llvm-project/llvm/lib/MC/MCAssembler.cpp
2025-07-20 15:01:13 -07:00

1074 lines
35 KiB
C++

//===- lib/MC/MCAssembler.cpp - Assembler Backend Implementation ----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "llvm/MC/MCAssembler.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/Twine.h"
#include "llvm/MC/MCAsmBackend.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/MC/MCCodeEmitter.h"
#include "llvm/MC/MCCodeView.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCDwarf.h"
#include "llvm/MC/MCExpr.h"
#include "llvm/MC/MCFixup.h"
#include "llvm/MC/MCInst.h"
#include "llvm/MC/MCObjectWriter.h"
#include "llvm/MC/MCSection.h"
#include "llvm/MC/MCSymbol.h"
#include "llvm/MC/MCValue.h"
#include "llvm/Support/Alignment.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/EndianStream.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/LEB128.h"
#include "llvm/Support/raw_ostream.h"
#include <cassert>
#include <cstdint>
#include <tuple>
#include <utility>
using namespace llvm;
namespace llvm {
class MCSubtargetInfo;
}
#define DEBUG_TYPE "assembler"
namespace {
namespace stats {
STATISTIC(EmittedFragments, "Number of emitted assembler fragments - total");
STATISTIC(EmittedRelaxableFragments,
"Number of emitted assembler fragments - relaxable");
STATISTIC(EmittedDataFragments,
"Number of emitted assembler fragments - data");
STATISTIC(EmittedAlignFragments,
"Number of emitted assembler fragments - align");
STATISTIC(EmittedFillFragments,
"Number of emitted assembler fragments - fill");
STATISTIC(EmittedNopsFragments, "Number of emitted assembler fragments - nops");
STATISTIC(EmittedOrgFragments, "Number of emitted assembler fragments - org");
STATISTIC(evaluateFixup, "Number of evaluated fixups");
STATISTIC(ObjectBytes, "Number of emitted object file bytes");
STATISTIC(RelaxationSteps, "Number of assembler layout and relaxation steps");
STATISTIC(RelaxedInstructions, "Number of relaxed instructions");
} // end namespace stats
} // end anonymous namespace
// FIXME FIXME FIXME: There are number of places in this file where we convert
// what is a 64-bit assembler value used for computation into a value in the
// object file, which may truncate it. We should detect that truncation where
// invalid and report errors back.
/* *** */
MCAssembler::MCAssembler(MCContext &Context,
std::unique_ptr<MCAsmBackend> Backend,
std::unique_ptr<MCCodeEmitter> Emitter,
std::unique_ptr<MCObjectWriter> Writer)
: Context(Context), Backend(std::move(Backend)),
Emitter(std::move(Emitter)), Writer(std::move(Writer)) {
if (this->Backend)
this->Backend->setAssembler(this);
if (this->Writer)
this->Writer->setAssembler(this);
}
void MCAssembler::reset() {
HasLayout = false;
HasFinalLayout = false;
RelaxAll = false;
Sections.clear();
Symbols.clear();
ThumbFuncs.clear();
// reset objects owned by us
if (getBackendPtr())
getBackendPtr()->reset();
if (getEmitterPtr())
getEmitterPtr()->reset();
if (Writer)
Writer->reset();
}
bool MCAssembler::registerSection(MCSection &Section) {
if (Section.isRegistered())
return false;
assert(Section.curFragList()->Head && "allocInitialFragment not called");
Sections.push_back(&Section);
Section.setIsRegistered(true);
return true;
}
bool MCAssembler::isThumbFunc(const MCSymbol *Symbol) const {
if (ThumbFuncs.count(Symbol))
return true;
if (!Symbol->isVariable())
return false;
const MCExpr *Expr = Symbol->getVariableValue();
MCValue V;
if (!Expr->evaluateAsRelocatable(V, nullptr))
return false;
if (V.getSubSym() || V.getSpecifier())
return false;
auto *Sym = V.getAddSym();
if (!Sym || V.getSpecifier())
return false;
if (!isThumbFunc(Sym))
return false;
ThumbFuncs.insert(Symbol); // Cache it.
return true;
}
bool MCAssembler::evaluateFixup(const MCFragment &F, MCFixup &Fixup,
MCValue &Target, uint64_t &Value,
bool RecordReloc,
MutableArrayRef<char> Contents) const {
++stats::evaluateFixup;
// FIXME: This code has some duplication with recordRelocation. We should
// probably merge the two into a single callback that tries to evaluate a
// fixup and records a relocation if one is needed.
// On error claim to have completely evaluated the fixup, to prevent any
// further processing from being done.
const MCExpr *Expr = Fixup.getValue();
Value = 0;
if (!Expr->evaluateAsRelocatable(Target, this)) {
reportError(Fixup.getLoc(), "expected relocatable expression");
return true;
}
bool IsResolved = false;
if (auto State = getBackend().evaluateFixup(F, Fixup, Target, Value)) {
IsResolved = *State;
} else {
const MCSymbol *Add = Target.getAddSym();
const MCSymbol *Sub = Target.getSubSym();
Value += Target.getConstant();
if (Add && Add->isDefined())
Value += getSymbolOffset(*Add);
if (Sub && Sub->isDefined())
Value -= getSymbolOffset(*Sub);
if (Fixup.isPCRel()) {
Value -= getFragmentOffset(F) + Fixup.getOffset();
if (Add && !Sub && !Add->isUndefined() && !Add->isAbsolute()) {
IsResolved = getWriter().isSymbolRefDifferenceFullyResolvedImpl(
*Add, F, false, true);
}
} else {
IsResolved = Target.isAbsolute();
}
}
if (!RecordReloc)
return IsResolved;
if (IsResolved && mc::isRelocRelocation(Fixup.getKind()))
IsResolved = false;
getBackend().applyFixup(F, Fixup, Target, Contents, Value, IsResolved);
return true;
}
uint64_t MCAssembler::computeFragmentSize(const MCFragment &F) const {
assert(getBackendPtr() && "Requires assembler backend");
switch (F.getKind()) {
case MCFragment::FT_Data:
case MCFragment::FT_Relaxable:
case MCFragment::FT_Align:
case MCFragment::FT_LEB:
case MCFragment::FT_Dwarf:
case MCFragment::FT_DwarfFrame:
case MCFragment::FT_CVInlineLines:
case MCFragment::FT_CVDefRange:
return F.getSize();
case MCFragment::FT_Fill: {
auto &FF = cast<MCFillFragment>(F);
int64_t NumValues = 0;
if (!FF.getNumValues().evaluateKnownAbsolute(NumValues, *this)) {
recordError(FF.getLoc(), "expected assembly-time absolute expression");
return 0;
}
int64_t Size = NumValues * FF.getValueSize();
if (Size < 0) {
recordError(FF.getLoc(), "invalid number of bytes");
return 0;
}
return Size;
}
case MCFragment::FT_Nops:
return cast<MCNopsFragment>(F).getNumBytes();
case MCFragment::FT_BoundaryAlign:
return cast<MCBoundaryAlignFragment>(F).getSize();
case MCFragment::FT_SymbolId:
return 4;
case MCFragment::FT_Org: {
const MCOrgFragment &OF = cast<MCOrgFragment>(F);
MCValue Value;
if (!OF.getOffset().evaluateAsValue(Value, *this)) {
recordError(OF.getLoc(), "expected assembly-time absolute expression");
return 0;
}
uint64_t FragmentOffset = getFragmentOffset(OF);
int64_t TargetLocation = Value.getConstant();
if (const auto *SA = Value.getAddSym()) {
uint64_t Val;
if (!getSymbolOffset(*SA, Val)) {
recordError(OF.getLoc(), "expected absolute expression");
return 0;
}
TargetLocation += Val;
}
int64_t Size = TargetLocation - FragmentOffset;
if (Size < 0 || Size >= 0x40000000) {
recordError(OF.getLoc(), "invalid .org offset '" + Twine(TargetLocation) +
"' (at offset '" + Twine(FragmentOffset) +
"')");
return 0;
}
return Size;
}
}
llvm_unreachable("invalid fragment kind");
}
// Simple getSymbolOffset helper for the non-variable case.
static bool getLabelOffset(const MCAssembler &Asm, const MCSymbol &S,
bool ReportError, uint64_t &Val) {
if (!S.getFragment()) {
if (ReportError)
reportFatalUsageError("cannot evaluate undefined symbol '" + S.getName() +
"'");
return false;
}
Val = Asm.getFragmentOffset(*S.getFragment()) + S.getOffset();
return true;
}
static bool getSymbolOffsetImpl(const MCAssembler &Asm, const MCSymbol &S,
bool ReportError, uint64_t &Val) {
if (!S.isVariable())
return getLabelOffset(Asm, S, ReportError, Val);
// If SD is a variable, evaluate it.
MCValue Target;
if (!S.getVariableValue()->evaluateAsValue(Target, Asm))
reportFatalUsageError("cannot evaluate equated symbol '" + S.getName() +
"'");
uint64_t Offset = Target.getConstant();
const MCSymbol *A = Target.getAddSym();
if (A) {
uint64_t ValA;
// FIXME: On most platforms, `Target`'s component symbols are labels from
// having been simplified during evaluation, but on Mach-O they can be
// variables due to PR19203. This, and the line below for `B` can be
// restored to call `getLabelOffset` when PR19203 is fixed.
if (!getSymbolOffsetImpl(Asm, *A, ReportError, ValA))
return false;
Offset += ValA;
}
const MCSymbol *B = Target.getSubSym();
if (B) {
uint64_t ValB;
if (!getSymbolOffsetImpl(Asm, *B, ReportError, ValB))
return false;
Offset -= ValB;
}
Val = Offset;
return true;
}
bool MCAssembler::getSymbolOffset(const MCSymbol &S, uint64_t &Val) const {
return getSymbolOffsetImpl(*this, S, false, Val);
}
uint64_t MCAssembler::getSymbolOffset(const MCSymbol &S) const {
uint64_t Val;
getSymbolOffsetImpl(*this, S, true, Val);
return Val;
}
const MCSymbol *MCAssembler::getBaseSymbol(const MCSymbol &Symbol) const {
assert(HasLayout);
if (!Symbol.isVariable())
return &Symbol;
const MCExpr *Expr = Symbol.getVariableValue();
MCValue Value;
if (!Expr->evaluateAsValue(Value, *this)) {
reportError(Expr->getLoc(), "expression could not be evaluated");
return nullptr;
}
const MCSymbol *SymB = Value.getSubSym();
if (SymB) {
reportError(Expr->getLoc(),
Twine("symbol '") + SymB->getName() +
"' could not be evaluated in a subtraction expression");
return nullptr;
}
const MCSymbol *A = Value.getAddSym();
if (!A)
return nullptr;
const MCSymbol &ASym = *A;
if (ASym.isCommon()) {
reportError(Expr->getLoc(), "Common symbol '" + ASym.getName() +
"' cannot be used in assignment expr");
return nullptr;
}
return &ASym;
}
uint64_t MCAssembler::getSectionAddressSize(const MCSection &Sec) const {
assert(HasLayout);
// The size is the last fragment's end offset.
const MCFragment &F = *Sec.curFragList()->Tail;
return getFragmentOffset(F) + computeFragmentSize(F);
}
uint64_t MCAssembler::getSectionFileSize(const MCSection &Sec) const {
// Virtual sections have no file size.
if (Sec.isBssSection())
return 0;
return getSectionAddressSize(Sec);
}
bool MCAssembler::registerSymbol(const MCSymbol &Symbol) {
bool Changed = !Symbol.isRegistered();
if (Changed) {
Symbol.setIsRegistered(true);
Symbols.push_back(&Symbol);
}
return Changed;
}
void MCAssembler::addRelocDirective(RelocDirective RD) {
relocDirectives.push_back(RD);
}
/// Write the fragment \p F to the output file.
static void writeFragment(raw_ostream &OS, const MCAssembler &Asm,
const MCFragment &F) {
// FIXME: Embed in fragments instead?
uint64_t FragmentSize = Asm.computeFragmentSize(F);
llvm::endianness Endian = Asm.getBackend().Endian;
// This variable (and its dummy usage) is to participate in the assert at
// the end of the function.
uint64_t Start = OS.tell();
(void) Start;
++stats::EmittedFragments;
switch (F.getKind()) {
case MCFragment::FT_Data:
case MCFragment::FT_Relaxable:
case MCFragment::FT_LEB:
case MCFragment::FT_Dwarf:
case MCFragment::FT_DwarfFrame:
case MCFragment::FT_CVInlineLines:
case MCFragment::FT_CVDefRange: {
if (F.getKind() == MCFragment::FT_Data)
++stats::EmittedDataFragments;
else if (F.getKind() == MCFragment::FT_Relaxable)
++stats::EmittedRelaxableFragments;
const auto &EF = cast<MCFragment>(F);
OS << StringRef(EF.getContents().data(), EF.getContents().size());
OS << StringRef(EF.getVarContents().data(), EF.getVarContents().size());
} break;
case MCFragment::FT_Align: {
++stats::EmittedAlignFragments;
OS << StringRef(F.getContents().data(), F.getContents().size());
assert(F.getAlignFillLen() &&
"Invalid virtual align in concrete fragment!");
uint64_t Count = (FragmentSize - F.getFixedSize()) / F.getAlignFillLen();
assert((FragmentSize - F.getFixedSize()) % F.getAlignFillLen() == 0 &&
"computeFragmentSize computed size is incorrect");
// In the nops mode, call the backend hook to write `Count` nops.
if (F.hasAlignEmitNops()) {
if (!Asm.getBackend().writeNopData(OS, Count, F.getSubtargetInfo()))
reportFatalInternalError("unable to write nop sequence of " +
Twine(Count) + " bytes");
} else {
// Otherwise, write out in multiples of the value size.
for (uint64_t i = 0; i != Count; ++i) {
switch (F.getAlignFillLen()) {
default:
llvm_unreachable("Invalid size!");
case 1:
OS << char(F.getAlignFill());
break;
case 2:
support::endian::write<uint16_t>(OS, F.getAlignFill(), Endian);
break;
case 4:
support::endian::write<uint32_t>(OS, F.getAlignFill(), Endian);
break;
case 8:
support::endian::write<uint64_t>(OS, F.getAlignFill(), Endian);
break;
}
}
}
} break;
case MCFragment::FT_Fill: {
++stats::EmittedFillFragments;
const MCFillFragment &FF = cast<MCFillFragment>(F);
uint64_t V = FF.getValue();
unsigned VSize = FF.getValueSize();
const unsigned MaxChunkSize = 16;
char Data[MaxChunkSize];
assert(0 < VSize && VSize <= MaxChunkSize && "Illegal fragment fill size");
// Duplicate V into Data as byte vector to reduce number of
// writes done. As such, do endian conversion here.
for (unsigned I = 0; I != VSize; ++I) {
unsigned index = Endian == llvm::endianness::little ? I : (VSize - I - 1);
Data[I] = uint8_t(V >> (index * 8));
}
for (unsigned I = VSize; I < MaxChunkSize; ++I)
Data[I] = Data[I - VSize];
// Set to largest multiple of VSize in Data.
const unsigned NumPerChunk = MaxChunkSize / VSize;
// Set ChunkSize to largest multiple of VSize in Data
const unsigned ChunkSize = VSize * NumPerChunk;
// Do copies by chunk.
StringRef Ref(Data, ChunkSize);
for (uint64_t I = 0, E = FragmentSize / ChunkSize; I != E; ++I)
OS << Ref;
// do remainder if needed.
unsigned TrailingCount = FragmentSize % ChunkSize;
if (TrailingCount)
OS.write(Data, TrailingCount);
break;
}
case MCFragment::FT_Nops: {
++stats::EmittedNopsFragments;
const MCNopsFragment &NF = cast<MCNopsFragment>(F);
int64_t NumBytes = NF.getNumBytes();
int64_t ControlledNopLength = NF.getControlledNopLength();
int64_t MaximumNopLength =
Asm.getBackend().getMaximumNopSize(*NF.getSubtargetInfo());
assert(NumBytes > 0 && "Expected positive NOPs fragment size");
assert(ControlledNopLength >= 0 && "Expected non-negative NOP size");
if (ControlledNopLength > MaximumNopLength) {
Asm.reportError(NF.getLoc(), "illegal NOP size " +
std::to_string(ControlledNopLength) +
". (expected within [0, " +
std::to_string(MaximumNopLength) + "])");
// Clamp the NOP length as reportError does not stop the execution
// immediately.
ControlledNopLength = MaximumNopLength;
}
// Use maximum value if the size of each NOP is not specified
if (!ControlledNopLength)
ControlledNopLength = MaximumNopLength;
while (NumBytes) {
uint64_t NumBytesToEmit =
(uint64_t)std::min(NumBytes, ControlledNopLength);
assert(NumBytesToEmit && "try to emit empty NOP instruction");
if (!Asm.getBackend().writeNopData(OS, NumBytesToEmit,
NF.getSubtargetInfo())) {
report_fatal_error("unable to write nop sequence of the remaining " +
Twine(NumBytesToEmit) + " bytes");
break;
}
NumBytes -= NumBytesToEmit;
}
break;
}
case MCFragment::FT_BoundaryAlign: {
const MCBoundaryAlignFragment &BF = cast<MCBoundaryAlignFragment>(F);
if (!Asm.getBackend().writeNopData(OS, FragmentSize, BF.getSubtargetInfo()))
report_fatal_error("unable to write nop sequence of " +
Twine(FragmentSize) + " bytes");
break;
}
case MCFragment::FT_SymbolId: {
const MCSymbolIdFragment &SF = cast<MCSymbolIdFragment>(F);
support::endian::write<uint32_t>(OS, SF.getSymbol()->getIndex(), Endian);
break;
}
case MCFragment::FT_Org: {
++stats::EmittedOrgFragments;
const MCOrgFragment &OF = cast<MCOrgFragment>(F);
for (uint64_t i = 0, e = FragmentSize; i != e; ++i)
OS << char(OF.getValue());
break;
}
}
assert(OS.tell() - Start == FragmentSize &&
"The stream should advance by fragment size");
}
void MCAssembler::writeSectionData(raw_ostream &OS,
const MCSection *Sec) const {
assert(getBackendPtr() && "Expected assembler backend");
if (Sec->isBssSection()) {
assert(getSectionFileSize(*Sec) == 0 && "Invalid size for section!");
// Ensure no fixups or non-zero bytes are written to BSS sections, catching
// errors in both input assembly code and MCStreamer API usage. Location is
// not tracked for efficiency.
auto Fn = [](char c) { return c != 0; };
for (const MCFragment &F : *Sec) {
bool HasNonZero = false;
switch (F.getKind()) {
default:
reportFatalInternalError("BSS section '" + Sec->getName() +
"' contains invalid fragment");
break;
case MCFragment::FT_Data:
case MCFragment::FT_Relaxable:
HasNonZero =
any_of(F.getContents(), Fn) || any_of(F.getVarContents(), Fn);
break;
case MCFragment::FT_Align:
// Disallowed for API usage. AsmParser changes non-zero fill values to
// 0.
assert(F.getAlignFill() == 0 && "Invalid align in virtual section!");
break;
case MCFragment::FT_Fill:
HasNonZero = cast<MCFillFragment>(F).getValue() != 0;
break;
case MCFragment::FT_Org:
HasNonZero = cast<MCOrgFragment>(F).getValue() != 0;
break;
}
if (HasNonZero) {
reportError(SMLoc(), "BSS section '" + Sec->getName() +
"' cannot have non-zero bytes");
break;
}
if (F.getFixups().size() || F.getVarFixups().size()) {
reportError(SMLoc(),
"BSS section '" + Sec->getName() + "' cannot have fixups");
break;
}
}
return;
}
uint64_t Start = OS.tell();
(void)Start;
for (const MCFragment &F : *Sec)
writeFragment(OS, *this, F);
flushPendingErrors();
assert(getContext().hadError() ||
OS.tell() - Start == getSectionAddressSize(*Sec));
}
void MCAssembler::layout() {
assert(getBackendPtr() && "Expected assembler backend");
DEBUG_WITH_TYPE("mc-dump-pre", {
errs() << "assembler backend - pre-layout\n--\n";
dump();
});
// Assign section ordinals.
unsigned SectionIndex = 0;
for (MCSection &Sec : *this) {
Sec.setOrdinal(SectionIndex++);
// Chain together fragments from all subsections.
if (Sec.Subsections.size() > 1) {
MCFragment Dummy;
MCFragment *Tail = &Dummy;
for (auto &[_, List] : Sec.Subsections) {
assert(List.Head);
Tail->Next = List.Head;
Tail = List.Tail;
}
Sec.Subsections.clear();
Sec.Subsections.push_back({0u, {Dummy.getNext(), Tail}});
Sec.CurFragList = &Sec.Subsections[0].second;
unsigned FragmentIndex = 0;
for (MCFragment &Frag : Sec)
Frag.setLayoutOrder(FragmentIndex++);
}
}
// Layout until everything fits.
this->HasLayout = true;
for (MCSection &Sec : *this)
layoutSection(Sec);
unsigned FirstStable = Sections.size();
while ((FirstStable = relaxOnce(FirstStable)) > 0)
if (getContext().hadError())
return;
// Some targets might want to adjust fragment offsets. If so, perform another
// layout iteration.
if (getBackend().finishLayout(*this))
for (MCSection &Sec : *this)
layoutSection(Sec);
flushPendingErrors();
DEBUG_WITH_TYPE("mc-dump", {
errs() << "assembler backend - final-layout\n--\n";
dump(); });
// Allow the object writer a chance to perform post-layout binding (for
// example, to set the index fields in the symbol data).
getWriter().executePostLayoutBinding();
// Fragment sizes are finalized. For RISC-V linker relaxation, this flag
// helps check whether a PC-relative fixup is fully resolved.
this->HasFinalLayout = true;
// Resolve .reloc offsets and add fixups.
for (auto &PF : relocDirectives) {
MCValue Res;
auto &O = PF.Offset;
if (!O.evaluateAsValue(Res, *this)) {
getContext().reportError(O.getLoc(), ".reloc offset is not relocatable");
continue;
}
auto *Sym = Res.getAddSym();
auto *F = Sym ? Sym->getFragment() : nullptr;
auto *Sec = F ? F->getParent() : nullptr;
if (Res.getSubSym() || !Sec) {
getContext().reportError(O.getLoc(),
".reloc offset is not relative to a section");
continue;
}
uint64_t Offset = Sym ? Sym->getOffset() + Res.getConstant() : 0;
F->addFixup(MCFixup::create(Offset, PF.Expr, PF.Kind));
}
// Evaluate and apply the fixups, generating relocation entries as necessary.
for (MCSection &Sec : *this) {
for (MCFragment &F : Sec) {
// Process fragments with fixups here.
auto Contents = F.getContents();
for (MCFixup &Fixup : F.getFixups()) {
uint64_t FixedValue;
MCValue Target;
evaluateFixup(F, Fixup, Target, FixedValue,
/*RecordReloc=*/true, Contents);
}
if (F.getVarFixups().size()) {
// In the variable part, fixup offsets are relative to the fixed part's
// start. Extend the variable contents to the left to account for the
// fixed part size.
Contents = MutableArrayRef(F.getParent()->ContentStorage)
.slice(F.VarContentStart - Contents.size(), F.getSize());
for (MCFixup &Fixup : F.getVarFixups()) {
uint64_t FixedValue;
MCValue Target;
evaluateFixup(F, Fixup, Target, FixedValue,
/*RecordReloc=*/true, Contents);
}
}
}
}
}
void MCAssembler::Finish() {
layout();
// Write the object file.
stats::ObjectBytes += getWriter().writeObject();
HasLayout = false;
assert(PendingErrors.empty());
}
bool MCAssembler::fixupNeedsRelaxation(const MCFragment &F,
const MCFixup &Fixup) const {
assert(getBackendPtr() && "Expected assembler backend");
MCValue Target;
uint64_t Value;
bool Resolved = evaluateFixup(F, const_cast<MCFixup &>(Fixup), Target, Value,
/*RecordReloc=*/false, {});
return getBackend().fixupNeedsRelaxationAdvanced(F, Fixup, Target, Value,
Resolved);
}
bool MCAssembler::relaxInstruction(MCFragment &F) {
assert(getEmitterPtr() &&
"Expected CodeEmitter defined for relaxInstruction");
// If this inst doesn't ever need relaxation, ignore it. This occurs when we
// are intentionally pushing out inst fragments, or because we relaxed a
// previous instruction to one that doesn't need relaxation.
if (!getBackend().mayNeedRelaxation(F.getOpcode(), F.getOperands(),
*F.getSubtargetInfo()))
return false;
bool DoRelax = false;
for (const MCFixup &Fixup : F.getVarFixups())
if ((DoRelax = fixupNeedsRelaxation(F, Fixup)))
break;
if (!DoRelax)
return false;
++stats::RelaxedInstructions;
// TODO Refactor relaxInstruction to accept MCFragment and remove
// `setInst`.
MCInst Relaxed = F.getInst();
getBackend().relaxInstruction(Relaxed, *F.getSubtargetInfo());
// Encode the new instruction.
F.setInst(Relaxed);
SmallVector<char, 16> Data;
SmallVector<MCFixup, 1> Fixups;
getEmitter().encodeInstruction(Relaxed, Data, Fixups, *F.getSubtargetInfo());
F.setVarContents(Data);
F.setVarFixups(Fixups);
return true;
}
bool MCAssembler::relaxLEB(MCFragment &F) {
const unsigned OldSize = F.getVarSize();
unsigned PadTo = OldSize;
int64_t Value;
F.clearVarFixups();
// Use evaluateKnownAbsolute for Mach-O as a hack: .subsections_via_symbols
// requires that .uleb128 A-B is foldable where A and B reside in different
// fragments. This is used by __gcc_except_table.
bool Abs = getWriter().getSubsectionsViaSymbols()
? F.getLEBValue().evaluateKnownAbsolute(Value, *this)
: F.getLEBValue().evaluateAsAbsolute(Value, *this);
if (!Abs) {
bool Relaxed, UseZeroPad;
std::tie(Relaxed, UseZeroPad) = getBackend().relaxLEB128(F, Value);
if (!Relaxed) {
reportError(F.getLEBValue().getLoc(),
Twine(F.isLEBSigned() ? ".s" : ".u") +
"leb128 expression is not absolute");
F.setLEBValue(MCConstantExpr::create(0, Context));
}
uint8_t Tmp[10]; // maximum size: ceil(64/7)
PadTo = std::max(PadTo, encodeULEB128(uint64_t(Value), Tmp));
if (UseZeroPad)
Value = 0;
}
uint8_t Data[16];
size_t Size = 0;
// The compiler can generate EH table assembly that is impossible to assemble
// without either adding padding to an LEB fragment or adding extra padding
// to a later alignment fragment. To accommodate such tables, relaxation can
// only increase an LEB fragment size here, not decrease it. See PR35809.
if (F.isLEBSigned())
Size = encodeSLEB128(Value, Data, PadTo);
else
Size = encodeULEB128(Value, Data, PadTo);
F.setVarContents({reinterpret_cast<char *>(Data), Size});
return OldSize != Size;
}
/// Check if the branch crosses the boundary.
///
/// \param StartAddr start address of the fused/unfused branch.
/// \param Size size of the fused/unfused branch.
/// \param BoundaryAlignment alignment requirement of the branch.
/// \returns true if the branch cross the boundary.
static bool mayCrossBoundary(uint64_t StartAddr, uint64_t Size,
Align BoundaryAlignment) {
uint64_t EndAddr = StartAddr + Size;
return (StartAddr >> Log2(BoundaryAlignment)) !=
((EndAddr - 1) >> Log2(BoundaryAlignment));
}
/// Check if the branch is against the boundary.
///
/// \param StartAddr start address of the fused/unfused branch.
/// \param Size size of the fused/unfused branch.
/// \param BoundaryAlignment alignment requirement of the branch.
/// \returns true if the branch is against the boundary.
static bool isAgainstBoundary(uint64_t StartAddr, uint64_t Size,
Align BoundaryAlignment) {
uint64_t EndAddr = StartAddr + Size;
return (EndAddr & (BoundaryAlignment.value() - 1)) == 0;
}
/// Check if the branch needs padding.
///
/// \param StartAddr start address of the fused/unfused branch.
/// \param Size size of the fused/unfused branch.
/// \param BoundaryAlignment alignment requirement of the branch.
/// \returns true if the branch needs padding.
static bool needPadding(uint64_t StartAddr, uint64_t Size,
Align BoundaryAlignment) {
return mayCrossBoundary(StartAddr, Size, BoundaryAlignment) ||
isAgainstBoundary(StartAddr, Size, BoundaryAlignment);
}
bool MCAssembler::relaxBoundaryAlign(MCBoundaryAlignFragment &BF) {
// BoundaryAlignFragment that doesn't need to align any fragment should not be
// relaxed.
if (!BF.getLastFragment())
return false;
uint64_t AlignedOffset = getFragmentOffset(BF);
uint64_t AlignedSize = 0;
for (const MCFragment *F = BF.getNext();; F = F->getNext()) {
AlignedSize += computeFragmentSize(*F);
if (F == BF.getLastFragment())
break;
}
Align BoundaryAlignment = BF.getAlignment();
uint64_t NewSize = needPadding(AlignedOffset, AlignedSize, BoundaryAlignment)
? offsetToAlignment(AlignedOffset, BoundaryAlignment)
: 0U;
if (NewSize == BF.getSize())
return false;
BF.setSize(NewSize);
return true;
}
bool MCAssembler::relaxDwarfLineAddr(MCFragment &F) {
bool WasRelaxed;
if (getBackend().relaxDwarfLineAddr(F, WasRelaxed))
return WasRelaxed;
MCContext &Context = getContext();
auto OldSize = F.getVarSize();
int64_t AddrDelta;
bool Abs = F.getDwarfAddrDelta().evaluateKnownAbsolute(AddrDelta, *this);
assert(Abs && "We created a line delta with an invalid expression");
(void)Abs;
SmallVector<char, 8> Data;
MCDwarfLineAddr::encode(Context, getDWARFLinetableParams(),
F.getDwarfLineDelta(), AddrDelta, Data);
F.setVarContents(Data);
F.clearVarFixups();
return OldSize != Data.size();
}
bool MCAssembler::relaxDwarfCallFrameFragment(MCFragment &F) {
bool WasRelaxed;
if (getBackend().relaxDwarfCFA(F, WasRelaxed))
return WasRelaxed;
MCContext &Context = getContext();
int64_t Value;
bool Abs = F.getDwarfAddrDelta().evaluateAsAbsolute(Value, *this);
if (!Abs) {
reportError(F.getDwarfAddrDelta().getLoc(),
"invalid CFI advance_loc expression");
F.setDwarfAddrDelta(MCConstantExpr::create(0, Context));
return false;
}
auto OldSize = F.getVarContents().size();
SmallVector<char, 8> Data;
MCDwarfFrameEmitter::encodeAdvanceLoc(Context, Value, Data);
F.setVarContents(Data);
F.clearVarFixups();
return OldSize != Data.size();
}
bool MCAssembler::relaxCVInlineLineTable(MCCVInlineLineTableFragment &F) {
unsigned OldSize = F.getVarContents().size();
getContext().getCVContext().encodeInlineLineTable(*this, F);
return OldSize != F.getVarContents().size();
}
bool MCAssembler::relaxCVDefRange(MCCVDefRangeFragment &F) {
unsigned OldSize = F.getVarContents().size();
getContext().getCVContext().encodeDefRange(*this, F);
return OldSize != F.getVarContents().size();
}
bool MCAssembler::relaxFill(MCFillFragment &F) {
uint64_t Size = computeFragmentSize(F);
if (F.getSize() == Size)
return false;
F.setSize(Size);
return true;
}
bool MCAssembler::relaxFragment(MCFragment &F) {
switch(F.getKind()) {
default:
return false;
case MCFragment::FT_Relaxable:
assert(!getRelaxAll() && "Did not expect a FT_Relaxable in RelaxAll mode");
return relaxInstruction(F);
case MCFragment::FT_LEB:
return relaxLEB(F);
case MCFragment::FT_Dwarf:
return relaxDwarfLineAddr(F);
case MCFragment::FT_DwarfFrame:
return relaxDwarfCallFrameFragment(F);
case MCFragment::FT_BoundaryAlign:
return relaxBoundaryAlign(cast<MCBoundaryAlignFragment>(F));
case MCFragment::FT_CVInlineLines:
return relaxCVInlineLineTable(cast<MCCVInlineLineTableFragment>(F));
case MCFragment::FT_CVDefRange:
return relaxCVDefRange(cast<MCCVDefRangeFragment>(F));
case MCFragment::FT_Fill:
return relaxFill(cast<MCFillFragment>(F));
}
}
void MCAssembler::layoutSection(MCSection &Sec) {
uint64_t Offset = 0;
for (MCFragment &F : Sec) {
F.Offset = Offset;
if (F.getKind() == MCFragment::FT_Align) {
Offset += F.getFixedSize();
unsigned Size = offsetToAlignment(Offset, F.getAlignment());
// In the nops mode, RISC-V style linker relaxation might adjust the size
// and add a fixup, even if `Size` is originally 0.
bool AlignFixup = false;
if (F.hasAlignEmitNops()) {
AlignFixup = getBackend().relaxAlign(F, Size);
// If the backend does not handle the fragment specially, pad with nops,
// but ensure that the padding is larger than the minimum nop size.
if (!AlignFixup)
while (Size % getBackend().getMinimumNopSize())
Size += F.getAlignment().value();
}
if (!AlignFixup && Size > F.getAlignMaxBytesToEmit())
Size = 0;
// Update the variable tail size, offset by FixedSize to prevent ubsan
// pointer-overflow in evaluateFixup. The content is ignored.
F.VarContentStart = F.getFixedSize();
F.VarContentEnd = F.VarContentStart + Size;
if (F.VarContentEnd > F.getParent()->ContentStorage.size())
F.getParent()->ContentStorage.resize(F.VarContentEnd);
Offset += Size;
} else {
Offset += computeFragmentSize(F);
}
}
}
unsigned MCAssembler::relaxOnce(unsigned FirstStable) {
++stats::RelaxationSteps;
PendingErrors.clear();
unsigned Res = 0;
for (unsigned I = 0; I != FirstStable; ++I) {
// Assume each iteration finalizes at least one extra fragment. If the
// layout does not converge after N+1 iterations, bail out.
auto &Sec = *Sections[I];
auto MaxIter = Sec.curFragList()->Tail->getLayoutOrder() + 1;
for (;;) {
bool Changed = false;
for (MCFragment &F : Sec)
if (relaxFragment(F))
Changed = true;
if (!Changed)
break;
// If any fragment changed size, it might impact the layout of subsequent
// sections. Therefore, we must re-evaluate all sections.
FirstStable = Sections.size();
Res = I;
if (--MaxIter == 0)
break;
layoutSection(Sec);
}
}
// The subsequent relaxOnce call only needs to visit Sections [0,Res) if no
// change occurred.
return Res;
}
void MCAssembler::reportError(SMLoc L, const Twine &Msg) const {
getContext().reportError(L, Msg);
}
void MCAssembler::recordError(SMLoc Loc, const Twine &Msg) const {
PendingErrors.emplace_back(Loc, Msg.str());
}
void MCAssembler::flushPendingErrors() const {
for (auto &Err : PendingErrors)
reportError(Err.first, Err.second);
PendingErrors.clear();
}
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
LLVM_DUMP_METHOD void MCAssembler::dump() const{
raw_ostream &OS = errs();
DenseMap<const MCFragment *, SmallVector<const MCSymbol *, 0>> FragToSyms;
// Scan symbols and build a map of fragments to their corresponding symbols.
// For variable symbols, we don't want to call their getFragment, which might
// modify `Fragment`.
for (const MCSymbol &Sym : symbols())
if (!Sym.isVariable())
if (auto *F = Sym.getFragment())
FragToSyms.try_emplace(F).first->second.push_back(&Sym);
OS << "Sections:[";
for (const MCSection &Sec : *this) {
OS << '\n';
Sec.dump(&FragToSyms);
}
OS << "\n]\n";
}
#endif
SMLoc MCFixup::getLoc() const {
if (auto *E = getValue())
return E->getLoc();
return {};
}