, while also permitting them on arbitrary pointer values. This PR restricts lifetimes to operate on allocas only. As a followup, I will also drop the size argument, which is superfluous if we always operate on an alloca. (This change also renders various code handling lifetime markers on non-alloca dead. I plan to clean up that kind of code after dropping the size argument as well.) In practice, I've only found a few places that currently produce lifetimes on non-allocas: * CoroEarly replaces the promise alloca with the result of an intrinsic, which will later be replaced back with an alloca. I think this is the only place where there is some legitimate loss of functionality, but I don't think this is particularly important (I don't think we'd expect the promise in a coroutine to admit useful lifetime optimization.) * SafeStack moves unsafe allocas onto a separate frame. We can safely drop lifetimes here, as SafeStack performs its own stack coloring. * Similar for AddressSanitizer, it also moves allocas into separate memory. * LSR sometimes replaces the lifetime argument with a GEP chain of the alloca (where the offsets ultimately cancel out). This is just unnecessary. (Fixed separately in https://github.com/llvm/llvm-project/pull/149492.) * InferAddrSpaces sometimes makes lifetimes operate on an addrspacecast of an alloca. I don't think this is necessary.
998 lines
36 KiB
C++
998 lines
36 KiB
C++
//===- SafeStack.cpp - Safe Stack Insertion -------------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This pass splits the stack into the safe stack (kept as-is for LLVM backend)
|
|
// and the unsafe stack (explicitly allocated and managed through the runtime
|
|
// support library).
|
|
//
|
|
// http://clang.llvm.org/docs/SafeStack.html
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/CodeGen/SafeStack.h"
|
|
#include "SafeStackLayout.h"
|
|
#include "llvm/ADT/APInt.h"
|
|
#include "llvm/ADT/ArrayRef.h"
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/Analysis/AssumptionCache.h"
|
|
#include "llvm/Analysis/BranchProbabilityInfo.h"
|
|
#include "llvm/Analysis/DomTreeUpdater.h"
|
|
#include "llvm/Analysis/InlineCost.h"
|
|
#include "llvm/Analysis/LoopInfo.h"
|
|
#include "llvm/Analysis/ScalarEvolution.h"
|
|
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
|
|
#include "llvm/Analysis/StackLifetime.h"
|
|
#include "llvm/Analysis/TargetLibraryInfo.h"
|
|
#include "llvm/CodeGen/TargetLowering.h"
|
|
#include "llvm/CodeGen/TargetPassConfig.h"
|
|
#include "llvm/CodeGen/TargetSubtargetInfo.h"
|
|
#include "llvm/IR/Argument.h"
|
|
#include "llvm/IR/Attributes.h"
|
|
#include "llvm/IR/ConstantRange.h"
|
|
#include "llvm/IR/Constants.h"
|
|
#include "llvm/IR/DIBuilder.h"
|
|
#include "llvm/IR/DataLayout.h"
|
|
#include "llvm/IR/DerivedTypes.h"
|
|
#include "llvm/IR/Dominators.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/IR/IRBuilder.h"
|
|
#include "llvm/IR/InstIterator.h"
|
|
#include "llvm/IR/Instruction.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/IntrinsicInst.h"
|
|
#include "llvm/IR/Intrinsics.h"
|
|
#include "llvm/IR/MDBuilder.h"
|
|
#include "llvm/IR/Metadata.h"
|
|
#include "llvm/IR/Module.h"
|
|
#include "llvm/IR/Type.h"
|
|
#include "llvm/IR/Use.h"
|
|
#include "llvm/IR/Value.h"
|
|
#include "llvm/InitializePasses.h"
|
|
#include "llvm/Pass.h"
|
|
#include "llvm/Support/Casting.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/Target/TargetMachine.h"
|
|
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
|
|
#include "llvm/Transforms/Utils/Cloning.h"
|
|
#include "llvm/Transforms/Utils/Local.h"
|
|
#include <algorithm>
|
|
#include <cassert>
|
|
#include <cstdint>
|
|
#include <optional>
|
|
#include <string>
|
|
#include <utility>
|
|
|
|
using namespace llvm;
|
|
using namespace llvm::safestack;
|
|
|
|
#define DEBUG_TYPE "safe-stack"
|
|
|
|
namespace llvm {
|
|
|
|
STATISTIC(NumFunctions, "Total number of functions");
|
|
STATISTIC(NumUnsafeStackFunctions, "Number of functions with unsafe stack");
|
|
STATISTIC(NumUnsafeStackRestorePointsFunctions,
|
|
"Number of functions that use setjmp or exceptions");
|
|
|
|
STATISTIC(NumAllocas, "Total number of allocas");
|
|
STATISTIC(NumUnsafeStaticAllocas, "Number of unsafe static allocas");
|
|
STATISTIC(NumUnsafeDynamicAllocas, "Number of unsafe dynamic allocas");
|
|
STATISTIC(NumUnsafeByValArguments, "Number of unsafe byval arguments");
|
|
STATISTIC(NumUnsafeStackRestorePoints, "Number of setjmps and landingpads");
|
|
|
|
} // namespace llvm
|
|
|
|
/// Use __safestack_pointer_address even if the platform has a faster way of
|
|
/// access safe stack pointer.
|
|
static cl::opt<bool>
|
|
SafeStackUsePointerAddress("safestack-use-pointer-address",
|
|
cl::init(false), cl::Hidden);
|
|
|
|
static cl::opt<bool> ClColoring("safe-stack-coloring",
|
|
cl::desc("enable safe stack coloring"),
|
|
cl::Hidden, cl::init(true));
|
|
|
|
namespace {
|
|
|
|
/// The SafeStack pass splits the stack of each function into the safe
|
|
/// stack, which is only accessed through memory safe dereferences (as
|
|
/// determined statically), and the unsafe stack, which contains all
|
|
/// local variables that are accessed in ways that we can't prove to
|
|
/// be safe.
|
|
class SafeStack {
|
|
Function &F;
|
|
const TargetLoweringBase &TL;
|
|
const DataLayout &DL;
|
|
DomTreeUpdater *DTU;
|
|
ScalarEvolution &SE;
|
|
|
|
Type *StackPtrTy;
|
|
Type *IntPtrTy;
|
|
Type *Int32Ty;
|
|
|
|
Value *UnsafeStackPtr = nullptr;
|
|
|
|
/// Unsafe stack alignment. Each stack frame must ensure that the stack is
|
|
/// aligned to this value. We need to re-align the unsafe stack if the
|
|
/// alignment of any object on the stack exceeds this value.
|
|
///
|
|
/// 16 seems like a reasonable upper bound on the alignment of objects that we
|
|
/// might expect to appear on the stack on most common targets.
|
|
static constexpr Align StackAlignment = Align::Constant<16>();
|
|
|
|
/// Return the value of the stack canary.
|
|
Value *getStackGuard(IRBuilder<> &IRB, Function &F);
|
|
|
|
/// Load stack guard from the frame and check if it has changed.
|
|
void checkStackGuard(IRBuilder<> &IRB, Function &F, Instruction &RI,
|
|
AllocaInst *StackGuardSlot, Value *StackGuard);
|
|
|
|
/// Find all static allocas, dynamic allocas, return instructions and
|
|
/// stack restore points (exception unwind blocks and setjmp calls) in the
|
|
/// given function and append them to the respective vectors.
|
|
void findInsts(Function &F, SmallVectorImpl<AllocaInst *> &StaticAllocas,
|
|
SmallVectorImpl<AllocaInst *> &DynamicAllocas,
|
|
SmallVectorImpl<Argument *> &ByValArguments,
|
|
SmallVectorImpl<Instruction *> &Returns,
|
|
SmallVectorImpl<Instruction *> &StackRestorePoints);
|
|
|
|
/// Calculate the allocation size of a given alloca. Returns 0 if the
|
|
/// size can not be statically determined.
|
|
uint64_t getStaticAllocaAllocationSize(const AllocaInst* AI);
|
|
|
|
/// Allocate space for all static allocas in \p StaticAllocas,
|
|
/// replace allocas with pointers into the unsafe stack.
|
|
///
|
|
/// \returns A pointer to the top of the unsafe stack after all unsafe static
|
|
/// allocas are allocated.
|
|
Value *moveStaticAllocasToUnsafeStack(IRBuilder<> &IRB, Function &F,
|
|
ArrayRef<AllocaInst *> StaticAllocas,
|
|
ArrayRef<Argument *> ByValArguments,
|
|
Instruction *BasePointer,
|
|
AllocaInst *StackGuardSlot);
|
|
|
|
/// Generate code to restore the stack after all stack restore points
|
|
/// in \p StackRestorePoints.
|
|
///
|
|
/// \returns A local variable in which to maintain the dynamic top of the
|
|
/// unsafe stack if needed.
|
|
AllocaInst *
|
|
createStackRestorePoints(IRBuilder<> &IRB, Function &F,
|
|
ArrayRef<Instruction *> StackRestorePoints,
|
|
Value *StaticTop, bool NeedDynamicTop);
|
|
|
|
/// Replace all allocas in \p DynamicAllocas with code to allocate
|
|
/// space dynamically on the unsafe stack and store the dynamic unsafe stack
|
|
/// top to \p DynamicTop if non-null.
|
|
void moveDynamicAllocasToUnsafeStack(Function &F, Value *UnsafeStackPtr,
|
|
AllocaInst *DynamicTop,
|
|
ArrayRef<AllocaInst *> DynamicAllocas);
|
|
|
|
bool IsSafeStackAlloca(const Value *AllocaPtr, uint64_t AllocaSize);
|
|
|
|
bool IsMemIntrinsicSafe(const MemIntrinsic *MI, const Use &U,
|
|
const Value *AllocaPtr, uint64_t AllocaSize);
|
|
bool IsAccessSafe(Value *Addr, uint64_t Size, const Value *AllocaPtr,
|
|
uint64_t AllocaSize);
|
|
|
|
bool ShouldInlinePointerAddress(CallInst &CI);
|
|
void TryInlinePointerAddress();
|
|
|
|
public:
|
|
SafeStack(Function &F, const TargetLoweringBase &TL, const DataLayout &DL,
|
|
DomTreeUpdater *DTU, ScalarEvolution &SE)
|
|
: F(F), TL(TL), DL(DL), DTU(DTU), SE(SE),
|
|
StackPtrTy(DL.getAllocaPtrType(F.getContext())),
|
|
IntPtrTy(DL.getIntPtrType(F.getContext())),
|
|
Int32Ty(Type::getInt32Ty(F.getContext())) {}
|
|
|
|
// Run the transformation on the associated function.
|
|
// Returns whether the function was changed.
|
|
bool run();
|
|
};
|
|
|
|
constexpr Align SafeStack::StackAlignment;
|
|
|
|
uint64_t SafeStack::getStaticAllocaAllocationSize(const AllocaInst* AI) {
|
|
uint64_t Size = DL.getTypeAllocSize(AI->getAllocatedType());
|
|
if (AI->isArrayAllocation()) {
|
|
auto C = dyn_cast<ConstantInt>(AI->getArraySize());
|
|
if (!C)
|
|
return 0;
|
|
Size *= C->getZExtValue();
|
|
}
|
|
return Size;
|
|
}
|
|
|
|
bool SafeStack::IsAccessSafe(Value *Addr, uint64_t AccessSize,
|
|
const Value *AllocaPtr, uint64_t AllocaSize) {
|
|
const SCEV *AddrExpr = SE.getSCEV(Addr);
|
|
const auto *Base = dyn_cast<SCEVUnknown>(SE.getPointerBase(AddrExpr));
|
|
if (!Base || Base->getValue() != AllocaPtr) {
|
|
LLVM_DEBUG(
|
|
dbgs() << "[SafeStack] "
|
|
<< (isa<AllocaInst>(AllocaPtr) ? "Alloca " : "ByValArgument ")
|
|
<< *AllocaPtr << "\n"
|
|
<< "SCEV " << *AddrExpr << " not directly based on alloca\n");
|
|
return false;
|
|
}
|
|
|
|
const SCEV *Expr = SE.removePointerBase(AddrExpr);
|
|
uint64_t BitWidth = SE.getTypeSizeInBits(Expr->getType());
|
|
ConstantRange AccessStartRange = SE.getUnsignedRange(Expr);
|
|
ConstantRange SizeRange =
|
|
ConstantRange(APInt(BitWidth, 0), APInt(BitWidth, AccessSize));
|
|
ConstantRange AccessRange = AccessStartRange.add(SizeRange);
|
|
ConstantRange AllocaRange =
|
|
ConstantRange(APInt(BitWidth, 0), APInt(BitWidth, AllocaSize));
|
|
bool Safe = AllocaRange.contains(AccessRange);
|
|
|
|
LLVM_DEBUG(
|
|
dbgs() << "[SafeStack] "
|
|
<< (isa<AllocaInst>(AllocaPtr) ? "Alloca " : "ByValArgument ")
|
|
<< *AllocaPtr << "\n"
|
|
<< " Access " << *Addr << "\n"
|
|
<< " SCEV " << *Expr
|
|
<< " U: " << SE.getUnsignedRange(Expr)
|
|
<< ", S: " << SE.getSignedRange(Expr) << "\n"
|
|
<< " Range " << AccessRange << "\n"
|
|
<< " AllocaRange " << AllocaRange << "\n"
|
|
<< " " << (Safe ? "safe" : "unsafe") << "\n");
|
|
|
|
return Safe;
|
|
}
|
|
|
|
bool SafeStack::IsMemIntrinsicSafe(const MemIntrinsic *MI, const Use &U,
|
|
const Value *AllocaPtr,
|
|
uint64_t AllocaSize) {
|
|
if (auto MTI = dyn_cast<MemTransferInst>(MI)) {
|
|
if (MTI->getRawSource() != U && MTI->getRawDest() != U)
|
|
return true;
|
|
} else {
|
|
if (MI->getRawDest() != U)
|
|
return true;
|
|
}
|
|
|
|
const auto *Len = dyn_cast<ConstantInt>(MI->getLength());
|
|
// Non-constant size => unsafe. FIXME: try SCEV getRange.
|
|
if (!Len) return false;
|
|
return IsAccessSafe(U, Len->getZExtValue(), AllocaPtr, AllocaSize);
|
|
}
|
|
|
|
/// Check whether a given allocation must be put on the safe
|
|
/// stack or not. The function analyzes all uses of AI and checks whether it is
|
|
/// only accessed in a memory safe way (as decided statically).
|
|
bool SafeStack::IsSafeStackAlloca(const Value *AllocaPtr, uint64_t AllocaSize) {
|
|
// Go through all uses of this alloca and check whether all accesses to the
|
|
// allocated object are statically known to be memory safe and, hence, the
|
|
// object can be placed on the safe stack.
|
|
SmallPtrSet<const Value *, 16> Visited;
|
|
SmallVector<const Value *, 8> WorkList;
|
|
WorkList.push_back(AllocaPtr);
|
|
|
|
// A DFS search through all uses of the alloca in bitcasts/PHI/GEPs/etc.
|
|
while (!WorkList.empty()) {
|
|
const Value *V = WorkList.pop_back_val();
|
|
for (const Use &UI : V->uses()) {
|
|
auto I = cast<const Instruction>(UI.getUser());
|
|
assert(V == UI.get());
|
|
|
|
switch (I->getOpcode()) {
|
|
case Instruction::Load:
|
|
if (!IsAccessSafe(UI, DL.getTypeStoreSize(I->getType()), AllocaPtr,
|
|
AllocaSize))
|
|
return false;
|
|
break;
|
|
|
|
case Instruction::VAArg:
|
|
// "va-arg" from a pointer is safe.
|
|
break;
|
|
case Instruction::Store:
|
|
if (V == I->getOperand(0)) {
|
|
// Stored the pointer - conservatively assume it may be unsafe.
|
|
LLVM_DEBUG(dbgs()
|
|
<< "[SafeStack] Unsafe alloca: " << *AllocaPtr
|
|
<< "\n store of address: " << *I << "\n");
|
|
return false;
|
|
}
|
|
|
|
if (!IsAccessSafe(UI, DL.getTypeStoreSize(I->getOperand(0)->getType()),
|
|
AllocaPtr, AllocaSize))
|
|
return false;
|
|
break;
|
|
|
|
case Instruction::Ret:
|
|
// Information leak.
|
|
return false;
|
|
|
|
case Instruction::Call:
|
|
case Instruction::Invoke: {
|
|
const CallBase &CS = *cast<CallBase>(I);
|
|
|
|
if (I->isLifetimeStartOrEnd())
|
|
continue;
|
|
|
|
if (const MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) {
|
|
if (!IsMemIntrinsicSafe(MI, UI, AllocaPtr, AllocaSize)) {
|
|
LLVM_DEBUG(dbgs()
|
|
<< "[SafeStack] Unsafe alloca: " << *AllocaPtr
|
|
<< "\n unsafe memintrinsic: " << *I << "\n");
|
|
return false;
|
|
}
|
|
continue;
|
|
}
|
|
|
|
// LLVM 'nocapture' attribute is only set for arguments whose address
|
|
// is not stored, passed around, or used in any other non-trivial way.
|
|
// We assume that passing a pointer to an object as a 'nocapture
|
|
// readnone' argument is safe.
|
|
// FIXME: a more precise solution would require an interprocedural
|
|
// analysis here, which would look at all uses of an argument inside
|
|
// the function being called.
|
|
auto B = CS.arg_begin(), E = CS.arg_end();
|
|
for (const auto *A = B; A != E; ++A)
|
|
if (A->get() == V)
|
|
if (!(CS.doesNotCapture(A - B) && (CS.doesNotAccessMemory(A - B) ||
|
|
CS.doesNotAccessMemory()))) {
|
|
LLVM_DEBUG(dbgs() << "[SafeStack] Unsafe alloca: " << *AllocaPtr
|
|
<< "\n unsafe call: " << *I << "\n");
|
|
return false;
|
|
}
|
|
continue;
|
|
}
|
|
|
|
default:
|
|
if (Visited.insert(I).second)
|
|
WorkList.push_back(cast<const Instruction>(I));
|
|
}
|
|
}
|
|
}
|
|
|
|
// All uses of the alloca are safe, we can place it on the safe stack.
|
|
return true;
|
|
}
|
|
|
|
Value *SafeStack::getStackGuard(IRBuilder<> &IRB, Function &F) {
|
|
Value *StackGuardVar = TL.getIRStackGuard(IRB);
|
|
Module *M = F.getParent();
|
|
|
|
if (!StackGuardVar) {
|
|
TL.insertSSPDeclarations(*M);
|
|
return IRB.CreateIntrinsic(Intrinsic::stackguard, {});
|
|
}
|
|
|
|
return IRB.CreateLoad(StackPtrTy, StackGuardVar, "StackGuard");
|
|
}
|
|
|
|
void SafeStack::findInsts(Function &F,
|
|
SmallVectorImpl<AllocaInst *> &StaticAllocas,
|
|
SmallVectorImpl<AllocaInst *> &DynamicAllocas,
|
|
SmallVectorImpl<Argument *> &ByValArguments,
|
|
SmallVectorImpl<Instruction *> &Returns,
|
|
SmallVectorImpl<Instruction *> &StackRestorePoints) {
|
|
for (Instruction &I : instructions(&F)) {
|
|
if (auto AI = dyn_cast<AllocaInst>(&I)) {
|
|
++NumAllocas;
|
|
|
|
uint64_t Size = getStaticAllocaAllocationSize(AI);
|
|
if (IsSafeStackAlloca(AI, Size))
|
|
continue;
|
|
|
|
if (AI->isStaticAlloca()) {
|
|
++NumUnsafeStaticAllocas;
|
|
StaticAllocas.push_back(AI);
|
|
} else {
|
|
++NumUnsafeDynamicAllocas;
|
|
DynamicAllocas.push_back(AI);
|
|
}
|
|
} else if (auto RI = dyn_cast<ReturnInst>(&I)) {
|
|
if (CallInst *CI = I.getParent()->getTerminatingMustTailCall())
|
|
Returns.push_back(CI);
|
|
else
|
|
Returns.push_back(RI);
|
|
} else if (auto CI = dyn_cast<CallInst>(&I)) {
|
|
// setjmps require stack restore.
|
|
if (CI->getCalledFunction() && CI->canReturnTwice())
|
|
StackRestorePoints.push_back(CI);
|
|
} else if (auto LP = dyn_cast<LandingPadInst>(&I)) {
|
|
// Exception landing pads require stack restore.
|
|
StackRestorePoints.push_back(LP);
|
|
} else if (auto II = dyn_cast<IntrinsicInst>(&I)) {
|
|
if (II->getIntrinsicID() == Intrinsic::gcroot)
|
|
report_fatal_error(
|
|
"gcroot intrinsic not compatible with safestack attribute");
|
|
}
|
|
}
|
|
for (Argument &Arg : F.args()) {
|
|
if (!Arg.hasByValAttr())
|
|
continue;
|
|
uint64_t Size = DL.getTypeStoreSize(Arg.getParamByValType());
|
|
if (IsSafeStackAlloca(&Arg, Size))
|
|
continue;
|
|
|
|
++NumUnsafeByValArguments;
|
|
ByValArguments.push_back(&Arg);
|
|
}
|
|
}
|
|
|
|
AllocaInst *
|
|
SafeStack::createStackRestorePoints(IRBuilder<> &IRB, Function &F,
|
|
ArrayRef<Instruction *> StackRestorePoints,
|
|
Value *StaticTop, bool NeedDynamicTop) {
|
|
assert(StaticTop && "The stack top isn't set.");
|
|
|
|
if (StackRestorePoints.empty())
|
|
return nullptr;
|
|
|
|
// We need the current value of the shadow stack pointer to restore
|
|
// after longjmp or exception catching.
|
|
|
|
// FIXME: On some platforms this could be handled by the longjmp/exception
|
|
// runtime itself.
|
|
|
|
AllocaInst *DynamicTop = nullptr;
|
|
if (NeedDynamicTop) {
|
|
// If we also have dynamic alloca's, the stack pointer value changes
|
|
// throughout the function. For now we store it in an alloca.
|
|
DynamicTop = IRB.CreateAlloca(StackPtrTy, /*ArraySize=*/nullptr,
|
|
"unsafe_stack_dynamic_ptr");
|
|
IRB.CreateStore(StaticTop, DynamicTop);
|
|
}
|
|
|
|
// Restore current stack pointer after longjmp/exception catch.
|
|
for (Instruction *I : StackRestorePoints) {
|
|
++NumUnsafeStackRestorePoints;
|
|
|
|
IRB.SetInsertPoint(I->getNextNode());
|
|
Value *CurrentTop =
|
|
DynamicTop ? IRB.CreateLoad(StackPtrTy, DynamicTop) : StaticTop;
|
|
IRB.CreateStore(CurrentTop, UnsafeStackPtr);
|
|
}
|
|
|
|
return DynamicTop;
|
|
}
|
|
|
|
void SafeStack::checkStackGuard(IRBuilder<> &IRB, Function &F, Instruction &RI,
|
|
AllocaInst *StackGuardSlot, Value *StackGuard) {
|
|
Value *V = IRB.CreateLoad(StackPtrTy, StackGuardSlot);
|
|
Value *Cmp = IRB.CreateICmpNE(StackGuard, V);
|
|
|
|
auto SuccessProb = BranchProbabilityInfo::getBranchProbStackProtector(true);
|
|
auto FailureProb = BranchProbabilityInfo::getBranchProbStackProtector(false);
|
|
MDNode *Weights = MDBuilder(F.getContext())
|
|
.createBranchWeights(SuccessProb.getNumerator(),
|
|
FailureProb.getNumerator());
|
|
Instruction *CheckTerm =
|
|
SplitBlockAndInsertIfThen(Cmp, &RI, /* Unreachable */ true, Weights, DTU);
|
|
IRBuilder<> IRBFail(CheckTerm);
|
|
// FIXME: respect -fsanitize-trap / -ftrap-function here?
|
|
const char *StackChkFailName =
|
|
TL.getLibcallName(RTLIB::STACKPROTECTOR_CHECK_FAIL);
|
|
if (!StackChkFailName) {
|
|
F.getContext().emitError(
|
|
"no libcall available for stackprotector check fail");
|
|
return;
|
|
}
|
|
|
|
FunctionCallee StackChkFail =
|
|
F.getParent()->getOrInsertFunction(StackChkFailName, IRB.getVoidTy());
|
|
IRBFail.CreateCall(StackChkFail, {});
|
|
}
|
|
|
|
/// We explicitly compute and set the unsafe stack layout for all unsafe
|
|
/// static alloca instructions. We save the unsafe "base pointer" in the
|
|
/// prologue into a local variable and restore it in the epilogue.
|
|
Value *SafeStack::moveStaticAllocasToUnsafeStack(
|
|
IRBuilder<> &IRB, Function &F, ArrayRef<AllocaInst *> StaticAllocas,
|
|
ArrayRef<Argument *> ByValArguments, Instruction *BasePointer,
|
|
AllocaInst *StackGuardSlot) {
|
|
if (StaticAllocas.empty() && ByValArguments.empty())
|
|
return BasePointer;
|
|
|
|
DIBuilder DIB(*F.getParent());
|
|
|
|
StackLifetime SSC(F, StaticAllocas, StackLifetime::LivenessType::May);
|
|
static const StackLifetime::LiveRange NoColoringRange(1, true);
|
|
if (ClColoring)
|
|
SSC.run();
|
|
|
|
for (const auto *I : SSC.getMarkers()) {
|
|
auto *Op = dyn_cast<Instruction>(I->getOperand(1));
|
|
const_cast<IntrinsicInst *>(I)->eraseFromParent();
|
|
// Remove the operand bitcast, too, if it has no more uses left.
|
|
if (Op && Op->use_empty())
|
|
Op->eraseFromParent();
|
|
}
|
|
|
|
// Unsafe stack always grows down.
|
|
StackLayout SSL(StackAlignment);
|
|
if (StackGuardSlot) {
|
|
Type *Ty = StackGuardSlot->getAllocatedType();
|
|
Align Align = std::max(DL.getPrefTypeAlign(Ty), StackGuardSlot->getAlign());
|
|
SSL.addObject(StackGuardSlot, getStaticAllocaAllocationSize(StackGuardSlot),
|
|
Align, SSC.getFullLiveRange());
|
|
}
|
|
|
|
for (Argument *Arg : ByValArguments) {
|
|
Type *Ty = Arg->getParamByValType();
|
|
uint64_t Size = DL.getTypeStoreSize(Ty);
|
|
if (Size == 0)
|
|
Size = 1; // Don't create zero-sized stack objects.
|
|
|
|
// Ensure the object is properly aligned.
|
|
Align Align = DL.getPrefTypeAlign(Ty);
|
|
if (auto A = Arg->getParamAlign())
|
|
Align = std::max(Align, *A);
|
|
SSL.addObject(Arg, Size, Align, SSC.getFullLiveRange());
|
|
}
|
|
|
|
for (AllocaInst *AI : StaticAllocas) {
|
|
Type *Ty = AI->getAllocatedType();
|
|
uint64_t Size = getStaticAllocaAllocationSize(AI);
|
|
if (Size == 0)
|
|
Size = 1; // Don't create zero-sized stack objects.
|
|
|
|
// Ensure the object is properly aligned.
|
|
Align Align = std::max(DL.getPrefTypeAlign(Ty), AI->getAlign());
|
|
|
|
SSL.addObject(AI, Size, Align,
|
|
ClColoring ? SSC.getLiveRange(AI) : NoColoringRange);
|
|
}
|
|
|
|
SSL.computeLayout();
|
|
Align FrameAlignment = SSL.getFrameAlignment();
|
|
|
|
// FIXME: tell SSL that we start at a less-then-MaxAlignment aligned location
|
|
// (AlignmentSkew).
|
|
if (FrameAlignment > StackAlignment) {
|
|
// Re-align the base pointer according to the max requested alignment.
|
|
IRB.SetInsertPoint(BasePointer->getNextNode());
|
|
BasePointer = cast<Instruction>(IRB.CreateIntToPtr(
|
|
IRB.CreateAnd(
|
|
IRB.CreatePtrToInt(BasePointer, IntPtrTy),
|
|
ConstantInt::get(IntPtrTy, ~(FrameAlignment.value() - 1))),
|
|
StackPtrTy));
|
|
}
|
|
|
|
IRB.SetInsertPoint(BasePointer->getNextNode());
|
|
|
|
if (StackGuardSlot) {
|
|
unsigned Offset = SSL.getObjectOffset(StackGuardSlot);
|
|
Value *Off =
|
|
IRB.CreatePtrAdd(BasePointer, ConstantInt::get(Int32Ty, -Offset));
|
|
Value *NewAI =
|
|
IRB.CreateBitCast(Off, StackGuardSlot->getType(), "StackGuardSlot");
|
|
|
|
// Replace alloc with the new location.
|
|
StackGuardSlot->replaceAllUsesWith(NewAI);
|
|
StackGuardSlot->eraseFromParent();
|
|
}
|
|
|
|
for (Argument *Arg : ByValArguments) {
|
|
unsigned Offset = SSL.getObjectOffset(Arg);
|
|
MaybeAlign Align(SSL.getObjectAlignment(Arg));
|
|
Type *Ty = Arg->getParamByValType();
|
|
|
|
uint64_t Size = DL.getTypeStoreSize(Ty);
|
|
if (Size == 0)
|
|
Size = 1; // Don't create zero-sized stack objects.
|
|
|
|
Value *Off =
|
|
IRB.CreatePtrAdd(BasePointer, ConstantInt::get(Int32Ty, -Offset));
|
|
Value *NewArg = IRB.CreateBitCast(Off, Arg->getType(),
|
|
Arg->getName() + ".unsafe-byval");
|
|
|
|
// Replace alloc with the new location.
|
|
replaceDbgDeclare(Arg, BasePointer, DIB, DIExpression::ApplyOffset,
|
|
-Offset);
|
|
Arg->replaceAllUsesWith(NewArg);
|
|
IRB.SetInsertPoint(cast<Instruction>(NewArg)->getNextNode());
|
|
IRB.CreateMemCpy(Off, Align, Arg, Arg->getParamAlign(), Size);
|
|
}
|
|
|
|
// Allocate space for every unsafe static AllocaInst on the unsafe stack.
|
|
for (AllocaInst *AI : StaticAllocas) {
|
|
IRB.SetInsertPoint(AI);
|
|
unsigned Offset = SSL.getObjectOffset(AI);
|
|
|
|
replaceDbgDeclare(AI, BasePointer, DIB, DIExpression::ApplyOffset, -Offset);
|
|
replaceDbgValueForAlloca(AI, BasePointer, DIB, -Offset);
|
|
|
|
// Replace uses of the alloca with the new location.
|
|
// Insert address calculation close to each use to work around PR27844.
|
|
std::string Name = std::string(AI->getName()) + ".unsafe";
|
|
while (!AI->use_empty()) {
|
|
Use &U = *AI->use_begin();
|
|
Instruction *User = cast<Instruction>(U.getUser());
|
|
|
|
// Drop lifetime markers now that this is no longer an alloca.
|
|
// SafeStack has already performed its own stack coloring.
|
|
if (User->isLifetimeStartOrEnd()) {
|
|
User->eraseFromParent();
|
|
continue;
|
|
}
|
|
|
|
Instruction *InsertBefore;
|
|
if (auto *PHI = dyn_cast<PHINode>(User))
|
|
InsertBefore = PHI->getIncomingBlock(U)->getTerminator();
|
|
else
|
|
InsertBefore = User;
|
|
|
|
IRBuilder<> IRBUser(InsertBefore);
|
|
Value *Off =
|
|
IRBUser.CreatePtrAdd(BasePointer, ConstantInt::get(Int32Ty, -Offset));
|
|
Value *Replacement =
|
|
IRBUser.CreateAddrSpaceCast(Off, AI->getType(), Name);
|
|
|
|
if (auto *PHI = dyn_cast<PHINode>(User))
|
|
// PHI nodes may have multiple incoming edges from the same BB (why??),
|
|
// all must be updated at once with the same incoming value.
|
|
PHI->setIncomingValueForBlock(PHI->getIncomingBlock(U), Replacement);
|
|
else
|
|
U.set(Replacement);
|
|
}
|
|
|
|
AI->eraseFromParent();
|
|
}
|
|
|
|
// Re-align BasePointer so that our callees would see it aligned as
|
|
// expected.
|
|
// FIXME: no need to update BasePointer in leaf functions.
|
|
unsigned FrameSize = alignTo(SSL.getFrameSize(), StackAlignment);
|
|
|
|
MDBuilder MDB(F.getContext());
|
|
SmallVector<Metadata *, 2> Data;
|
|
Data.push_back(MDB.createString("unsafe-stack-size"));
|
|
Data.push_back(MDB.createConstant(ConstantInt::get(Int32Ty, FrameSize)));
|
|
MDNode *MD = MDTuple::get(F.getContext(), Data);
|
|
F.setMetadata(LLVMContext::MD_annotation, MD);
|
|
|
|
// Update shadow stack pointer in the function epilogue.
|
|
IRB.SetInsertPoint(BasePointer->getNextNode());
|
|
|
|
Value *StaticTop =
|
|
IRB.CreatePtrAdd(BasePointer, ConstantInt::get(Int32Ty, -FrameSize),
|
|
"unsafe_stack_static_top");
|
|
IRB.CreateStore(StaticTop, UnsafeStackPtr);
|
|
return StaticTop;
|
|
}
|
|
|
|
void SafeStack::moveDynamicAllocasToUnsafeStack(
|
|
Function &F, Value *UnsafeStackPtr, AllocaInst *DynamicTop,
|
|
ArrayRef<AllocaInst *> DynamicAllocas) {
|
|
DIBuilder DIB(*F.getParent());
|
|
|
|
for (AllocaInst *AI : DynamicAllocas) {
|
|
IRBuilder<> IRB(AI);
|
|
|
|
// Compute the new SP value (after AI).
|
|
Value *ArraySize = AI->getArraySize();
|
|
if (ArraySize->getType() != IntPtrTy)
|
|
ArraySize = IRB.CreateIntCast(ArraySize, IntPtrTy, false);
|
|
|
|
Type *Ty = AI->getAllocatedType();
|
|
uint64_t TySize = DL.getTypeAllocSize(Ty);
|
|
Value *Size = IRB.CreateMul(ArraySize, ConstantInt::get(IntPtrTy, TySize));
|
|
|
|
Value *SP = IRB.CreatePtrToInt(IRB.CreateLoad(StackPtrTy, UnsafeStackPtr),
|
|
IntPtrTy);
|
|
SP = IRB.CreateSub(SP, Size);
|
|
|
|
// Align the SP value to satisfy the AllocaInst, type and stack alignments.
|
|
auto Align = std::max(std::max(DL.getPrefTypeAlign(Ty), AI->getAlign()),
|
|
StackAlignment);
|
|
|
|
Value *NewTop = IRB.CreateIntToPtr(
|
|
IRB.CreateAnd(SP,
|
|
ConstantInt::get(IntPtrTy, ~uint64_t(Align.value() - 1))),
|
|
StackPtrTy);
|
|
|
|
// Save the stack pointer.
|
|
IRB.CreateStore(NewTop, UnsafeStackPtr);
|
|
if (DynamicTop)
|
|
IRB.CreateStore(NewTop, DynamicTop);
|
|
|
|
Value *NewAI = IRB.CreatePointerCast(NewTop, AI->getType());
|
|
if (AI->hasName() && isa<Instruction>(NewAI))
|
|
NewAI->takeName(AI);
|
|
|
|
replaceDbgDeclare(AI, NewAI, DIB, DIExpression::ApplyOffset, 0);
|
|
AI->replaceAllUsesWith(NewAI);
|
|
AI->eraseFromParent();
|
|
}
|
|
|
|
if (!DynamicAllocas.empty()) {
|
|
// Now go through the instructions again, replacing stacksave/stackrestore.
|
|
for (Instruction &I : llvm::make_early_inc_range(instructions(&F))) {
|
|
auto *II = dyn_cast<IntrinsicInst>(&I);
|
|
if (!II)
|
|
continue;
|
|
|
|
if (II->getIntrinsicID() == Intrinsic::stacksave) {
|
|
IRBuilder<> IRB(II);
|
|
Instruction *LI = IRB.CreateLoad(StackPtrTy, UnsafeStackPtr);
|
|
LI->takeName(II);
|
|
II->replaceAllUsesWith(LI);
|
|
II->eraseFromParent();
|
|
} else if (II->getIntrinsicID() == Intrinsic::stackrestore) {
|
|
IRBuilder<> IRB(II);
|
|
Instruction *SI = IRB.CreateStore(II->getArgOperand(0), UnsafeStackPtr);
|
|
SI->takeName(II);
|
|
assert(II->use_empty());
|
|
II->eraseFromParent();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
bool SafeStack::ShouldInlinePointerAddress(CallInst &CI) {
|
|
Function *Callee = CI.getCalledFunction();
|
|
if (CI.hasFnAttr(Attribute::AlwaysInline) &&
|
|
isInlineViable(*Callee).isSuccess())
|
|
return true;
|
|
if (Callee->isInterposable() || Callee->hasFnAttribute(Attribute::NoInline) ||
|
|
CI.isNoInline())
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
void SafeStack::TryInlinePointerAddress() {
|
|
auto *CI = dyn_cast<CallInst>(UnsafeStackPtr);
|
|
if (!CI)
|
|
return;
|
|
|
|
if(F.hasOptNone())
|
|
return;
|
|
|
|
Function *Callee = CI->getCalledFunction();
|
|
if (!Callee || Callee->isDeclaration())
|
|
return;
|
|
|
|
if (!ShouldInlinePointerAddress(*CI))
|
|
return;
|
|
|
|
InlineFunctionInfo IFI;
|
|
InlineFunction(*CI, IFI);
|
|
}
|
|
|
|
bool SafeStack::run() {
|
|
assert(F.hasFnAttribute(Attribute::SafeStack) &&
|
|
"Can't run SafeStack on a function without the attribute");
|
|
assert(!F.isDeclaration() && "Can't run SafeStack on a function declaration");
|
|
|
|
++NumFunctions;
|
|
|
|
SmallVector<AllocaInst *, 16> StaticAllocas;
|
|
SmallVector<AllocaInst *, 4> DynamicAllocas;
|
|
SmallVector<Argument *, 4> ByValArguments;
|
|
SmallVector<Instruction *, 4> Returns;
|
|
|
|
// Collect all points where stack gets unwound and needs to be restored
|
|
// This is only necessary because the runtime (setjmp and unwind code) is
|
|
// not aware of the unsafe stack and won't unwind/restore it properly.
|
|
// To work around this problem without changing the runtime, we insert
|
|
// instrumentation to restore the unsafe stack pointer when necessary.
|
|
SmallVector<Instruction *, 4> StackRestorePoints;
|
|
|
|
// Find all static and dynamic alloca instructions that must be moved to the
|
|
// unsafe stack, all return instructions and stack restore points.
|
|
findInsts(F, StaticAllocas, DynamicAllocas, ByValArguments, Returns,
|
|
StackRestorePoints);
|
|
|
|
if (StaticAllocas.empty() && DynamicAllocas.empty() &&
|
|
ByValArguments.empty() && StackRestorePoints.empty())
|
|
return false; // Nothing to do in this function.
|
|
|
|
if (!StaticAllocas.empty() || !DynamicAllocas.empty() ||
|
|
!ByValArguments.empty())
|
|
++NumUnsafeStackFunctions; // This function has the unsafe stack.
|
|
|
|
if (!StackRestorePoints.empty())
|
|
++NumUnsafeStackRestorePointsFunctions;
|
|
|
|
IRBuilder<> IRB(&F.front(), F.begin()->getFirstInsertionPt());
|
|
// Calls must always have a debug location, or else inlining breaks. So
|
|
// we explicitly set a artificial debug location here.
|
|
if (DISubprogram *SP = F.getSubprogram())
|
|
IRB.SetCurrentDebugLocation(
|
|
DILocation::get(SP->getContext(), SP->getScopeLine(), 0, SP));
|
|
if (SafeStackUsePointerAddress) {
|
|
const char *SafestackPointerAddressName =
|
|
TL.getLibcallName(RTLIB::SAFESTACK_POINTER_ADDRESS);
|
|
if (!SafestackPointerAddressName) {
|
|
F.getContext().emitError(
|
|
"no libcall available for safestack pointer address");
|
|
return false;
|
|
}
|
|
|
|
FunctionCallee Fn = F.getParent()->getOrInsertFunction(
|
|
SafestackPointerAddressName, IRB.getPtrTy(0));
|
|
UnsafeStackPtr = IRB.CreateCall(Fn);
|
|
} else {
|
|
UnsafeStackPtr = TL.getSafeStackPointerLocation(IRB);
|
|
}
|
|
|
|
// Load the current stack pointer (we'll also use it as a base pointer).
|
|
// FIXME: use a dedicated register for it ?
|
|
Instruction *BasePointer =
|
|
IRB.CreateLoad(StackPtrTy, UnsafeStackPtr, false, "unsafe_stack_ptr");
|
|
assert(BasePointer->getType() == StackPtrTy);
|
|
|
|
AllocaInst *StackGuardSlot = nullptr;
|
|
// FIXME: implement weaker forms of stack protector.
|
|
if (F.hasFnAttribute(Attribute::StackProtect) ||
|
|
F.hasFnAttribute(Attribute::StackProtectStrong) ||
|
|
F.hasFnAttribute(Attribute::StackProtectReq)) {
|
|
Value *StackGuard = getStackGuard(IRB, F);
|
|
StackGuardSlot = IRB.CreateAlloca(StackPtrTy, nullptr);
|
|
IRB.CreateStore(StackGuard, StackGuardSlot);
|
|
|
|
for (Instruction *RI : Returns) {
|
|
IRBuilder<> IRBRet(RI);
|
|
checkStackGuard(IRBRet, F, *RI, StackGuardSlot, StackGuard);
|
|
}
|
|
}
|
|
|
|
// The top of the unsafe stack after all unsafe static allocas are
|
|
// allocated.
|
|
Value *StaticTop = moveStaticAllocasToUnsafeStack(
|
|
IRB, F, StaticAllocas, ByValArguments, BasePointer, StackGuardSlot);
|
|
|
|
// Safe stack object that stores the current unsafe stack top. It is updated
|
|
// as unsafe dynamic (non-constant-sized) allocas are allocated and freed.
|
|
// This is only needed if we need to restore stack pointer after longjmp
|
|
// or exceptions, and we have dynamic allocations.
|
|
// FIXME: a better alternative might be to store the unsafe stack pointer
|
|
// before setjmp / invoke instructions.
|
|
AllocaInst *DynamicTop = createStackRestorePoints(
|
|
IRB, F, StackRestorePoints, StaticTop, !DynamicAllocas.empty());
|
|
|
|
// Handle dynamic allocas.
|
|
moveDynamicAllocasToUnsafeStack(F, UnsafeStackPtr, DynamicTop,
|
|
DynamicAllocas);
|
|
|
|
// Restore the unsafe stack pointer before each return.
|
|
for (Instruction *RI : Returns) {
|
|
IRB.SetInsertPoint(RI);
|
|
IRB.CreateStore(BasePointer, UnsafeStackPtr);
|
|
}
|
|
|
|
TryInlinePointerAddress();
|
|
|
|
LLVM_DEBUG(dbgs() << "[SafeStack] safestack applied\n");
|
|
return true;
|
|
}
|
|
|
|
class SafeStackLegacyPass : public FunctionPass {
|
|
const TargetMachine *TM = nullptr;
|
|
|
|
public:
|
|
static char ID; // Pass identification, replacement for typeid..
|
|
|
|
SafeStackLegacyPass() : FunctionPass(ID) {
|
|
initializeSafeStackLegacyPassPass(*PassRegistry::getPassRegistry());
|
|
}
|
|
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override {
|
|
AU.addRequired<TargetPassConfig>();
|
|
AU.addRequired<TargetLibraryInfoWrapperPass>();
|
|
AU.addRequired<AssumptionCacheTracker>();
|
|
AU.addPreserved<DominatorTreeWrapperPass>();
|
|
}
|
|
|
|
bool runOnFunction(Function &F) override {
|
|
LLVM_DEBUG(dbgs() << "[SafeStack] Function: " << F.getName() << "\n");
|
|
|
|
if (!F.hasFnAttribute(Attribute::SafeStack)) {
|
|
LLVM_DEBUG(dbgs() << "[SafeStack] safestack is not requested"
|
|
" for this function\n");
|
|
return false;
|
|
}
|
|
|
|
if (F.isDeclaration()) {
|
|
LLVM_DEBUG(dbgs() << "[SafeStack] function definition"
|
|
" is not available\n");
|
|
return false;
|
|
}
|
|
|
|
TM = &getAnalysis<TargetPassConfig>().getTM<TargetMachine>();
|
|
auto *TL = TM->getSubtargetImpl(F)->getTargetLowering();
|
|
if (!TL)
|
|
report_fatal_error("TargetLowering instance is required");
|
|
|
|
auto *DL = &F.getDataLayout();
|
|
auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
|
|
auto &ACT = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
|
|
|
|
// Compute DT and LI only for functions that have the attribute.
|
|
// This is only useful because the legacy pass manager doesn't let us
|
|
// compute analyzes lazily.
|
|
|
|
DominatorTree *DT;
|
|
bool ShouldPreserveDominatorTree;
|
|
std::optional<DominatorTree> LazilyComputedDomTree;
|
|
|
|
// Do we already have a DominatorTree available from the previous pass?
|
|
// Note that we should *NOT* require it, to avoid the case where we end up
|
|
// not needing it, but the legacy PM would have computed it for us anyways.
|
|
if (auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>()) {
|
|
DT = &DTWP->getDomTree();
|
|
ShouldPreserveDominatorTree = true;
|
|
} else {
|
|
// Otherwise, we need to compute it.
|
|
LazilyComputedDomTree.emplace(F);
|
|
DT = &*LazilyComputedDomTree;
|
|
ShouldPreserveDominatorTree = false;
|
|
}
|
|
|
|
// Likewise, lazily compute loop info.
|
|
LoopInfo LI(*DT);
|
|
|
|
DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy);
|
|
|
|
ScalarEvolution SE(F, TLI, ACT, *DT, LI);
|
|
|
|
return SafeStack(F, *TL, *DL, ShouldPreserveDominatorTree ? &DTU : nullptr,
|
|
SE)
|
|
.run();
|
|
}
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
PreservedAnalyses SafeStackPass::run(Function &F,
|
|
FunctionAnalysisManager &FAM) {
|
|
LLVM_DEBUG(dbgs() << "[SafeStack] Function: " << F.getName() << "\n");
|
|
|
|
if (!F.hasFnAttribute(Attribute::SafeStack)) {
|
|
LLVM_DEBUG(dbgs() << "[SafeStack] safestack is not requested"
|
|
" for this function\n");
|
|
return PreservedAnalyses::all();
|
|
}
|
|
|
|
if (F.isDeclaration()) {
|
|
LLVM_DEBUG(dbgs() << "[SafeStack] function definition"
|
|
" is not available\n");
|
|
return PreservedAnalyses::all();
|
|
}
|
|
|
|
auto *TL = TM->getSubtargetImpl(F)->getTargetLowering();
|
|
if (!TL)
|
|
report_fatal_error("TargetLowering instance is required");
|
|
|
|
auto &DL = F.getDataLayout();
|
|
|
|
// preserve DominatorTree
|
|
auto &DT = FAM.getResult<DominatorTreeAnalysis>(F);
|
|
auto &SE = FAM.getResult<ScalarEvolutionAnalysis>(F);
|
|
DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy);
|
|
|
|
bool Changed = SafeStack(F, *TL, DL, &DTU, SE).run();
|
|
|
|
if (!Changed)
|
|
return PreservedAnalyses::all();
|
|
PreservedAnalyses PA;
|
|
PA.preserve<DominatorTreeAnalysis>();
|
|
return PA;
|
|
}
|
|
|
|
char SafeStackLegacyPass::ID = 0;
|
|
|
|
INITIALIZE_PASS_BEGIN(SafeStackLegacyPass, DEBUG_TYPE,
|
|
"Safe Stack instrumentation pass", false, false)
|
|
INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
|
|
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
|
|
INITIALIZE_PASS_END(SafeStackLegacyPass, DEBUG_TYPE,
|
|
"Safe Stack instrumentation pass", false, false)
|
|
|
|
FunctionPass *llvm::createSafeStackPass() { return new SafeStackLegacyPass(); }
|