
lifetime.start and lifetime.end are primarily intended for use on allocas, to enable stack coloring and other liveness optimizations. This is necessary because all (static) allocas are hoisted into the entry block, so lifetime markers are the only way to convey the actual lifetimes. However, lifetime.start and lifetime.end are currently *allowed* to be used on non-alloca pointers. We don't actually do this in practice, but just the mere fact that this is possible breaks the core purpose of the lifetime markers, which is stack coloring of allocas. Stack coloring can only work correctly if all lifetime markers for an alloca are analyzable. * If a lifetime marker may operate on multiple allocas via a select/phi, we don't know which lifetime actually starts/ends and handle it incorrectly (https://github.com/llvm/llvm-project/issues/104776). * Stack coloring operates on the assumption that all lifetime markers are visible, and not, for example, hidden behind a function call or escaped pointer. It's not possible to change this, as part of the purpose of lifetime markers is that they work even in the presence of escaped pointers, where simple use analysis is insufficient. I don't think there is any way to have coherent semantics for lifetime markers on allocas, while also permitting them on arbitrary pointer values. This PR restricts lifetimes to operate on allocas only. As a followup, I will also drop the size argument, which is superfluous if we always operate on an alloca. (This change also renders various code handling lifetime markers on non-alloca dead. I plan to clean up that kind of code after dropping the size argument as well.) In practice, I've only found a few places that currently produce lifetimes on non-allocas: * CoroEarly replaces the promise alloca with the result of an intrinsic, which will later be replaced back with an alloca. I think this is the only place where there is some legitimate loss of functionality, but I don't think this is particularly important (I don't think we'd expect the promise in a coroutine to admit useful lifetime optimization.) * SafeStack moves unsafe allocas onto a separate frame. We can safely drop lifetimes here, as SafeStack performs its own stack coloring. * Similar for AddressSanitizer, it also moves allocas into separate memory. * LSR sometimes replaces the lifetime argument with a GEP chain of the alloca (where the offsets ultimately cancel out). This is just unnecessary. (Fixed separately in https://github.com/llvm/llvm-project/pull/149492.) * InferAddrSpaces sometimes makes lifetimes operate on an addrspacecast of an alloca. I don't think this is necessary.
557 lines
25 KiB
LLVM
557 lines
25 KiB
LLVM
; NOTE: Assertions have been autogenerated by utils/update_test_checks.py
|
|
; RUN: opt -mtriple=x86_64-unknown-unknown -select-optimize -S < %s | FileCheck %s
|
|
; RUN: opt -mtriple=x86_64-unknown-unknown -passes='require<profile-summary>,function(select-optimize)' -S < %s | FileCheck %s
|
|
|
|
|
|
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
|
;; Test base heuristic 1:
|
|
;; highly-biased selects assumed to be highly predictable, converted to branches
|
|
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
|
|
|
; If a select is obviously predictable, turn it into a branch.
|
|
define i32 @weighted_select1(i32 %a, i32 %b, i1 %cmp) {
|
|
; CHECK-LABEL: @weighted_select1(
|
|
; CHECK-NEXT: [[CMP_FROZEN:%.*]] = freeze i1 [[CMP:%.*]]
|
|
; CHECK-NEXT: br i1 [[CMP_FROZEN]], label [[SELECT_END:%.*]], label [[SELECT_FALSE:%.*]], !prof [[PROF16:![0-9]+]]
|
|
; CHECK: select.false:
|
|
; CHECK-NEXT: br label [[SELECT_END]]
|
|
; CHECK: select.end:
|
|
; CHECK-NEXT: [[SEL:%.*]] = phi i32 [ [[A:%.*]], [[TMP0:%.*]] ], [ [[B:%.*]], [[SELECT_FALSE]] ]
|
|
; CHECK-NEXT: ret i32 [[SEL]]
|
|
;
|
|
%sel = select i1 %cmp, i32 %a, i32 %b, !prof !15
|
|
ret i32 %sel
|
|
}
|
|
|
|
; If a select is obviously predictable (reversed profile weights),
|
|
; turn it into a branch.
|
|
define i32 @weighted_select2(i32 %a, i32 %b, i1 %cmp) {
|
|
; CHECK-LABEL: @weighted_select2(
|
|
; CHECK-NEXT: [[CMP_FROZEN:%.*]] = freeze i1 [[CMP:%.*]]
|
|
; CHECK-NEXT: br i1 [[CMP_FROZEN]], label [[SELECT_END:%.*]], label [[SELECT_FALSE:%.*]], !prof [[PROF17:![0-9]+]]
|
|
; CHECK: select.false:
|
|
; CHECK-NEXT: br label [[SELECT_END]]
|
|
; CHECK: select.end:
|
|
; CHECK-NEXT: [[SEL:%.*]] = phi i32 [ [[A:%.*]], [[TMP0:%.*]] ], [ [[B:%.*]], [[SELECT_FALSE]] ]
|
|
; CHECK-NEXT: ret i32 [[SEL]]
|
|
;
|
|
%sel = select i1 %cmp, i32 %a, i32 %b, !prof !16
|
|
ret i32 %sel
|
|
}
|
|
|
|
; Not obvioulsy predictable select.
|
|
define i32 @weighted_select3(i32 %a, i32 %b, i1 %cmp) {
|
|
; CHECK-LABEL: @weighted_select3(
|
|
; CHECK-NEXT: [[SEL:%.*]] = select i1 [[CMP:%.*]], i32 [[A:%.*]], i32 [[B:%.*]], !prof [[PROF18:![0-9]+]]
|
|
; CHECK-NEXT: ret i32 [[SEL]]
|
|
;
|
|
%sel = select i1 %cmp, i32 %a, i32 %b, !prof !17
|
|
ret i32 %sel
|
|
}
|
|
|
|
; Unpredictable select should not form a branch.
|
|
define i32 @unpred_select(i32 %a, i32 %b, i1 %cmp) {
|
|
; CHECK-LABEL: @unpred_select(
|
|
; CHECK-NEXT: [[SEL:%.*]] = select i1 [[CMP:%.*]], i32 [[A:%.*]], i32 [[B:%.*]], !unpredictable [[META19:![0-9]+]]
|
|
; CHECK-NEXT: ret i32 [[SEL]]
|
|
;
|
|
%sel = select i1 %cmp, i32 %a, i32 %b, !unpredictable !20
|
|
ret i32 %sel
|
|
}
|
|
|
|
; Predictable select in function with optsize attribute should not form branch.
|
|
define i32 @weighted_select_optsize(i32 %a, i32 %b, i1 %cmp) optsize {
|
|
; CHECK-LABEL: @weighted_select_optsize(
|
|
; CHECK-NEXT: [[SEL:%.*]] = select i1 [[CMP:%.*]], i32 [[A:%.*]], i32 [[B:%.*]], !prof [[PROF16]]
|
|
; CHECK-NEXT: ret i32 [[SEL]]
|
|
;
|
|
%sel = select i1 %cmp, i32 %a, i32 %b, !prof !15
|
|
ret i32 %sel
|
|
}
|
|
|
|
define i32 @weighted_select_pgso(i32 %a, i32 %b, i1 %cmp) !prof !14 {
|
|
; CHECK-LABEL: @weighted_select_pgso(
|
|
; CHECK-NEXT: [[SEL:%.*]] = select i1 [[CMP:%.*]], i32 [[A:%.*]], i32 [[B:%.*]], !prof [[PROF16]]
|
|
; CHECK-NEXT: ret i32 [[SEL]]
|
|
;
|
|
%sel = select i1 %cmp, i32 %a, i32 %b, !prof !15
|
|
ret i32 %sel
|
|
}
|
|
|
|
; If two selects in a row are predictable, turn them into branches.
|
|
define i32 @weighted_selects(i32 %a, i32 %b) !prof !19 {
|
|
; CHECK-LABEL: @weighted_selects(
|
|
; CHECK-NEXT: [[CMP:%.*]] = icmp ne i32 [[A:%.*]], 0
|
|
; CHECK-NEXT: [[CMP_FROZEN:%.*]] = freeze i1 [[CMP]]
|
|
; CHECK-NEXT: br i1 [[CMP_FROZEN]], label [[SELECT_END:%.*]], label [[SELECT_FALSE:%.*]], !prof [[PROF16]]
|
|
; CHECK: select.false:
|
|
; CHECK-NEXT: br label [[SELECT_END]]
|
|
; CHECK: select.end:
|
|
; CHECK-NEXT: [[SEL:%.*]] = phi i32 [ [[A]], [[TMP0:%.*]] ], [ [[B:%.*]], [[SELECT_FALSE]] ]
|
|
; CHECK-NEXT: [[CMP1:%.*]] = icmp ne i32 [[SEL]], 0
|
|
; CHECK-NEXT: [[CMP1_FROZEN:%.*]] = freeze i1 [[CMP1]]
|
|
; CHECK-NEXT: br i1 [[CMP1_FROZEN]], label [[SELECT_END1:%.*]], label [[SELECT_FALSE2:%.*]], !prof [[PROF16]]
|
|
; CHECK: select.false2:
|
|
; CHECK-NEXT: br label [[SELECT_END1]]
|
|
; CHECK: select.end1:
|
|
; CHECK-NEXT: [[SEL1:%.*]] = phi i32 [ [[B]], [[SELECT_END]] ], [ [[A]], [[SELECT_FALSE2]] ]
|
|
; CHECK-NEXT: ret i32 [[SEL1]]
|
|
;
|
|
%cmp = icmp ne i32 %a, 0
|
|
%sel = select i1 %cmp, i32 %a, i32 %b, !prof !15
|
|
%cmp1 = icmp ne i32 %sel, 0
|
|
%sel1 = select i1 %cmp1, i32 %b, i32 %a, !prof !15
|
|
ret i32 %sel1
|
|
}
|
|
|
|
; If select group predictable, turn it into a branch.
|
|
define i32 @weighted_select_group(i32 %a, i32 %b, i32 %c, i1 %cmp) !prof !19 {
|
|
; CHECK-LABEL: @weighted_select_group(
|
|
; CHECK-NEXT: [[A1:%.*]] = add i32 [[A:%.*]], 1
|
|
; CHECK-NEXT: [[CMP_FROZEN:%.*]] = freeze i1 [[CMP:%.*]]
|
|
; CHECK-NEXT: br i1 [[CMP_FROZEN]], label [[SELECT_TRUE_SINK:%.*]], label [[SELECT_FALSE_SINK:%.*]], !prof [[PROF16]]
|
|
; CHECK: select.true.sink:
|
|
; CHECK-NEXT: [[C1:%.*]] = add i32 [[C:%.*]], 1
|
|
; CHECK-NEXT: br label [[SELECT_END:%.*]]
|
|
; CHECK: select.false.sink:
|
|
; CHECK-NEXT: [[B1:%.*]] = add i32 [[B:%.*]], 1
|
|
; CHECK-NEXT: br label [[SELECT_END]]
|
|
; CHECK: select.end:
|
|
; CHECK-NEXT: [[SEL1:%.*]] = phi i32 [ [[A1]], [[SELECT_TRUE_SINK]] ], [ [[B1]], [[SELECT_FALSE_SINK]] ]
|
|
; CHECK-NEXT: [[SEL2:%.*]] = phi i32 [ [[C1]], [[SELECT_TRUE_SINK]] ], [ [[A1]], [[SELECT_FALSE_SINK]] ]
|
|
; CHECK-NEXT: #dbg_value(i32 [[SEL1]], [[META22:![0-9]+]], !DIExpression(), [[META26:![0-9]+]])
|
|
; CHECK-NEXT: [[ADD:%.*]] = add i32 [[SEL1]], [[SEL2]]
|
|
; CHECK-NEXT: ret i32 [[ADD]]
|
|
;
|
|
%a1 = add i32 %a, 1
|
|
%b1 = add i32 %b, 1
|
|
%c1 = add i32 %c, 1
|
|
%sel1 = select i1 %cmp, i32 %a1, i32 %b1, !prof !15
|
|
call void @llvm.dbg.value(metadata i32 %sel1, metadata !24, metadata !DIExpression()), !dbg !DILocation(scope: !23)
|
|
%sel2 = select i1 %cmp, i32 %c1, i32 %a1, !prof !15
|
|
%add = add i32 %sel1, %sel2
|
|
ret i32 %add
|
|
}
|
|
|
|
; Predictable select group with intra-group dependence converted to branch
|
|
define i32 @select_group_intra_group(i32 %a, i32 %b, i32 %c, i1 %cmp) {
|
|
; CHECK-LABEL: @select_group_intra_group(
|
|
; CHECK-NEXT: [[CMP_FROZEN:%.*]] = freeze i1 [[CMP:%.*]]
|
|
; CHECK-NEXT: br i1 [[CMP_FROZEN]], label [[SELECT_END:%.*]], label [[SELECT_FALSE:%.*]], !prof [[PROF16]]
|
|
; CHECK: select.false:
|
|
; CHECK-NEXT: br label [[SELECT_END]]
|
|
; CHECK: select.end:
|
|
; CHECK-NEXT: [[SEL1:%.*]] = phi i32 [ [[A:%.*]], [[TMP0:%.*]] ], [ [[B:%.*]], [[SELECT_FALSE]] ]
|
|
; CHECK-NEXT: [[SEL2:%.*]] = phi i32 [ [[C:%.*]], [[TMP0]] ], [ [[B]], [[SELECT_FALSE]] ]
|
|
; CHECK-NEXT: [[SUB:%.*]] = sub i32 [[SEL1]], [[SEL2]]
|
|
; CHECK-NEXT: ret i32 [[SUB]]
|
|
;
|
|
%sel1 = select i1 %cmp, i32 %a, i32 %b,!prof !15
|
|
%sel2 = select i1 %cmp, i32 %c, i32 %sel1, !prof !15
|
|
%sub = sub i32 %sel1, %sel2
|
|
ret i32 %sub
|
|
}
|
|
|
|
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
|
;; Test base heuristic 2:
|
|
;; look for expensive instructions in the one-use slice of the cold path
|
|
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
|
|
|
; Select with cold one-use load value operand should form branch and
|
|
; sink load
|
|
define i32 @expensive_val_operand1(ptr nocapture %a, i32 %y, i1 %cmp) {
|
|
; CHECK-LABEL: @expensive_val_operand1(
|
|
; CHECK-NEXT: [[CMP_FROZEN:%.*]] = freeze i1 [[CMP:%.*]]
|
|
; CHECK-NEXT: br i1 [[CMP_FROZEN]], label [[SELECT_TRUE_SINK:%.*]], label [[SELECT_END:%.*]], !prof [[PROF18]]
|
|
; CHECK: select.true.sink:
|
|
; CHECK-NEXT: [[LOAD:%.*]] = load i32, ptr [[A:%.*]], align 8
|
|
; CHECK-NEXT: br label [[SELECT_END]]
|
|
; CHECK: select.end:
|
|
; CHECK-NEXT: [[SEL:%.*]] = phi i32 [ [[LOAD]], [[SELECT_TRUE_SINK]] ], [ [[Y:%.*]], [[TMP0:%.*]] ]
|
|
; CHECK-NEXT: ret i32 [[SEL]]
|
|
;
|
|
%load = load i32, ptr %a, align 8
|
|
%sel = select i1 %cmp, i32 %load, i32 %y, !prof !17
|
|
ret i32 %sel
|
|
}
|
|
|
|
; Expensive hot value operand and cheap cold value operand.
|
|
define i32 @expensive_val_operand2(ptr nocapture %a, i32 %x, i1 %cmp) {
|
|
; CHECK-LABEL: @expensive_val_operand2(
|
|
; CHECK-NEXT: [[LOAD:%.*]] = load i32, ptr [[A:%.*]], align 8
|
|
; CHECK-NEXT: [[SEL:%.*]] = select i1 [[CMP:%.*]], i32 [[X:%.*]], i32 [[LOAD]], !prof [[PROF18]]
|
|
; CHECK-NEXT: ret i32 [[SEL]]
|
|
;
|
|
%load = load i32, ptr %a, align 8
|
|
%sel = select i1 %cmp, i32 %x, i32 %load, !prof !17
|
|
ret i32 %sel
|
|
}
|
|
|
|
; Cold value operand with load in its one-use dependence slice should result
|
|
; into a branch with sinked dependence slice.
|
|
define i32 @expensive_val_operand3(ptr nocapture %a, i32 %b, i32 %y, i1 %cmp) {
|
|
; CHECK-LABEL: @expensive_val_operand3(
|
|
; CHECK-NEXT: [[CMP_FROZEN:%.*]] = freeze i1 [[CMP:%.*]]
|
|
; CHECK-NEXT: br i1 [[CMP_FROZEN]], label [[SELECT_TRUE_SINK:%.*]], label [[SELECT_END:%.*]], !prof [[PROF18]]
|
|
; CHECK: select.true.sink:
|
|
; CHECK-NEXT: [[LOAD:%.*]] = load i32, ptr [[A:%.*]], align 8
|
|
; CHECK-NEXT: [[X:%.*]] = add i32 [[LOAD]], [[B:%.*]]
|
|
; CHECK-NEXT: br label [[SELECT_END]]
|
|
; CHECK: select.end:
|
|
; CHECK-NEXT: [[SEL:%.*]] = phi i32 [ [[X]], [[SELECT_TRUE_SINK]] ], [ [[Y:%.*]], [[TMP0:%.*]] ]
|
|
; CHECK-NEXT: ret i32 [[SEL]]
|
|
;
|
|
%load = load i32, ptr %a, align 8
|
|
%x = add i32 %load, %b
|
|
%sel = select i1 %cmp, i32 %x, i32 %y, !prof !17
|
|
ret i32 %sel
|
|
}
|
|
|
|
; Expensive cold value operand with unsafe-to-sink (due to func call) load (partial slice sinking).
|
|
define i32 @expensive_val_operand4(ptr nocapture %a, i32 %b, i32 %y, i1 %cmp) {
|
|
; CHECK-LABEL: @expensive_val_operand4(
|
|
; CHECK-NEXT: [[LOAD:%.*]] = load i32, ptr [[A:%.*]], align 8
|
|
; CHECK-NEXT: call void @free(ptr [[A]])
|
|
; CHECK-NEXT: [[CMP_FROZEN:%.*]] = freeze i1 [[CMP:%.*]]
|
|
; CHECK-NEXT: br i1 [[CMP_FROZEN]], label [[SELECT_TRUE_SINK:%.*]], label [[SELECT_END:%.*]], !prof [[PROF18]]
|
|
; CHECK: select.true.sink:
|
|
; CHECK-NEXT: [[X:%.*]] = add i32 [[LOAD]], [[B:%.*]]
|
|
; CHECK-NEXT: br label [[SELECT_END]]
|
|
; CHECK: select.end:
|
|
; CHECK-NEXT: [[SEL:%.*]] = phi i32 [ [[X]], [[SELECT_TRUE_SINK]] ], [ [[Y:%.*]], [[TMP0:%.*]] ]
|
|
; CHECK-NEXT: ret i32 [[SEL]]
|
|
;
|
|
%load = load i32, ptr %a, align 8
|
|
call void @free(ptr %a)
|
|
%x = add i32 %load, %b
|
|
%sel = select i1 %cmp, i32 %x, i32 %y, !prof !17
|
|
ret i32 %sel
|
|
}
|
|
|
|
; Expensive cold value operand with unsafe-to-sink (due to lifetime-end marker) load (partial slice sinking).
|
|
define i32 @expensive_val_operand5(i32 %b, i32 %y, i1 %cmp) {
|
|
; CHECK-LABEL: @expensive_val_operand5(
|
|
; CHECK-NEXT: [[A:%.*]] = alloca i32, align 4
|
|
; CHECK-NEXT: [[LOAD:%.*]] = load i32, ptr [[A]], align 8
|
|
; CHECK-NEXT: call void @llvm.lifetime.end.p0(i64 2, ptr nonnull [[A]])
|
|
; CHECK-NEXT: [[CMP_FROZEN:%.*]] = freeze i1 [[CMP:%.*]]
|
|
; CHECK-NEXT: br i1 [[CMP_FROZEN]], label [[SELECT_TRUE_SINK:%.*]], label [[SELECT_END:%.*]], !prof [[PROF18]]
|
|
; CHECK: select.true.sink:
|
|
; CHECK-NEXT: [[X:%.*]] = add i32 [[LOAD]], [[B:%.*]]
|
|
; CHECK-NEXT: br label [[SELECT_END]]
|
|
; CHECK: select.end:
|
|
; CHECK-NEXT: [[SEL:%.*]] = phi i32 [ [[X]], [[SELECT_TRUE_SINK]] ], [ [[Y:%.*]], [[TMP0:%.*]] ]
|
|
; CHECK-NEXT: ret i32 [[SEL]]
|
|
;
|
|
%a = alloca i32
|
|
%load = load i32, ptr %a, align 8
|
|
call void @llvm.lifetime.end.p0(i64 2, ptr nonnull %a)
|
|
%x = add i32 %load, %b
|
|
%sel = select i1 %cmp, i32 %x, i32 %y, !prof !17
|
|
ret i32 %sel
|
|
}
|
|
|
|
; Expensive cold value operand with potentially-unsafe-to-sink load (located
|
|
; in a different basic block and thus unchecked for sinkability).
|
|
define i32 @expensive_val_operand6(ptr nocapture %a, i32 %b, i32 %y, i1 %cmp) {
|
|
; CHECK-LABEL: @expensive_val_operand6(
|
|
; CHECK-NEXT: entry:
|
|
; CHECK-NEXT: [[LOAD:%.*]] = load i32, ptr [[A:%.*]], align 8
|
|
; CHECK-NEXT: br label [[BB1:%.*]]
|
|
; CHECK: bb1:
|
|
; CHECK-NEXT: [[CMP_FROZEN:%.*]] = freeze i1 [[CMP:%.*]]
|
|
; CHECK-NEXT: br i1 [[CMP_FROZEN]], label [[SELECT_TRUE_SINK:%.*]], label [[SELECT_END:%.*]], !prof [[PROF18]]
|
|
; CHECK: select.true.sink:
|
|
; CHECK-NEXT: [[X:%.*]] = add i32 [[LOAD]], [[B:%.*]]
|
|
; CHECK-NEXT: br label [[SELECT_END]]
|
|
; CHECK: select.end:
|
|
; CHECK-NEXT: [[SEL:%.*]] = phi i32 [ [[X]], [[SELECT_TRUE_SINK]] ], [ [[Y:%.*]], [[BB1]] ]
|
|
; CHECK-NEXT: ret i32 [[SEL]]
|
|
;
|
|
entry:
|
|
%load = load i32, ptr %a, align 8
|
|
br label %bb1
|
|
bb1: ; preds = %entry
|
|
%x = add i32 %load, %b
|
|
%sel = select i1 %cmp, i32 %x, i32 %y, !prof !17
|
|
ret i32 %sel
|
|
}
|
|
|
|
; Multiple uses of the load value operand.
|
|
define i32 @expensive_val_operand7(i32 %a, ptr nocapture %b, i32 %x, i1 %cmp) {
|
|
; CHECK-LABEL: @expensive_val_operand7(
|
|
; CHECK-NEXT: [[LOAD:%.*]] = load i32, ptr [[B:%.*]], align 4
|
|
; CHECK-NEXT: [[SEL:%.*]] = select i1 [[CMP:%.*]], i32 [[X:%.*]], i32 [[LOAD]]
|
|
; CHECK-NEXT: [[ADD:%.*]] = add i32 [[SEL]], [[LOAD]]
|
|
; CHECK-NEXT: ret i32 [[ADD]]
|
|
;
|
|
%load = load i32, ptr %b, align 4
|
|
%sel = select i1 %cmp, i32 %x, i32 %load
|
|
%add = add i32 %sel, %load
|
|
ret i32 %add
|
|
}
|
|
|
|
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
|
;; Test loop heuristic: loop-level critical-path analysis
|
|
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
|
|
|
;; Use of cmov in this test would put a load and a fsub on the critical path.
|
|
;; Loop-level analysis should decide to form a branch.
|
|
;;
|
|
;;double cmov_on_critical_path(int n, double x, ptr a) {
|
|
;; for (int i = 0; i < n; i++) {
|
|
;; double r = a[i];
|
|
;; if (x > r)
|
|
;; // 50% of iterations
|
|
;; x -= r;
|
|
;; }
|
|
;; return x;
|
|
;;}
|
|
define double @cmov_on_critical_path(i32 %n, double %x, ptr nocapture %a) {
|
|
; CHECK-LABEL: @cmov_on_critical_path(
|
|
; CHECK-NEXT: entry:
|
|
; CHECK-NEXT: [[CMP1:%.*]] = icmp sgt i32 [[N:%.*]], 0
|
|
; CHECK-NEXT: br i1 [[CMP1]], label [[FOR_BODY_PREHEADER:%.*]], label [[FOR_COND_CLEANUP:%.*]]
|
|
; CHECK: for.cond.cleanup:
|
|
; CHECK-NEXT: ret double [[X:%.*]]
|
|
; CHECK: for.body.preheader:
|
|
; CHECK-NEXT: [[WIDE_TRIP_COUNT:%.*]] = zext i32 [[N]] to i64
|
|
; CHECK-NEXT: br label [[FOR_BODY:%.*]]
|
|
; CHECK: for.body:
|
|
; CHECK-NEXT: [[INDVARS_IV:%.*]] = phi i64 [ [[INDVARS_IV_NEXT:%.*]], [[SELECT_END:%.*]] ], [ 0, [[FOR_BODY_PREHEADER]] ]
|
|
; CHECK-NEXT: [[X1:%.*]] = phi double [ [[X2:%.*]], [[SELECT_END]] ], [ [[X]], [[FOR_BODY_PREHEADER]] ]
|
|
; CHECK-NEXT: [[ARRAYIDX:%.*]] = getelementptr inbounds double, ptr [[A:%.*]], i64 [[INDVARS_IV]]
|
|
; CHECK-NEXT: [[R:%.*]] = load double, ptr [[ARRAYIDX]], align 8
|
|
; CHECK-NEXT: [[CMP2:%.*]] = fcmp ogt double [[X1]], [[R]]
|
|
; CHECK-NEXT: [[CMP2_FROZEN:%.*]] = freeze i1 [[CMP2]]
|
|
; CHECK-NEXT: br i1 [[CMP2_FROZEN]], label [[SELECT_TRUE_SINK:%.*]], label [[SELECT_END]], !prof [[PROF27:![0-9]+]]
|
|
; CHECK: select.true.sink:
|
|
; CHECK-NEXT: [[SUB:%.*]] = fsub double [[X1]], [[R]]
|
|
; CHECK-NEXT: br label [[SELECT_END]]
|
|
; CHECK: select.end:
|
|
; CHECK-NEXT: [[X2]] = phi double [ [[SUB]], [[SELECT_TRUE_SINK]] ], [ [[X1]], [[FOR_BODY]] ]
|
|
; CHECK-NEXT: [[INDVARS_IV_NEXT]] = add nuw nsw i64 [[INDVARS_IV]], 1
|
|
; CHECK-NEXT: [[EXITCOND:%.*]] = icmp eq i64 [[INDVARS_IV_NEXT]], [[WIDE_TRIP_COUNT]]
|
|
; CHECK-NEXT: br i1 [[EXITCOND]], label [[FOR_EXIT:%.*]], label [[FOR_BODY]]
|
|
; CHECK: for.exit:
|
|
; CHECK-NEXT: ret double [[X2]]
|
|
;
|
|
entry:
|
|
%cmp1 = icmp sgt i32 %n, 0
|
|
br i1 %cmp1, label %for.body.preheader, label %for.cond.cleanup
|
|
|
|
for.cond.cleanup: ; preds = %entry
|
|
ret double %x
|
|
|
|
for.body.preheader: ; preds = %entry
|
|
%wide.trip.count = zext i32 %n to i64
|
|
br label %for.body
|
|
|
|
for.body: ; preds = %for.body.preheader, %for.body
|
|
%indvars.iv = phi i64 [ %indvars.iv.next, %for.body ], [ 0, %for.body.preheader ]
|
|
%x1 = phi double [ %x2, %for.body ], [ %x, %for.body.preheader ]
|
|
%arrayidx = getelementptr inbounds double, ptr %a, i64 %indvars.iv
|
|
%r = load double, ptr %arrayidx, align 8
|
|
%sub = fsub double %x1, %r
|
|
%cmp2 = fcmp ogt double %x1, %r
|
|
%x2 = select i1 %cmp2, double %sub, double %x1, !prof !18
|
|
%indvars.iv.next = add nuw nsw i64 %indvars.iv, 1
|
|
%exitcond = icmp eq i64 %indvars.iv.next, %wide.trip.count
|
|
br i1 %exitcond, label %for.exit, label %for.body
|
|
|
|
for.exit: ; preds = %for.body
|
|
ret double %x2
|
|
}
|
|
|
|
;; The common path includes expensive operations (load and fsub) making
|
|
;; branch similarly expensive to cmov, and thus the gain is small.
|
|
;; Loop-level analysis should decide on not forming a branch.
|
|
;;
|
|
;;double small_gain(int n, double x, ptr a) {
|
|
;; for (int i = 0; i < n; i++) {
|
|
;; double r = a[i];
|
|
;; if (x > r)
|
|
;; // 99% of iterations
|
|
;; x -= r;
|
|
;; }
|
|
;; return x;
|
|
;;}
|
|
define double @small_gain(i32 %n, double %x, ptr nocapture %a) {
|
|
; CHECK-LABEL: @small_gain(
|
|
; CHECK-NEXT: entry:
|
|
; CHECK-NEXT: [[CMP1:%.*]] = icmp sgt i32 [[N:%.*]], 0
|
|
; CHECK-NEXT: br i1 [[CMP1]], label [[FOR_BODY_PREHEADER:%.*]], label [[FOR_COND_CLEANUP:%.*]]
|
|
; CHECK: for.cond.cleanup:
|
|
; CHECK-NEXT: ret double [[X:%.*]]
|
|
; CHECK: for.body.preheader:
|
|
; CHECK-NEXT: [[WIDE_TRIP_COUNT:%.*]] = zext i32 [[N]] to i64
|
|
; CHECK-NEXT: br label [[FOR_BODY:%.*]]
|
|
; CHECK: for.body:
|
|
; CHECK-NEXT: [[INDVARS_IV:%.*]] = phi i64 [ [[INDVARS_IV_NEXT:%.*]], [[FOR_BODY]] ], [ 0, [[FOR_BODY_PREHEADER]] ]
|
|
; CHECK-NEXT: [[X1:%.*]] = phi double [ [[X2:%.*]], [[FOR_BODY]] ], [ [[X]], [[FOR_BODY_PREHEADER]] ]
|
|
; CHECK-NEXT: [[ARRAYIDX:%.*]] = getelementptr inbounds double, ptr [[A:%.*]], i64 [[INDVARS_IV]]
|
|
; CHECK-NEXT: [[R:%.*]] = load double, ptr [[ARRAYIDX]], align 8
|
|
; CHECK-NEXT: [[SUB:%.*]] = fsub double [[X1]], [[R]]
|
|
; CHECK-NEXT: [[CMP2:%.*]] = fcmp ole double [[X1]], [[R]]
|
|
; CHECK-NEXT: [[X2]] = select i1 [[CMP2]], double [[X1]], double [[SUB]], !prof [[PROF18]]
|
|
; CHECK-NEXT: [[INDVARS_IV_NEXT]] = add nuw nsw i64 [[INDVARS_IV]], 1
|
|
; CHECK-NEXT: [[EXITCOND:%.*]] = icmp eq i64 [[INDVARS_IV_NEXT]], [[WIDE_TRIP_COUNT]]
|
|
; CHECK-NEXT: br i1 [[EXITCOND]], label [[FOR_EXIT:%.*]], label [[FOR_BODY]]
|
|
; CHECK: for.exit:
|
|
; CHECK-NEXT: ret double [[X2]]
|
|
;
|
|
entry:
|
|
%cmp1 = icmp sgt i32 %n, 0
|
|
br i1 %cmp1, label %for.body.preheader, label %for.cond.cleanup
|
|
|
|
for.cond.cleanup: ; preds = %entry
|
|
ret double %x
|
|
|
|
for.body.preheader: ; preds = %entry
|
|
%wide.trip.count = zext i32 %n to i64
|
|
br label %for.body
|
|
|
|
for.body: ; preds = %for.body.preheader, %for.body
|
|
%indvars.iv = phi i64 [ %indvars.iv.next, %for.body ], [ 0, %for.body.preheader ]
|
|
%x1 = phi double [ %x2, %for.body ], [ %x, %for.body.preheader ]
|
|
%arrayidx = getelementptr inbounds double, ptr %a, i64 %indvars.iv
|
|
%r = load double, ptr %arrayidx, align 8
|
|
%sub = fsub double %x1, %r
|
|
%cmp2 = fcmp ole double %x1, %r
|
|
%x2 = select i1 %cmp2, double %x1, double %sub, !prof !17
|
|
%indvars.iv.next = add nuw nsw i64 %indvars.iv, 1
|
|
%exitcond = icmp eq i64 %indvars.iv.next, %wide.trip.count
|
|
br i1 %exitcond, label %for.exit, label %for.body
|
|
|
|
for.exit: ; preds = %for.body
|
|
ret double %x2
|
|
}
|
|
|
|
;; One select on the critical path and one off the critical path.
|
|
;; Loop-level analysis should decide to form a branch only for
|
|
;; the select on the critical path.
|
|
;;
|
|
;;double loop_select_groups(int n, double x, ptr a, int k) {
|
|
;; int c = 0;
|
|
;; for (int i = 0; i < n; i++) {
|
|
;; double r = a[i];
|
|
;; if (x > r)
|
|
;; x -= r;
|
|
;; if (i == k)
|
|
;; c += n;
|
|
;; }
|
|
;; return x + c;
|
|
;;}
|
|
define double @loop_select_groups(i32 %n, double %x, ptr nocapture %a, i32 %k) {
|
|
; CHECK-LABEL: @loop_select_groups(
|
|
; CHECK-NEXT: entry:
|
|
; CHECK-NEXT: [[CMP19:%.*]] = icmp sgt i32 [[N:%.*]], 0
|
|
; CHECK-NEXT: br i1 [[CMP19]], label [[FOR_BODY_PREHEADER:%.*]], label [[FOR_COND_CLEANUP:%.*]]
|
|
; CHECK: for.body.preheader:
|
|
; CHECK-NEXT: [[WIDE_TRIP_COUNT:%.*]] = zext i32 [[N]] to i64
|
|
; CHECK-NEXT: br label [[FOR_BODY:%.*]]
|
|
; CHECK: for.cond.cleanup.loopexit:
|
|
; CHECK-NEXT: [[PHI_CAST:%.*]] = sitofp i32 [[C_1:%.*]] to double
|
|
; CHECK-NEXT: br label [[FOR_COND_CLEANUP]]
|
|
; CHECK: for.cond.cleanup:
|
|
; CHECK-NEXT: [[C_0_LCSSA:%.*]] = phi double [ 0.000000e+00, [[ENTRY:%.*]] ], [ [[PHI_CAST]], [[FOR_COND_CLEANUP_LOOPEXIT:%.*]] ]
|
|
; CHECK-NEXT: [[X_ADDR_0_LCSSA:%.*]] = phi double [ [[X:%.*]], [[ENTRY]] ], [ [[X_ADDR_1:%.*]], [[FOR_COND_CLEANUP_LOOPEXIT]] ]
|
|
; CHECK-NEXT: [[ADD5:%.*]] = fadd double [[X_ADDR_0_LCSSA]], [[C_0_LCSSA]]
|
|
; CHECK-NEXT: ret double [[ADD5]]
|
|
; CHECK: for.body:
|
|
; CHECK-NEXT: [[INDVARS_IV:%.*]] = phi i64 [ 0, [[FOR_BODY_PREHEADER]] ], [ [[INDVARS_IV_NEXT:%.*]], [[SELECT_END:%.*]] ]
|
|
; CHECK-NEXT: [[X_ADDR_022:%.*]] = phi double [ [[X]], [[FOR_BODY_PREHEADER]] ], [ [[X_ADDR_1]], [[SELECT_END]] ]
|
|
; CHECK-NEXT: [[C_020:%.*]] = phi i32 [ 0, [[FOR_BODY_PREHEADER]] ], [ [[C_1]], [[SELECT_END]] ]
|
|
; CHECK-NEXT: [[ARRAYIDX:%.*]] = getelementptr inbounds double, ptr [[A:%.*]], i64 [[INDVARS_IV]]
|
|
; CHECK-NEXT: [[TMP0:%.*]] = load double, ptr [[ARRAYIDX]], align 8
|
|
; CHECK-NEXT: [[CMP1:%.*]] = fcmp ogt double [[X_ADDR_022]], [[TMP0]]
|
|
; CHECK-NEXT: [[CMP1_FROZEN:%.*]] = freeze i1 [[CMP1]]
|
|
; CHECK-NEXT: br i1 [[CMP1_FROZEN]], label [[SELECT_END]], label [[SELECT_FALSE:%.*]]
|
|
; CHECK: select.false:
|
|
; CHECK-NEXT: br label [[SELECT_END]]
|
|
; CHECK: select.end:
|
|
; CHECK-NEXT: [[SUB:%.*]] = phi double [ [[TMP0]], [[FOR_BODY]] ], [ 0.000000e+00, [[SELECT_FALSE]] ]
|
|
; CHECK-NEXT: [[X_ADDR_1]] = fsub double [[X_ADDR_022]], [[SUB]]
|
|
; CHECK-NEXT: [[TMP1:%.*]] = trunc i64 [[INDVARS_IV]] to i32
|
|
; CHECK-NEXT: [[CMP2:%.*]] = icmp eq i32 [[K:%.*]], [[N]]
|
|
; CHECK-NEXT: [[ADD:%.*]] = select i1 [[CMP2]], i32 [[N]], i32 0
|
|
; CHECK-NEXT: [[C_1]] = add nsw i32 [[ADD]], [[C_020]]
|
|
; CHECK-NEXT: [[INDVARS_IV_NEXT]] = add nuw nsw i64 [[INDVARS_IV]], 1
|
|
; CHECK-NEXT: [[EXITCOND_NOT:%.*]] = icmp eq i64 [[INDVARS_IV_NEXT]], [[WIDE_TRIP_COUNT]]
|
|
; CHECK-NEXT: br i1 [[EXITCOND_NOT]], label [[FOR_COND_CLEANUP_LOOPEXIT]], label [[FOR_BODY]]
|
|
;
|
|
entry:
|
|
%cmp19 = icmp sgt i32 %n, 0
|
|
br i1 %cmp19, label %for.body.preheader, label %for.cond.cleanup
|
|
|
|
for.body.preheader: ; preds = %entry
|
|
%wide.trip.count = zext i32 %n to i64
|
|
br label %for.body
|
|
|
|
for.cond.cleanup.loopexit: ; preds = %for.body
|
|
%phi.cast = sitofp i32 %c.1 to double
|
|
br label %for.cond.cleanup
|
|
|
|
for.cond.cleanup: ; preds = %for.cond.cleanup.loopexit, %entry
|
|
%c.0.lcssa = phi double [ 0.000000e+00, %entry ], [ %phi.cast, %for.cond.cleanup.loopexit ]
|
|
%x.addr.0.lcssa = phi double [ %x, %entry ], [ %x.addr.1, %for.cond.cleanup.loopexit ]
|
|
%add5 = fadd double %x.addr.0.lcssa, %c.0.lcssa
|
|
ret double %add5
|
|
|
|
for.body: ; preds = %for.body.preheader, %for.body
|
|
%indvars.iv = phi i64 [ 0, %for.body.preheader ], [ %indvars.iv.next, %for.body ]
|
|
%x.addr.022 = phi double [ %x, %for.body.preheader ], [ %x.addr.1, %for.body ]
|
|
%c.020 = phi i32 [ 0, %for.body.preheader ], [ %c.1, %for.body ]
|
|
%arrayidx = getelementptr inbounds double, ptr %a, i64 %indvars.iv
|
|
%0 = load double, ptr %arrayidx, align 8
|
|
%cmp1 = fcmp ogt double %x.addr.022, %0
|
|
%sub = select i1 %cmp1, double %0, double 0.000000e+00
|
|
%x.addr.1 = fsub double %x.addr.022, %sub
|
|
%1 = trunc i64 %indvars.iv to i32
|
|
%cmp2 = icmp eq i32 %k, %n
|
|
%add = select i1 %cmp2, i32 %n, i32 0
|
|
%c.1 = add nsw i32 %add, %c.020
|
|
%indvars.iv.next = add nuw nsw i64 %indvars.iv, 1
|
|
%exitcond.not = icmp eq i64 %indvars.iv.next, %wide.trip.count
|
|
br i1 %exitcond.not, label %for.cond.cleanup.loopexit, label %for.body
|
|
}
|
|
|
|
; Function Attrs: nounwind readnone speculatable willreturn
|
|
declare void @llvm.dbg.value(metadata, metadata, metadata)
|
|
|
|
; Function Attrs: argmemonly mustprogress nocallback nofree nosync nounwind willreturn
|
|
declare void @llvm.lifetime.end.p0(i64 immarg, ptr nocapture)
|
|
|
|
declare void @free(ptr nocapture)
|
|
|
|
!llvm.module.flags = !{!0, !26, !27}
|
|
!0 = !{i32 1, !"ProfileSummary", !1}
|
|
!1 = !{!2, !3, !4, !5, !6, !7, !8, !9}
|
|
!2 = !{!"ProfileFormat", !"InstrProf"}
|
|
!3 = !{!"TotalCount", i64 10000}
|
|
!4 = !{!"MaxCount", i64 10}
|
|
!5 = !{!"MaxInternalCount", i64 1}
|
|
!6 = !{!"MaxFunctionCount", i64 1000}
|
|
!7 = !{!"NumCounts", i64 3}
|
|
!8 = !{!"NumFunctions", i64 3}
|
|
!9 = !{!"DetailedSummary", !10}
|
|
!10 = !{!11, !12, !13}
|
|
!11 = !{i32 10000, i64 100, i32 1}
|
|
!12 = !{i32 999000, i64 100, i32 1}
|
|
!13 = !{i32 999999, i64 1, i32 2}
|
|
!14 = !{!"function_entry_count", i64 0}
|
|
!15 = !{!"branch_weights", i32 1, i32 100}
|
|
!16 = !{!"branch_weights", i32 100, i32 1}
|
|
!17 = !{!"branch_weights", i32 1, i32 99}
|
|
!18 = !{!"branch_weights", i32 50, i32 50}
|
|
!19 = !{!"function_entry_count", i64 100}
|
|
!20 = !{}
|
|
!21 = !DIFile(filename: "test.c", directory: "/test")
|
|
!22 = distinct !DICompileUnit(language: DW_LANG_C99, file: !21, producer: "clang version 15.0.0", isOptimized: true, emissionKind: FullDebug, globals: !25, splitDebugInlining: false, nameTableKind: None)
|
|
!23 = distinct !DISubprogram(name: "test", scope: !21, file: !21, line: 1, unit: !22)
|
|
!24 = !DILocalVariable(name: "x", scope: !23)
|
|
!25 = !{}
|
|
!26 = !{i32 2, !"Dwarf Version", i32 4}
|
|
!27 = !{i32 1, !"Debug Info Version", i32 3}
|
|
!28 = !{!"branch_weights", i32 30, i32 70}
|